

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants：J．Bednorz et al．
Serial No．08／303，561
Filed：September 9， 1994

Date：December 22， 1998
Group Art Unit： 1105
Examiner：M．Kopec

For：NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE，AND METHODS FOR THEIR USE AND PREPARATION

The Commissioner of Patents and Trademarks
Washington，D．C． 20231

AMENDMENT AFTER FINAL REJECTION

Sir：
In response to the Office Action dated June 25，1998，please consider the following：
REMARKS
Claims 112，113，117，118，122，and 123 have been rejected under 35 USS 112 as indefinite for using the terminology＂layer－type＂．Applicants respectfully disagree．

The undersigned attorney did a search in Lexis for the terms＂layer－type＂and the term ＂layer＂preceding the term＂type＂by one word（layer pre／1 type）．In this search Lexis found 225 issued US patents using this terminology in the claims．The USPTO has， therefore，accepted this terminology as definite within the meaning of 35 USC 112.

Attachment A is the results of this search printed out using the ．kw or＂kwick＂feature which prints the searched terma and words before and after the searched term．The searched terminology appears in a number of forms such as＂layer type＂，＂layer－type＂，

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: J. Bednorz et al.
Serial No. 08/303,561
Filed: September 9, 1994

Date: December 22, 1998
Group Art Unit: 1105
Examiner: M. Kopec

For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, AND METHODS FOR THEIR USE AND PREPARATION

The Commissioner of Patents and Trademarks
Washington, D.C. 20231

AMENDMENT AFTER FINAL REJECTION

Sir:
In response to the Office Action dated June 25, 1998, please consider the following:
REMARKS
Claims 112, 113, 117, 118,122, and 123 have been rejected under 35 USC 112 as indefinite for using the terminology "layer-type". Applicants respectfully disagree.

The undersigned attorney did a search in Lexis for the terms "layer-type" and the term "layer" preceding the term "type" by one word (layer pre/1 type). In this search Lexis found 225 issued US patents using this terminology in the claims. The USPTO has, therefore, accepted this terminology as definite within the meaning of 35 USC 112. Attachment A is the results of this search printed out using the .kw or "kwick" feature which prints the searched terma and words before and after the searched term. The searched terminology appears in a number of forms such as "layer type", "layer-type",
"layer of type". In view therof applicants respectfully request the examiner to withdraw the rejection of claims $112,113,117,118,122$, and 123 under 35 USC 112 as indefinite for using the terminology "layer-type".

In Attachment B there is a search done by Jim Leonard, an IBM Research librarian, at the request of the undersigned attorney of the term "Layered like" and "layered type" in on-line non-patent literature prior to applicants' filing date. From Attachment B it is clear that these terms are used and understood by persons of skill in the art.

In Attachment C there is a search done by Jim Leonard, an IBM Research librarian, at the request of the undersigned attorney of the term "rare earth like" in on-line non-patent literature prior to applicants' filing date. From Attachment C it is clear that this term is used and understood by persons of skill in the art. This is in addition to previously submitted evidence of the definiteness of this term to overcome the rejection of applicants claims as indefinite for using the term "rare earth like" which applicants respectfully request the examiner to withdraw.

In Attachment D there is a search done by Jim Leonard, an IBM Research librarian, at the request of the undersigned attorney of the term "perovskite like" in on-line non-patent literature prior to applicants' filing date. From Attachment D it is clear that this term is used and understood by persons of skill in the art. This is in addition to previously submitted evidence of the definiteness of this term to overcome the rejection
of applicants claims as indefinite for using the term "perovskite like" which applicants respectfully request the examiner to withdraw.

Please charge any fee necessary to enter this paper to deposit account 09-0468.

If the above-identified Examiner's Action is a final Action, and if the above-identified application will be abandoned without further action by applicants, applicants file a Notice of Appeal to the Board of Appeals and Interferences appealing the final rejection of the claims in the above-identified Examiner's Action. Please charge deposit account 09-0468 any fee necessary to enter such Notice of Appeal.

Reg. No. 32,053
IBM CORPORATION
Intellectual Property Law Dept.
P.O. Box 218

Yorktown Heights, New York 10598
(914) 945-3217

ATTACHMENT A

Received: from mailhub.watson.ibm.com [9.2.250.97] by yktvmv.watson.ibm.com (IBM VM SMTP V2R4a) via TCP with SMTP ; Tue, 22 Dec 1998 12:45 Rece 10 EST Rer < verrisomatson watson.; Tue, 22 Dec 1998 12:45:17-0500 Received: from prod.lexis-nexis.com (prod.lexis-nexis.com [13 r <dmorris@watson. ibm.com>; Tue, 22 Dec 1998 12:45:15-0500
Received: by prod. lexis-nexis.com id AA26465
Received by prod. gateway 3.0 for dmorrisewatson.ibm.com);
InterLock 1998 12:45:14-0500
Message-Id: 199812221745.AA26465@prod.lexis-nexis.com
Received: by prod.lexis-nexis.com (Internal Mail Agent-1);
Tue, 22 Dec 1998 12:45:14-0500
From: lexis-nexis@prod.lexis-nexis.com (LEXIS(R)/NEXIS(R) Print Delivery)
To: dmorris@watson.ibm.com
Subject: LEXIS(R)/NEXIS(R) Print Request Job 68990, 1 of 4

MORRIS, DAN

YORKTOWN PATENT OPERATIONS
T. J. WATSON RESEARCH CENTER
POOX 218 BOX
YORKTON HEIGHS, NEW YORK 10
MAIL-IT REQUESTED: DECEMBER

number of patents found with your request through: LEVEL 1... 225 LEVEL 1 PRINTED DISPLAY FORMAT: KWIC
SEND TO: MORRIS, DAN
P.O. BOX 218
YORKTOWN HEIGHTS NEW YORK 10598-0218

LEVEL 1 - 1 OF 225 PATENTS
5,828,093
GET 1st DRAWING SHEET OF 3
Ceramic capacitor and semiconductor device in which the ceramic capacitor is mounted
INVENTOR: Naito, Yasuyuki, Kyoto, Japan
Sakabe, Yukio, Kyoto, Japan
... [*1] by a gap and surrounding said first capacitor electrode.
$[* 2]$ 2. A ceramic capacitor according to claim 1 , wherein said ceramic
dielectric substrate comprises a substrate for an SrTi03 boundary layer type semiconductive capacitor.
[*3] 3. A ceramic capacitor according to claim 1 , further comprising outer
[*12]
[13] 13. A ceramic capacitor according to claim 5, wherein said ceramic dielectric substrate comprises a substrate for an SrTio3 boundary layer type semiconductive capacitor.
[*14] 14. A ceramic capacitor according to claim 5, wherein said first capacitor electrode formed on said first principal face of said ceramic substrate is divided into two parts.
[*15] 15....
.... [*19] layers disposed respectively on said first and second capacitor
electrodes.
[*20] 20. A ceramic capacitor according to claim 19, wherein said ceramic
dielectric substrate comprises a substrate for an SrTi 03 boundary layer type semiconductive capacitor.
[*21] 21. A ceramic capacitor according to claim 20 , further comprising
outer electrodes which are mainly made of at least one material selected from outer electrodes which are mainly made of at least one material selected from
the group consisting of Au, Pt and Pd and formed on at ...
... [*25] layer formed on said first principal face of said substrate.
[*26] 26. A ceramic capacitor according to claim 23 , wherein said ceramic
dielectric substrate comprises a substrate for an SrTi03 boundary layer type semiconductive capacitor.

[^0]山
\square
m
PAGE
substrate is divided into two parts．
Pat．No．5828093，＊27
LEVEL 1 － 2 OF 225 PATENTS
LZ 10 LヨヨHS 5NIM甘y0 7SI $135<Z=>$

$5,793,767$

$$
=2>\text { GET 1st DRAWING SHEET OF } 21
$$

Aug．11， 1998
ATM communication device and ATM communication network
system with terminal devices having uniquely assigned
virtual channel identifiers
INVENTOR：Soda，Keiichi，Kanagawa，Japan
Ichihashi，Tatsuki，Kanagawa，Japan
Kshishako，Yukio，Kanagawa，Japan
Yokotani，Tetsuya，Kanagawa，Japan
Hiramatsu，Koichi，Kanagawa，Japan
Shibahara，Makoto，Hyogo，Japan
Shibahara，Makoto，Hyogo，Japan
 adaptation layer type 3 or 4 in addition to the field of the virtual path identifier and the virtual channel identifier in the first ATM cell．
［＊7］7．The ATM communication network system of claim 6，wherein the ．．．［＊8］cell transmission section of the first ATM terminal communication part convergence sublayer protocol data unit for an ATM adaptation layer type 3
or 4 in addition to the field of the virtial path identifier and the virtual
channel identifier in the first ATM cell．
［＊9］9．The ATM communication network system of claim 8 ，wherein the common
part convergence ．．．

［＊11］11．The ATM communication network system of claim 10，wherein the LEVEL $\ddot{1}^{-3}$－ 3 OF 225 PATENTS
5,774,665
<=2> GET 1st DRAWING SHEET OF 6
Asynchronous transfer mode LAN switching hub device using
INVENTOR: Jeong, Seong-Ho, Yusong-ku, Republic of Korea Kim, Jang-Kyung, Yusong-ku, Republic of Korea
[*3] said ATM-to-P1355 module includes: a PHY layer having an ATM
physical layer for directly connecting with the ATM network, an ATM layer for
executing ATM protocol, an AAL (ATM Adaptation Layer) type layer for executing
an ATM adaptable function, a LAN emulation layer for executing LAN emulation
function, a bridging/relay layer for executing a bridging and relay function, an
\ldots
LEVEL $1-4$ OF 225 PATENTS

5,764,658

<=2> GET 1st DRAWING SHEET OF 36
Data receiving apparatus and method
INVENTOR: Sekiguchi, Shun-ichi, Kanagawa, Japan
Murakami, Tokumichi, Kanagawa, Japan
Kato, Yoshiaki, Kanagawa, Japan
... [*l] bit stream of data blocks, each comprising a digital coded bit
sequence, which are organized in a hierarchy including a plurality of layers,
each layer having associated therewith one of a plurality of layer types,
wherein at least one layer of a high-order layer type is composed of at least
one layer of a lower-order layer type, each of the data blocks corresponding to
one of the layers and including a start code which identifies the layer type of
the data block, the apparatus comprising:
a layer memory for storing data indicating the layer type corresponding to
the last start code received in the bit stream, the layer memory having a last layer type output,

[^1]0

N
飠
start code ...
.... [*1] detected start code, if one of the expected start codes is similar output which identifies the detected start code and its corresponding layer
means responsive to the start code detector output for updating the layer memory with data indicating the layer type corresponding to the detected start code; and
a block data decoder, responsive to the detected start code output from the start code detector, for decoding the data block corresponding to the detected start code.
[*2] 2
\[

$$
\begin{aligned}
& \text {... [*12] bit stream of data blocks, each comprising a digital coded bit } \\
& \text { sequence, which are organized in a hierarchy including a plurality of layers, } \\
& \text { each layer having associated therewith one of a plurality of layer types, } \\
& \text { wherein at least one layer of a high-order layer type is composed of at least } \\
& \text { one layer of a lower-order layer type, each of the data blocks corresponding to } \\
& \text { one of the layers and including a start code which identifies the layer of the } \\
& \text { data block, the method comprising the steps of: }
\end{aligned}
$$
\]

$$
\begin{array}{r}
\text { Pat. No. 5764658, *12 } \\
\text { storing data indicating the layer corresponding }
\end{array}
$$

> selecting one of the expected start codes as a detected start code based on
> continuousiy comparing data in the bit stream with the set of expected start
codes;
> continuously comparing data in the bit stream with the set of expected start
codes;
> \ldots [*12] a set of expected start codes based upon the data indicating the
layer wherein said set of expected start codes lists start codes of data blocks
in layers of said high-order layer type before start codes of data blocks in
layers of said lower-order layer type;
 the comparison, if one of the expected start $\begin{aligned} & \text { LEVEL } 1-5 \text { OF } 225 \text { PATENTS } \\ & \qquad \begin{array}{r}5,720,851\end{array} \\ & \qquad=2>\text { GET 1st DRAWING SHEET OF } 2 \\ & \text { Feb. } 24,1998\end{aligned}$
Method and arrangement for producing a foam-formed fibre or
paper web the comparison, if one of the expected start $\begin{aligned} & \text { LEVEL } 1-5 \text { OF } 225 \text { PATENTS } \\ & \qquad 5,720,851\end{aligned} \quad \begin{array}{r}\text { Feb. } 24,1998\end{array}$
Method and arrangement for producing a foam-formed fibre or
paper web
[*12] 12. Arrangement according to claim 11, wherein the different fibre types are metered separately from the dispersion vessels up to an inlet box of
the paper machine, said inlet box being of multi-layer type.
[*13] 13. Method according to claim 1, wherein the foam-formed fibre web
[*14] 14. Method according to claim 1, wherein the foamed fibre dispersion
is formed by dispersing natural
LEVEL 1 - 6 OF 225 PATENTS
5,715,250

INVENTOR: Watanabe, Ayumi, Tokyo, Japan
ATM cell ${ }^{[\star 1] \text { first ATM terminal for receiving as a first reception cell a first }}$
a first AAL5-SAR (ATM Adaptation Layer type 5 -Segmentation And Reassembly)
section for reassembling said first reception cell into a first AAL5 packet to output said first AAL5 packet as a first LAN emulation frame;
...
ATM cell [*3] first ATM terminal for receiving as a first reception cell a first
a first AAL5-SAR (ATM Adaptation Layer type 5 -Segmentation And Reassembly) section for reassembling said first reception cell into a first AAL5 packet to output said first AAL5 packet as a first LAN emulation frame;
LEVEL 1 - 7 OF 225 PATENTS
<=2> GET 1st DRAWING SHEET OF 3
Feb. 3, 1998
"Leכ!łdo LLe. to x!dfeu e bu!̣npoad lof ssaコold
vertically-structured quantum well components
INVENTOR: Nissim, Yves, Paris, France Bensoussan, Marcel, Boulogne, France France Rao, Elchuri, Issy Les Moulineaux, France
GaAs or [InP-based III-V semiconductor. $[* 3] \quad$ 3. A process according to claim 2, characterized in that the quantum
wel 1 active layer is of the type GaAs/Ga[1-x]A][x]As with $0</=x</=1$, or
GaAs $/ G a[1-x] \operatorname{In}[x] A s$ with $0<x<1$ or $\operatorname{InP} / \operatorname{In}[x] G a[1-\ldots$
$\ldots[* 3] \quad$ In $[x] G a[1-x] A s[y] P[1-y]$ with $0</=x</=1$ and with $0</=y</=1$.
$[* 4] \quad$ 4. A process according to claim 1 , characterized in that the positive
layer is of type Si[x]N[y]or possibly Sio[x]N[y], with y, in the latter case,
being small enough to enable the SiO[x]N[y]based layer to behave as a positive
layer.
*5] 5. A process according to claim 1, characterized in that the negative layer is of type Si[x]N[y]or possibly SiO[x]N[y], with y being small enough to enable the $\operatorname{siO}[x] N[y]$ based layer to behave as a negative layer.

[*6]

LEVEL 1 - 8 OF 225 PATENTS
 $$
5,702,792
$$
 $<=2>$ GET 1st DRAWING SHEET OF 8
 Dec. 30,1997 Optical recording medium

INVENTOR: Iida, Tetsuya, Tsurugashima, Japan
Jinno, Satoshi, Tsurugashima, Japan
Higuchi, Takanobu, Tsurugashima, Japan
What is claimed is:
[*1] 1. An optical recording medium of a multi-layer type comprising:
a substrate
a single or plural spacer layers each carrying pits and/or grooves;
a single or plural reflective layers layered on the spacer layers; and
wherein said reflective layer is made of a ...
said substrate contacting with said spacer layer is provided with a silane coupling treatment．
［＊2］2．An optical recording medium of a multi－layer type comprising：
a substrate
a single or plural spacer layers each carrying pits and／or grooves；
a single or plural reflective layers layered on the spacer layers；and
wherein said reflective layer is made of one or
LEVEL $1-9$ OF 225 PATENTS
$<=2>$ GET 1st DRAWING SHEET OF 6

[^2]Input panel avoiding interference pattern and method of forming the same
INVENTOR: Matsuda, Genichi, Kawasaki, Japan
Tanaka, Toshiaki, Kawasaki, Japan
What is claimed is:
[*1] 1. An input panel of a resistance layer type comprising:
a first board having a first transparent conductive layer on one surface;
a second board having a second transparent conductive layer on one surface, said first board and said ...
$\ldots[\star 3]$ as claimed in claim 1 , wherein said second spacers are arranged at
intervals from 0.5 mm to 20 mm , and said first spacers are arranged at smaller intervals.
[*4] 4. An input panel of a resistance layer type comprising:
a first board having a first transparent conductive layer on one surface;
a second board having a second transparent conductive layer on one surface,
said first board and said...
$\ldots\left[*_{4}\right]$ first spacers have such a height smaller than that of said second spacers that an appropriate input sensitivity of said input panel can be achieved.
$[* 5] \quad$ 5. A method of forming an input panel of a resistance layer type, said
method comprising the steps of:
a) forming first spacers on a first transparent conductive layer formed on a first board, said first spacers being non-conductive and having a height... Level 1 - 11 OF 225 Patents
$$
5,665,502
$$

GET 1st DRAWING SHEET OF 1

$$
\text { Sep. 9, } 1997
$$

Electrophotographic photoreceptor and method for producing
INVENTOR: Ohashi, Kunio, Nara, Japan Tokuyama, Mitsuru, Nara, Japan Kinashi, Hiroshi, Kyoto, Japan
Nozomi, Mamoru, Kanagawa, Japan
Umehara, Tadashi, Niigata, Japan
developing gap holding jig, and in a region in contact with a
leaner.
[*9] 9. An electrophotographic photoreceptor as claimed in claim 1, wherein comprising at least a charge generating layer and a charge transfer layer, said charge generating layer having a thickness of from 0.1 to 2 mu m , and said LEVEL 1 - 12 OF 225 PATENTS
<=2> GET 1st DRANING SHEET OF 6

Jul. 15, 1997

Method and apparatus for shipping knobbed glass cookware
covers
INVENTOR: Frysinger, Eric T., Groveport, Ohio
Pirello, Joe, Reynoldsburg, Ohio

$<=2>$ GET lst DRAWING SHEET OF 2
Wet-type electrophotographic image formation method
INVENTOR: Mochizuki, Manabu, Yokohama, Japan
Kurotori, Tsuneo, Tokyo, Japan
Ariyama, Kenzo, Yokohama, Japan
Kojima, Kenji, Tokyo, Japan
Tsuruoka, Ichiro, Tokyo, Japan
Echigo, Katsuhiro, Yokohama, Japan
Miyao, Mayumi, Tokyo, Japan
... [*1] said silicone oil, and said photoconductive member is an organic photoconductive member.

[*2] 2. The wet-type image formation apparatus as claimed in claim 1 , generating material and a charge transporting material are contained.
 $[\star 3]$ 3. The wet-type image formation apparatus as claimed in claim 1, wherein said photoconductive layer comprises (...
 ... [*9] said silicone oil, and said photoconductive member is an organic photoconductive member.
 $$
\begin{aligned} & {[* 10] \text { 10. The wet-type image formation apparatus as claimed in claim } 9,} \\ & \text { wherein said organic photoconductor is of a single layer type in which a charge } \\ & \text { generating material and a charge transporting material are contained. } \\ & {[* 11] \text { 11. The wet-type image formation apparatus as claimed in claim } 9,} \\ & \text { wherein said photoconductive layer comprises (} \mathrm{LEVEL} 1-140 F 225 \text { PATENTS } \end{aligned}
$$

 [*11] 11. The wet-type image formation apparatus as claimed in claim 9 , wherein said photoconductive layer comprises (COOMS LEVEL $1-140 \mathrm{~F} 225$ PATENTS

 [*11] 11. The wet-type image formation apparatus as claimed in claim 9 ,wherein said photoconductive layer comprises (COOMS
LEVEL $1-140 \mathrm{~F} 225$ PATENTS}

[^3]Apr. 22, 1997
Multi-layer type light emitting device
INVENTOR: Suehiro, Yoshinobu, Gyoda, Japan
Yamazaki, Shigeru, Gyoda, Japan
Sato, Takashi, Gyoda, Japan
Sato, Takashi, Gyoda, Japan
What is claimed is:

$[* 3] \quad$ 3. A multi-layer type light emitting device according to claim 1 ,
wherein said light emitting sources emit rays of light with different luminous wavelength ranges, respectively.
[*4] 4. A multi-layer type light emitting device according to claim 3,
wherein said light emitting sources include ones emitting rays of red or nearly
red light, green or nearly green light and blue or nearly blue light
respectively.
$[* 5]$
wherein at least one of said light emitting sources emits ray of light with two or more luminous wavelength ranges.
[*6] 6. A multi-layer type light emitting device according to claim 1 , wherein said at least two light emitting sources includes three light emitting sources, and wherein the respective optical surface for each light emitting source except the rearmost source each reflects rays of light emitted by said light emitting source with approximately the same luminous intensity
distribution characteristics.
$[* 7]$ 7. A multi-layer type light emitting device according to claim 1,
wherein said optical surface is a light semi-transmissible thin film reflection
surface, or said optical surface is formed by a method wherein reflection
portions are partially formed on a light transmissible surface.
18

emitting sources, successively disposed along the light-transmitting path, the
... [*17] source, each optical surface transmitting therethrough in the
forward direction rays of light emitted by each rear source that is disposed
between the optical surface and the rear end.
Pat. No. 5623181 , *17

\[\)| [18] 18. A multi-layer type light emitting device, comprising: |
| :--- |
| at least two light emitting sources, successively disposed along a |

\]

light-transmitting path, including a rearmost source at a rear end of the path

and a ...
emitted by the rearmost source;
wherein each of the light emitting sources, except the rearmost source, is a
semiconductor LED chip.
[*19] 19. A multi-layer type light emitting device according to claim 18 ,
wherein the at least two light emitting sources includes at least three light
emitting sources, successively disposed along the light-transmitting path, the at least three ...
forward direction rays of light emitted by each rear source that is disposed between the optical surface and the rear end.
[*20] 20. A multi-layer type light emitting device, comprising:
at least two light emitting sources, successively disposed along a light-transmitting path, including a rearmost source at a rear end of the path and a ...
light transmissible material having an annular optical surface surrounding a side surface of the at least one LED chip.
[*21] 21. A multi-layer type light einit
wherein the at least two light emitting sources inclice according to claim 20, emitting sources, successively disposed along the light-transmitting path, the

5,605,051

 large number of tubes serving as refrigerant passageway，a large number of heat radiating fins layered alternately with the tubes，and a pair of headers disposed on the opposite ends of the tubes．
［＊15］15．An automotive air conditioner according to claim 14，wherein said layer type heat exchanger comprises a partition plates in said headers in order
that refrigerant flow is turned back and a mounting pipe for mounting said temperature sensitive tube．

［16］16．An ．．．

$$
\text { LEVEL } 1-17 \text { OF } 225 \text { PATENTS }
$$

$$
\text { © } \ddagger 0 \text { 1ヨヨHS 9NIMYYO 7SI } 139<Z=>
$$ characters and graphic forms；

a compensating ．．．

$$
\text { Dec. } 31,1996
$$

$$
\text { ner } 31 \quad 1006
$$

Liquid crystal display system

$$
\begin{aligned}
& \text { INVENTOR: Chiba, Masao, Saitama, Japan } \\
& \text { Ishii, Mikio, Saitama, Japan }
\end{aligned}
$$

［＊1］1．A double－layer type super－twisted nematic liquid crystal display
system comprising：
... [*1] crystal display device and said compensating liquid crystal device
are driven with said drive voltages which are adjusted according to the calculation of contrast made with the aid of said light detecting means.
$[* 2]$ 2. A double-layer type super twisted nematic liquid crystal display
system according to claim 1, further comprising:
a voltage memory circuit for storing most recent values of said drive
voltages while said system is an off state to provide initial drive voltage values for when said system is switched to an on state.
[*3] 3. A double-layer type super-twisted nematic liquid crystal display
system comprising:
a dot-matrix type liquid crystal display device for displaying at least one of characters and graphic forms;
a compensating ...
luminance measuring region which is turned on and off for measurement of the a contrast of said liquid crystal display device.
[*4] 4. A double layer type super-twisted nematic liquid crystal display
system comprising:
a dot-matrix type liquid crystal display device for displaying at least one of characters and graphic forms;
a compensating .
which is divided into two parts which are alternately turned on and off for which is divided into two parts which are alternately turned on and off for
measurement of the contrast of said liquid crystal display device. AGE 22
Pat. No. 5589960, *4
[*5] 5. A double layer type super-twisted nematic liquid crystal display
system comprising:
a dot-matrix type liquid crystal display device for displaying at least one
of characters and graphic forms; LEVEL 1 - 18 OF 225 PATENTS
<=2> GET 1st DRAWING SHEET OF 5
Dec. 3, 1996
plousaulf platy 45!4 dot ssajoud no!fep!xo โeכol
Local oxidation process for high field threshold
applications

[^4]INVENTOR: Ritter, Michael W., Los Altos, California Bettendorff, John, San Jose, California
Flammer, III, George H., Cupertino, California
Galloway, Brett D., Campbell, California
What is claimed is:
[*l] 1. A method for digital packet communication between nodes in
disparate networks including path unaware network layer types and path aware
a) receiving a typed encapsulating packet which encapsulates a path-addressed packet at a first network layer, said first network layer being path aware;
... [*1] path aware protocol if said second network layer is path aware.
[*2] 2. A method for digital packet communication between nodes in disparate networks including path unaware network layer types and path aware network layer types, said method comprising:
a) receiving an encapsulating packet which encapsulates a path-addressed packet at a first network layer of a first type;
b) if said first type is path unaware, ...
... [*6] type of the received packet; and
relaying the received packet to an appropriate network router.
$[* 7]$ 7. A method for digital packet communication between nodes in various
networks including path aware network layer types, said method comprising:
a) designating a destination path element for a packet by means of a type-length-value element specific only to one station of a group of $\quad .$.
PAGE 26
LEVEL 1 - 21 OF 225 PATENTS

$5,555,347$

$<=2>$ GET 1st DRAWING SHEET OF 24
Leanau e bu!̣n foqoa e bu!llouquos lof snłededde pue poyzaw
INVENTOR: Yoneda, Takao, Nagoya, Japan
Komura, Katsuhiro, Takahama, Japan
second [*2] accordance with the second joint angle vector calculated by said
cations. claim 2, wherein said neural network is of a three layer type which is composed of an input layer, an intermediate layer and an output layer.
claim2, further comprising: \quad controlling an articulated robot according to

LEVEL 1 - 22 OF 225 PATENTS

$$
5,545,945
$$

$<=2>$ GET 1st DRAWING SHEET OF 1
Aug. 13, 1996
Thermionic cathode
INVENTOR: Branovich, Louis E., Howell, New Jersey
Eckart, Donald W., Wall, New Jersey
Fischer, Paul, Oakhurst, New Jersey

... [*2] emissions. [*5] 5. An enhanced electron emission thermionic cathode, comprising:
a base material having a composition including Barium and Tungsten; and
a base material having a composition including Barium and Tungsten; and
an overcoating of emissive material forming an emissive surface on said base
PAGE

Level 1-23 0F 225 Patents

5,525,541

<=2> GET 1st DRAVIING SHEET OF 6 Jun. 11, 1996

5，504，558
 ［ 10 1ヨヨHS 9NIM甘yO 7SI $1 \exists 9<Z=>$

1，wherein the photosensitive layer is of a single layer type．
［＊13］13．An electrophotographic photosensitive member according to claim
12，wherein the photosensitive layer has a thickness of from 10 to 35 mu m．
［＊14］14．An electrophotographic photosensitive member according to claim
13，wherein the photosensitive layer has a
LEVEL $1-250 \mathrm{OF} 225$ PATENTS

$$
\begin{aligned}
& 25 \text { OF } 225 \text { PATENTS } \\
& 5.489 .372
\end{aligned}
$$

Apr．2， 1996

pue＇」əqшวш วヘ！

INVENTOR：Ikezue，Tatsuya，Yokohama，Japan ．．．［＊11］photosensitive member according to claim 10 ，wherein the charge－transporting layer has a thickness of from 15 to 30 mu ． ［＊12］12．An electrophotographic photosensitive member according to claim 1 ，wherein the photosensitive layer is of a single layer type． ［＊13］13．An electrophotographic photosensitive member according to claim 12，wherein the photosensitive layer has a thickness of from 10 to 35 mu ． ［＊14］14．An electrophotographic photosensitive member according to claim 13，wherein the photosensitive layer has a．．． LEVEL 1 － 25 OF 225 PATENTS

[^5]
INVENTOR: Iwata, Hiroshi, Tokyo, Japan

$$
5,466,892
$$
$<=2>$ GET 1st DRAWING SHEET OF 3

> Circuit boards including capacitive coupling for signal
INVENTOR: Howard, James R., Santa Clara, California
Lucas, Gregory L., Newark, California

CORE TERMS: gelatin, magnetic, particle, antibody, aminodextran, cell, bead, sample, ferrite, coating, minute, suspension, depletion, coated, tube, crosslinking, granulocyte, maleimidy', preparation, wbc, dextran, manganese
We claim:
[*1] 1. Colloidal particles having a plurality of pendent functional groups
on an exterior coating of aminodextran in which each particle comprises a solid on an exterior coating of aminodextran in which each particle comprises a solid
metallic core coated with a first gelatin layer of type B, alkali cured gelatin of Bloom in the range 60 to 225 and a second layer of an aminodextran, said layers having been either (a) crosslinked by the action of a chemical

$$
\begin{gathered}
5,465,103 \\
<=2>\text { GET 1st DRAWING SHEET OF } 6 \\
\text { Nov. } 7,1995
\end{gathered}
$$

Display device with coordinate input function

INVENTOR: Wang, Lixiao, Maple Grove, Minnesota Willard, Martin R., Maple Grove, Minnesota
Tran, Thomas T., Coon Rapids, Minnesota
Hastings, Roger, Maple Grove, Minnesota
Schmaltz, Dale F., Boulder, Colorado
Holman, Thomas J., Minneapolis, Minnesota

INVENTOR: Katsukawa, Masato, Osaka, Japan

$$
\angle \varepsilon
$$

岂
c*2] ${ }^{*}$ process for production according to claim 1 , wherein the
coefficient k is a number which is 0.13 or smaller.

Level 1 - 32 of 225 Patents

$$
5,428,244
$$

Semiconductor device having a silicon rich dielectric layer
inventor: Segawa, Mizuki, Kyoto, Japan
Kato, Yoshiaki, Hyogo, Japan
Nakaoka, Hiroaki, Osaka, Japan
[*4]

$$
<=2>\text { GET } 1 \text { st DRAWING SHEET OF } 12
$$

$$
\text { Jun. 27, } 1995
$$

\ldots [*3] A semiconductor device as in either claim 1 or claim 2 , further
comprising a dielectric. layer for passivation, said passivation dielectric layer
being formed on said dielectric layer type, being composed of a chemical
compound which is the same compound that sadd dielectric layer is composed of,
and having a silicon content closer to a silicon content according to the
stoichiometric composition formula, compared to the dielectric layer.

LEVEL 1 - 33 OF 225 PATENTS

$$
5,420,052
$$

$<=2>$ GET 1st DRAWING SHEET OF 2

May 30, 1995

Method of fabricating a semiplanar heterojunction bipolar transistor

INVENTOR: Morris, Francis J., Plano, Texas Yang, Jau-Yuann, Richardson, Texas

Yuan, Han-Tzong, Dallas, Texas

... [*1] layer;

 layer to the subcollector layer;
forming a base layer on the collector layer and the collector plug region;

forming an emitter layer type on the base layer;	
	forming an emitter cap layer on the emitter layer;
	forming a collector contact on the collector plug region;
	forming an emitter contact on the emitter cap layer;
	forming a base contact on the
	LEVEL 1-34 OF 225 PATENTS

LEVEL $1-34$ OF 225 PATENTS
$5,401,549$
Mar. 28,1995
Optical information recording med
Optical information recording medium

... [*1] layer is overlaid on both said reflective layer in said ROM region portion and a recording portion of the substrate in said recording region, said recording layer being of a multi-layer type comprising a dielectric layer and a magnetic layer.
[*2] 2. The optical information recording medium as claimed in claim 1, further comprising an additional reflective layer which is overlaid on said recording ... LEVEL 1 - 35 OF 225 PATENTS
5,390,208
<=2> GET 1st DRAWING SHEET OF 3

[^6]<=2> GET 1st DRAWING SHEET OF 3
[*2] 2. A strained quantum well layer type semiconductor laser device
according to claim 1 , wherein the InAs y P 1-y strained quantum well layer satisfies inequality:

\section*{where w is the ratio of deformation (\%) and $L W$ is the thickness (nm) of each component layer of the strained quantum well layer.

 ... [*3] OMITTED < $45(\% \times \mathrm{nm})$,
 where s is the ratio of deformation (\%) and Ls is the thickness (nm) of each component layer of the barrier layer and the light confining layers.
 [*4] 4. A strained quantum well layer type semiconductor laser device according to claim 1 , wherein InAs y P $1-y(0<y</=1)$ has a value for

compositional ratio y between 0.3 and 0.6 .
 $$
\text { LEVEL } 1 \text { - } 36 \text { OF } 225 \text { PATENTS }
$$
 SYMBOL OMITTED epsilon $w \times L$ W SYMBOL OMITTED $<45(\% \times n m)$,

$$
\begin{gathered}
5,387,564 \\
\text { Feb. 7, } 1995 \\
\text { Molding and calcining of zeolite powder }
\end{gathered}
$$

INVENTOR: Takeuchi, Tatsuro, Tsukuba, Japan
Okabayashi, Saji, Kitakanbara, Japan
(b) a beta $1,3-g l u c a n$ in an amount of $0.1-20$ parts by weight in relation to
100 parts by weight of the zeolite; and amount of $5-50$ parts by weight in relation to 100 parts by weight of the
zeolite; and
Mouri, Motoya, Tsuchiura, Japan
Miyamura, Shoichi, Kitakanbara, Japa
Mi yamura, Shoichi, Kitakanbara, Japan

... [*21] a) a zeolite;
 $$
[\star 21] \text { a) a zeolite; }
$$

$$
\begin{aligned}
& \text { (b) a beta } 1,3-g l u c a n \text { in an amount of } 0.1-20 \text { parts by weight in relation to } \\
& 100 \text { parts by weight of the zeolite; and }
\end{aligned}
$$

(c) a 1:1 layer-type clay mineral and a 2:1 layer clay mineral in a total

$$
\text { (c) a } 1: 1 \text { layer-type clay mineral and a } 2: 1 \text { layer clay mineral in a total }
$$

(ii) at least ...

> LEVEL 1 - 37 OF 225 PATENTS
> $<=2>$ GET 1st DRAWING SHEET OF 9
> Dec. 20, 1994zeolite; and
Method of fabricating group III-V compound
INYENTOR: Remba, Ronald D., Sunnyvale, California
Brunemeier, Paul E., Sunnyvale, California
Schmukler, Bruce C., Mountain View, California
Strifler, Walter A., Sunyvale, California
Rosenblatt, Daniel H., Belmont, California
$\ldots[* 5] \quad 1-x$ As wherein $(0</=y<0.2)$ and $(0.2<x</=1.0)$.
[*6] 6. A method of making a semiconductor device comprising the steps of:
fabricating a structure by
(i) growing one or more layers of the type X a Y 1-a As, where x is an atom
selected from the group of IIIA atoms and Y is a different atom selected from
the group of IIIA atoms, and where $(0<a<1)$ upon a semiconductor...
PAGE 43
LEVEL $1-38$ OF 225 PATENTS

5,324,980

<=2> GET 1st DRAWING SHEET OF 24

Multi-layer type semiconductor device with semiconductor element layers stacked in opposite direction and
manufacturing method thereof
INVENTOR: Kusunoki, Shigeru, Hyogo, Japan
What is claimed is:
[*1] 1. A multi-layer type semiconductor device, comprising:
a substrate having a main surface;
a first semiconductor element layer formed on said main surface of said substrate and including a first semiconductor element having an active ... [*3] insulating layer.
$\quad[* 4]$ 4. The device of claim 3, including a conductor filling said
through-hole and contacting opposite surfaces of said first and second
semiconductor element layers.
[*5] 5. A multi-layer type semiconductor device, comprising:
a substrate having a main surface;

bonding a first member including said first semiconductor layer formed on said first substrate, with a ...
....[*2] said insulating layer and said first semiconductor layer are
opposed to each other, and
thinning said third substrate the expose said second semiconductor layer.
[*3] 3. A method of manufacturing a multi-layer type semiconductor device comprising the steps of;
forming perforations through a first substrate;
filling said perforations with conductors,
successively forming a first semiconductor layer on a main surface of a
second ...

$$
\text { LEVEL } 1 \text { - } 40 \text { OF } 225 \text { PATENTS }
$$

<=2> GET 1st DRAWING SHEET OF 8
LED carriage selectively movable in two directions
INVENTOR: Isobe, Minoru, Tokyo, Japan
end fixed to one end of the first block, and the other end fixed to a right end of the frame, a stacked-layer type of second piezoelectric element adapted to other ...

$$
5,291,248
$$ deform itself in response to an application of a voltage by a power source for deforming the second leaf spring, the second piezoelectric element being fixed

one e.. [*5] comprises an L-shaped first block, an L-shaped leaf spring having of end fixed to one end of the first block, and the other end fixed to one end deform itself in response to an application of a voltage by a power source for deforming the leaf spring, the second piezoelectric element being fixed to the
end fixed to one end of the first biock, and the other end fixed to a right end of the frame, a stacked-layer type of second piezoelectric element adapted to deform itself in response to an application of a voltage by a power source for
\mathcal{F}
눈
deforming the second leaf spring, the second piezoelectric element being fixed
to the ...
... [*20] comprises an L-shaped first block, an L-shaped leaf spring having of a frame, a stacked-layer type of second piezoelectric element adapted to deform itself in response to an application of a voltage by a power source for deforming ther

Level 1 - 41 OF 225 PATENTS

<=2> GET 1st DRAWING SHEET OF 5

Feb. 22, 1994

Semiconductor luminous element and superlattice structure

INVENTOR: Iga, Kenichi, Machida, Japan

Koyama, Fumio, Hino, Japan
Takagi, Takeshi, Ibaraki, Japan [*g] of crystals having different energy gaps,
\ldots [*8] between the active layer and the multi-quantum barrier layer.
[*9] 9. A superlattice structure, comprising alternating layers of at least
two types of crystals having different energy gaps,
wherein the energy gaps of adjacent crystal layers are such that the type of
crystal having the smaller energy gap of the adjacent layers has an energy gap
which is smaller than that of a portion of the superlattice structure on a side
through which electrons or holes enter the superlattice structure, and
wherein the thicknesses and structures of the adjacent crystal ...
PAGE 48
LEVEL $1-42$ OF 225 PATENTS

[^7]... [*1] electroplating bath and simultaneously incorporating a third alloy component of Group VIA suspended in the electroplating bath in finely dispersed form by dispersion electrolysis, and
producing a ternary semiconductor layer of the type IB-IIIA-VIA by heat treating the deposited material.
[*2] 2. The method according to claim 1, wherein the volume percentage of each component of the binary alloy is between about 25% and 75%.
Level 1-43 OF 225 PATENTS
Benzidine derivative and photosensitive material using said
INVENTOR: Hanatani, Yasuyuki, Osaka, Japan
Iwasaki, Hiroaki, Osaka, Japan
photosensitive material containing a conductive substrate having thereon a
mhich contains the benzidine derivative (1) according to claim 1.
[*3] 3. The photosensitive material according to claim 2, wherein the
photosensitive layer is a multi-layer type photosensitive layer comprising an
electric charge transferring layer and an electric charge generating layer which are laminated mutually.
$[* 4]$
wherein the electric charge transferring layer contains 25 to 200 parts by weight of said benzidine derivative (1) for 100 parts by weight of a ...
... [*5] compounds, and pyrrolopyrrole compounds.
[*6] 6. The photosensitive material according to claim 5 , wherein the
electric charge generating material is an azo compound.
[*7]
photosensitive layer is a single-layer type photosensitive layer comprised of electric charge transferring material, an electric charge generating material and a binding resin.
\[

$$
\begin{aligned}
& \text { [*8] 8. The photosensitive material according to claim } 7 \text {, wherein the } \\
& \text { single-layer type photosensitive layer contains } 40 \text { to } 200 \text { parts by weight of } \\
& \text { said benzidine derivative (1) for } 100 \text { parts by weight of a binding resin. }
\end{aligned}
$$
\]

$$
\begin{aligned}
& \text { [*9] 9. The photosensitive material according to claim } 8 \text {, wherein the } \\
& \text { single-layer type photosensitive layer contains, for } 100 \text { parts by weight of a }
\end{aligned}
$$

binding resin, 5 to 500 parts by weight of one or more kinds of an electric charge generating material selected from selenium,
LEVEL $1-44$ OF 225 PATENTS

5,260, 123

$[* 2 \theta]$ 20. A liquid jet recording head as claimed in claim 18 wherein said
piezo-electric member has a plurality of grooves which are formed on said
piezo-electric.... piezo-electric ...

$$
\text { LEVEL } 1 \text { - } 45 \text { OF } 225 \text { PATENTS }
$$

> Hydrazone compound and photosensitive material using said
INVENTOR: Hanatani, Yasuyuki, Sakai, Japan

$$
\begin{aligned}
& 5,258,251 \\
& \text { Nov. 2, } 1993
\end{aligned}
$$

Iwasaki, Hiroaki, Hirakata, Japan

... [*4] compounds, and pyrrolopyrrole compounds.
$[* 5]$
electric charge generating material is an azo compound.

$$
5,256,508
$$

Oct. 26, 1993
Hydrazone compound and photosensitive material using said
INVENTOR: Hanatani, Yasuyuki, Sakai, Japan

...: [*1] halogen atom, an alkyl group, an alkoxy group or the following

photosensitive layer is a multi-layer type photosensitive layer including an electric charge transferring layer which includes the hydrazone compound as the electric charge transferring material, and an electric charge generating layer,
which layers are laminated mutually.
[*3] 3. The photosensitive material according to claim 2 , wherein the
electric charge transferring layer of the multi-layer type photosensitive layer
further includes a binding resin, and the electric charge transferring layer
contains 25 to 200 parts by weight of said hydrazone compound for 100 parts by
weight of the...

[^8]
$<=2>$ GET 1 st DRAWING SHEET OF 1

Oct. 19, 1993

Electrophotographic photosensitive member, and
electrophotographic apparatus, device unit and facsimile
machine having the photosensitive member

INVENTOR: Mayama, Shinya, Yamato, Japan Fujimura, Naoto, Yokohama, Japan Yoshihara, Toshiyuki, Inagi, Japan

Sakai, Kiyoshi, Hachioji, Japan Anayama, Hideki, Yokohama, Japan Ainoya, Hideyuki, Tokyo, Japan

... [*21] 21. The electrophotographic photosensitive member according to claim 19, wherein said charge generation layer is the surface layer.
[*22] 22. The electrophotographic photosensitive member according to claim
18, wherein said photosensitive layer is of a single layer type.
[*23] 23. The electrophotographic photosensitive member according to claim 1, wherein said surface layer is a surface protective layer.
[*24] 24. The electrophotographic photosensitive member according to claim wherein said electrophotographic photosensitive member has ...

LEVEL 1 - 48 OF 225 PATENTS

5,247,445

$$
21,1993
$$

Control unit of an internal combustion engine control unit utilizing a neural network to reduce deviations between exhaust gas constituents and predetermined value

Inventor: Miyano, Hideyo, Niza, Japan

Suzaki, Yukihiko, Nerima, Japa,
Takahashi, Fumitaka, Hoya, Japan
Ogasawara, Ken-ichi, Fujimi, Japan
arranged between said input layer of cylinders, and an intermediate layer
are coupled with predetermined coupling weights only across the layers to form a
three-layer type perceptron neural network.
[*8] 8. A control unit for an internal combustion engine according to claim applying a back propagation learning method to said three-layer type perceptron neural network, and corrects the correction coefficient for said calculation
7 ［＊9］9．A control unit for an internal combustion engine according to claim

are coupled with predetermined coupling weights only across the layers to form a three－layer type perceptron neural network．
［＊23］23．A control unit for an internal combustion engine according to claim 22 wherein said control means corrects said coupling weights among the units by applying a back propagation learning method to said three－layer type perceptron neural network，and corrects the correction coefficient for said calculation means．
claim 22 wherein said control means corrects． $\begin{aligned}* 24]\end{aligned}$ ．A combustion engine according to
LEVEL 1 － 49 OF 225 PATENTS
5，244，561
ع 10 LヨヨHS 9NIM甘甘の 75I $1 \exists 9<Z=>$

> Process and apparatus for the electrochemical determination
IMYENTOR：Calzi Claudio，Milan，Italy
Tancred，
．．．［＊3］3．The process of claim 1 ，wherein the measurement liquid is high－purity water．
［＊4］4．The process of claim 1 ，wherein the measuring cell is a
conductivity cell．
［＊5］5．The process of claim 4，wherein the conductivity cell is of the thin layer type．
［＊6］6．The process of claim 1，wherein the means of removing ionic impurities are ion exchangers．
［＊7］7．The process of 6，wherein the ion exchangers are in mixed bed form．
［＊8］8．The process of claim 7，wherein the ion exchangers．

$[\star 13]$ 13．The apparatus of claim 10 ，wherein the measuring cell is a
conductivity cell．
[*14] 14. The apparatus of claim 13, wherein the conductivity cell is of
the thin layer type.
LEVEL 1 - 50 OF 225 PATENTS
<=2> GET 1st DRAWING SHEET OF 6

in

layer, an etching stopper layer and an absorption layer on the
substrate etched;
c) removing the absorption layer excluding the photodetector forming area on
the substrate by the selective etchant;
d) sequentially removing the etching stopper layer and the type n-channel
layer between the photodetector and the transistor forming areas to electrically
insulate the photodetector and the transistor;
e) sequentially forming a p-type InP layer and a p-type InGaAs layer on the
...
LEVEL $1-51$ OF 225 PATENTS

[^9]5,24,96
... [*18] multiple wavelength solid state laser, comprising:

electric charge transferring material, an electric charge generating material and a binding resin.
\[

$$
\begin{aligned}
& \text { [*8] 8. The photosensitive material according to claim } 7 \text {, wherein the } \\
& \text { single-layer type photosensitive layer contains } 40 \text { to } 200 \text { parts by weight of } \\
& \text { said phenylenediamine derivative (1) for } 100 \text { parts by weight of a binding resin. } \\
& \text { [*9] 9. The photosensitive material according to claim } 8 \text {, wherein the } \\
& \text { single-layer type photosensitive layer contains, for } 100 \text { parts by weight of a } \\
& \text { binding resin, } 2 \text { to } 20 \text { parts by weight of one or more kinds of an electric } \\
& \text { charge generating material selected from the group } \ldots
\end{aligned}
$$
\]

5,200,969

$<=2>$ GET 1st DRAWING SHEET OF 15

$$
\text { Apr. 6, } 1993
$$

Switchable multiple wavelength semiconductor laser

INVENTOR: Paoli, Thomas L., Los Altos, California

... [*1] two different output wavelengths, comprising:

5,196,143

Mixed metal hydroxide-clay adducts as thickeners for water
INVENTOR: Burba, III, John L., Angleton, Texas
Barnes, Audrey L., Lake Jackson, Texas
earth．［＊13］saconite，sepiolite，vermiculite，attapulgite，and Fuller＇s
［＊14］14．The adduct or reaction product of claim 1 wherein the mineral
clay is at least one of the classes consisting of amorphous clays of the
allophane group and crystalline clays of the $2-1$ ayer type，3－1ayer type，
expanding type，non－expanding type，elongate，regular mixed layer type，and chain structure type．
＊15］15．The adduct or reaction product of claim 1 wherein the mineral clay is bentonite．
$[\star 16]$ 16．The adduct or reaction product of claim 1 wherein the mineral
clay is beneficiated bentonite．

5，189，567

ε 」O LヨヨHS 9NIM甘צO 7SI $1 \exists 9<Z=>$
High speed switching circuit for controlling current flow in a bridge circuit coil for use in a magneto－optic direct
overwrite system

INVENTOR：Mody，Hemant K．，Rochester，New York
What is claimed is：
［＊1］1．A direct over－write magneto－optic recording apparatus for recording oriented magnetic domains，said digital information identified by a digital information source，said apparatus comprising：
（a）means for scan－irradiating the recording layer with a beam of ．．．

［＊4］4．A direct over－write magneto－optic recording apparatus for recording oriented magnetic domains，wherein an information data source provides control signals identifying data to be stored by said recording apparatus，said apparatus comprising：
（a）means for scan－．．．
．．．［＊6］alternates directions during each cycle of said predetermined
frequency．

PAGE 64

Level 1 - 58 of 225 Patents

Multi-layer type semiconductor device with semiconductor element layers stacked in opposite directions and
manufacturing method thereof
INVENTOR: Kusunoki, Shigeru, Hyogo, Japan
What is claimed is:
[*1] 1. A multi-layer type semiconductor device comprising;
a transparent substrate,
a photosensor layer formed on said transparent substrate and including photosensor elements for detecting light passing through said transparent substrate and converting the ...
... [*1]
connected to said circuit layer via said through holes for displaying results of processing output from said circuit layer.
[*2] 2. A multi-layer type semiconductor device according to claim 1,
further comprising a light shielding layer interposed between said photosensor further comprising a light shielding layer interposed between said photosensor
photosensor layer toward said circuit layer from entering said circuit layer.
[*3] 3. A multi-layer type semiconductor device according to claim 1 , which is formed of materials penetrable to light as a single chip.
[*4] 4. A multi-layer type semiconductor device according to claim 3 ,
which, formed as the single chip, has a light transmittance of at least 5%.
[*5] 5. A multi-layer type semiconductor device according to claim 1 , display elements for giving a display based on variations of light passing therethrough, ...

[*6] 6. A multi-layer type semiconductor device according to claim 5,
further comprising alight shielding layer interposed between said light
emitting element layer and said circuit layer for preventing light traveling
from said light emitting element layer toward said circuit layer from entering
said circuit layer.

$[\star 8]$
wherein said display element layer includes light emitting elements for giving a display based on self-emission of light.

> [*9] 9. A multi-layer type semiconductor device according to claim 8, further comprising alight shielding layer interposed between said display element layer and said circuit layer for preventing light traveling from said display element layer toward said circuit layer from entering said circuit layer. [*10] 10. A multi-layer type semiconductor device comprising; a transparent substrate, a display element layer including display elements and formed on said transparent substrate such that a display given by said display elements is visible...
signal for processing by said circuit layer.

A A un
[${ }^{111]}$ 11. A multi-layer type semiconductor device according to claim 10,
wherein said sensor layer includes a photosensor element for detecting light.
[^12] 12. A multi-layer type semiconductor device according to claim 10,
wherein said sensor layer includes a temperature sensing element for detecting
temperature.
[*13] 13. A multi-layer type semiconductor device according to claim 10,
wherein said sensor layer includes a pressure sensing element for detecting pressure.
$[\star 14]$
wherein said sensor layer includes a sensing element for detecting radiation.
15．A multi－layer type semiconductor device comprising；
a substrate defining perforations and having conductors formed in said
a first circuit layer formed on said substrate and including an electric
circuit electrically connected to said
LEVEL $1-59$ OF 225 PATENTS － 59 OF 225 PATENTS
$5,189,297$

．．．［＊19］atoms selected for type－converting the underlying collector layer to an opposite type of electrical conductivity；

Planar double－layer heterojunction HgCdTe photodiodes and methods for fabricating same

INVENTOR：Ahlgren，William L．，Goleta，California
illuminating the dopant layer and the underlying surface of the collector
layer with the source；and
diffusing the dopant layer into the underlying collector layer thereby
type－converting the underlying collector layer to an opposite type of
conductivity．
［＊20］20．A method as defined in claim 13 wherein the step of forming a
base layer is accomplished by forming an n－type．．．
coliector layer，the dopant atioms being deposited upon the surface only where a
photodiode is not desired；and
diffusing the deposited dopant atoms into the underlying collector layer
thereby type－converting the underlying collector layer to an n－type of
conductivity．

［＊22］22．A method as defined in claim 13 and further comprising a step of
depositing a passivation layer at least over the
LEVEL $1-60$ OF 225 PATENTS

[^10]Neural net using capacitive structures connecting input

be.. [*18] lines that are identified by the same ordinal number connected to
be receptive of the same input signal, thereby to provide a neural network layer.
[*19] 19. A plurality, L in number, of neural net layers of the type set forth in claim 18, respectively identified by consecutive ordinal numbers
zeroeth through $(L-1)<t h>, L$ being a fositive integer, the non-linear amplifiers of the processors ...
... [*27] lines that are identified by the same ordinal number connected to
be receptive of the same input signal, thereby to provide a neural network
layer.
$[\star 28]$
forth in claim 27 , 27 , respectively identified by consecutive ordinal numbers zeroeth through ($L-1$ <th $>$, L being a positive integer, the non-linear

61 OF 225 PATENTS

amplifiers of the processors $\operatorname{LEVEL} 1$

5,185,228
 Feb. 9, 1993

Electrophotosensitive material containing p-benzylbiphenyl
INVENTOR: Maeda, Tatsuo, Kobe, Japan
Katsukawa, Masato, Ibaraki, Japan
Mizuta, Yasufumi, Kishiwada, Japan
weight for 100 parts by weight of m-phenylenediamine. layer is a single-layer type photosensitive layer containing a charge generating

<=2> GET 1st DRAWING SHEET OF 7

Jan. 12, 1993
INVENTOR: Hirataka, Jun-ichi, Hitachi, Japan
Kondo, Katsumi, Katsuta, Japan
Tomioka, Yasushi, Hatoyama, Japan
Imazeki, Shuji, Hatoyama, Japan
Taniguchi, Yoshio, Hino, Japan
Tomioka, Yasushi, Hatoyama, Japan
Imazeki, Shuji, Hatoyama, Japan
Taniguchi, Yoshio, Hino, Japan
Tomioka, Yasushi, Hatoyama, Japan
Imazeki, Shuji, Hatoyama, Japan
Taniguchi, Yoshio, Hino, Japan
pair of electrode structures,
... [*9]

$$
5,179,457
$$

the substrates of the liquid crystal
a liquid crystal layer sandwiched between said pair of substrates and
electrode structures, and

5,169,754

> Biodegradable particle coatings having a protein covalently
immobilized by means of a crosslinking agent and processes

INVENTOR: Siiman, 01avi, Davie, Florida Burshteyn, Alexander, Miami Lakes, Florida Gupta, Ravinder K., Pembroke Pines, Florida

a...[*1] particles in which each particle comprises a solid core coated
functional groups, said gelatin layers comprising a first layer of type B, alkali cured gelatin of Bloom in the range 60 to 225 and a second layer of type A, acid cured gelatin of Bloom in the range 60 to 300 , and said layers on the individual particles being crosslinked by the action of a chemical crosslinking
agent such that aid particles can be...

... [*27] colloidal sized solid core material;

(b) a gelatin coating adsorbed onto the surface of said solid core and
comprising first layer of type B, alkali cured gelat in of Bloom in the range 60
to 225 and a second layer of type A, acid cured gelatin of Bloom in the range of 60 to 300;
(c) an antibody; and
(d) a bridging group having an end covalently bonded to said crosslinked
gelatin surface and another end covalently ...
路
an [... $\left.\star^{*} 3\right]$ a) contacting a solution containing a biological substance with an antibody covalently bound to the surface of a crosslinked gelatin coated type B, alkali cured gelat in of Bloom in the range $60-225$ and a second layer of type A, acid cured gelatin of Bloom in the range of $60-300$;
(b) incubating the mixture of step (a) for a time and at a temperature
sufficient to insure the formation of a complex between.. .
5,162,782
$<=2>$ GET 1st DRAMING SHEET OF 4
... [*1] for both displaying images and inputting coordinates, comprising:
a sensor means for sensing coordinate input detection signals from a control means;
a liquid crystal display panel of two-layer type including an optical phase liquid crystal compensation cell as a first layer of the liquid crystal display

[*2] 2. A display device with coordinate input function as set forth in
claim 1, wherein an image display screen of the liquid crystal display panel of
two-layer type is divided into plural areas to be separately driven.

$$
\text { LEVEL } 1-65 \text { OF } 225 \text { PATENTS }
$$

5,148,259

<=2> GET 1st DRAWING SHEET OF 13
Semiconductor device having thin film wiring layer of aluminum containing carbon
INVENTOR: Kato, Takashi, Sagamihara, Japan Ito, Takashi, Kawasaki, Japan
Maeda, Mamoru, Tama, Japan
third layer.
[* 8$]$
carbon greater than an atomic percent of carbon contained in said
$[* 9]$ 9. A semiconductor device as claimed in claim 5 in which a plurality
of pairs of said third layer type and said fourth layer type are provided on said fourth layer in alternate succession so that each third layer type is sandwiched between two fourth layer types.
[*10] 10. A semiconductor device as claimed in claim 1, in which grains of said second layer are generally oriented on a (200) plane. L， 146,542
＜ $2>$ GET 1st DRAWING SHEET OF 12
Sep．8， 1992 ＜ $2>$ GET 1st DRAWING SHEET OF 12
Sep．8， 1992 ＜ $2>$ GET 1st DRAWING SHEET OF 12
Sep．8， 1992 ＜ $2>$ GET 1st DRAWING SHEET OF 12
Sep．8， 1992 $5,146,542$
$<=2>$ GET 1st DRAWING SHEET OF 12

be receptive of the same input signal，the the same ordinal number connected to be receptive of the same input signal，thereby to provide a neural network
layer．

identified by the same ordinal number as said processor generating it．
$[\star 34]$
forth in claim 33 ， 3 ，respectively identified by consecutive ordinal numbers
zeroeth through $(L-1)<$ th $>$ ，L being a positive integer，the output ports of
the processors in \ldots
LEVEL $1-67$ OF 225 PATENTS
5，141，684
Z 10 LヨヨHS 9NIM甘Y0 7SI $1 \exists 9<Z=>$

$$
\begin{aligned}
& 69 \text { OF } 225 \text { PATENTS } \\
& \hline 128270
\end{aligned}
$$

Aug．25， 1992

Z 10 LヨヨHS 9NIM甘yO 7SI $1 \exists 9<Z=>$

$$
5,128,229
$$

INVENTOR：Watanabe，Masaru，Nishin
Hirose，Satoshi，Amagasaki，Japan second lip portions which are in．
Electrophotosensitive material and method of manufacturing
INVENTOR：Katsukawa，Masato，Ibaraki，Japan Kimoto，Keizo，Hirakata，Japan Miura，Satoru，Shijonawate，Japan
We claim： photosensitive layer formed on the surface of a conductive substrate，wherein the photosensitive layer includes a charge generating material a polycarbonate resin as a binding resin，said polycarbonate resin being ．．．
peryjene compound as the charge generating material．．
［＊3］3．A method of manufacturing an electrophotosensitive material，said electrophotosensitive material being a single－layer type photosensitive layer formed on the surface of a conductive substrate，wherein the photosensitive layer a charge generating material includes a polycarbonate resin as a binding resin，said polycarbonate resin being ．．．

40 to 200 parts by weight per 100 parts by weight of the polycarbonate resin． photosensitive layer formed on the surface of a conductive substrate，wherein the photosensitive layer includes a charge generating material a polycarbonate resin represented by the following formula（I）：［See Original Patent ．．． ［＊6］said photosensitive layer being not greater than $2.5 \times 10<$
i／mg．${ }^{\text {．} 6] ~ s a i d ~ p h o t o s e n s i t i v e ~ l a y e r ~ b e i n g ~ n o t ~ g r e a t e r ~ t h a n ~} 2.5 \times 10<-3>$
$[\star 7]$ 7．A method of manufacturing an electrophotosensitive material，said
electrophotosensitive material being a single－layer type photosensitive layer
formed on the surface of a conductive substrate，wherein the photosensitive
layer a charge generating material includes a polycarbonate resin represented by
the following formula（I）：［See Original Patent
LEVEL $1-70$ OF 225 PATENTS

$$
\begin{aligned}
& 70 \text { OF } 225 \text { PATENTS } \\
& 5.26 .210
\end{aligned}
$$

$5,126,210$

Z 10 LヨヨHS 9NIMVyO 7ST $139<Z=>$

Jun．30， 1992
ว＾โQ＾иo bu！feos Xə！dnp p！̣e J！ụ！udsoud／כ！̣uoudsoud J！pou甘
INVENTOR：Wieserman，Larry F．，Apollo，Pennsylvania
Wefers，Karl，Apollo，Pennsylvania
Gary A., Natrona, Pennsylvania
ward S., New Kensington, Pennsylvania
Copper, manganese, molybdenum, chromium, nicke1, zinc, vanadium,
boron, lithium and zirconium; and
intermediate layer consisting essentially of a non-porous barrier

acid resistant, functionalized layer of a monomeric
-containing compound chemically bonded to a surface of said oxide
9. A layered material comprised of:
lase layer of aluminum alloy; and
luplex layer comprised of:
intermediate layer consisting es
: aluminum oxide attached to said
। acid resistant, functionalized
i-containing compound chemically
I acid resistant, functionalized layer of an organic monomeric
i-containing compound chemically bonded to a surface of said oxide
intermediate layer consisting essentially of a non-porous barrier aluminum oxide attached to said base layer having a density of 2.8
of 100 to 5000 Angstrom and...

INVENTOR: Mori, Sanae, Nagoya, Japan Sakamoto, Masaaki Nagoya, Japan
Nagai, Yoji, Nagoya, Japan
[*1] 1. In a multi-layer type sliding bearing of aluminum alloy, having a backing layer of steel, a bearing layer of aluminum alloy bonded to the backing

... [*1] layer and one element selected from the group consisting of Ni, Co $\quad[* 2] \quad$ 2. A multi-layer type sliding bearing of aluminum alloy, having a
backing layer of steel provided on one side thereof with a rear face-plating
layer provided on rear face thereof, a bearing layer of aluminum alloy bonded to
\ldots
Co... the balance sn and incidental impurities.
[*3] 3. A multi-layer type sliding bearing of aluminum alloy as claimed in claim 2, wherein the rear face-plating layer consists of the same constituents 0.1 to 5 microns.
[*4] 4. In a method of producing a multi-layer type sliding bearing of

$6 L \quad 39 \forall d$

5,103,329
 1st DRAWING SHEET OF 8 Apr. 7, 1992

[*16] 16 . An apparatus as in claim 1, wherein said electrode gap is spanned
by a resistive layer. LEVEL $1-73$ of 225 PATENTS

$$
\text { LEVEL } 1 \text { - } 73 \text { OF } 225 \text { PATENTS }
$$

INVENTOR: Clark, Noel A., Boulder, Colorado Handschy, Mark, Boulder, Colorado
INVENTOR: Muto, Nariaki, Daito, Japan Kakui, Mikio, Mino, Japan
Sumida, Keisuke, Hirakata, Japan
Nakazawa, Toru, Osaka, Japan

$$
5,081,513
$$

Matsumoto, Kazuo, Hirakata, Japan
What is claimed is:
Matsumoto, Kazuo, Hirakata, Japan
What is claimed is:
[${ }^{\star 1]}$ 1. An electrophotosensitive material comprising a conductive substrate
and a single layer type photosensitive layer provided on said conductive
substrate, said photosensitive layer containing a m-phenylenediamine compound as
chargetransferring material and a perylene compound as charge-generating
material,...
LEVEL $1-74$ OF 225 PATENTS
$<=2>$ GET 1st DRAWING SHEET OF 5

$$
\text { Jan. 14, } 1992
$$

opposite sign to said channel carriers as does a doped layer of that type having a concentration in the range of $1.5 \times 10<18>$ to $4.5 \times 10<18>$ atoms per cm<3>

[^11]$$
\text { LEVEL } 1-75 \text { OF } 225 \text { PATENTS }
$$
<=2> GET 1st DRAliING SHEET OF 3 Oct. 22, 1991
Electrophotographic photoconductor
INVENTOR: Kojima, Narihito, Numazu, Japan Nagame, Hiroshi, Numazu, Japan Seto, Mitsuru, Yamakita, Japan
Hayashi, Shigenori, Atsugi, Japan
Ishida, Noriya, Atsugi, Japan
Sasaki, Mari, Atsugi, Japan
layer is 10 to ${ }^{[16]}$, wherein the Vickers hardness of said organic photoconductive
layer is 10 to $50 \mathrm{Kg} / \mathrm{mm}<2>$.

<=2> GET 1st DRAWING SHEET OF 5

INVENTOR: Teratsuji, Osamu, Ichikawa, Japan
Nishimura, Keiichi, Urawa, Japan
Moriya, Yoshiro, Matsudo, Japan

Moriya, Yoshiro, Matsudo, Japan			
What is claimed is:			
[*1] 1. An upper water flow layer type circulating water pool comprising a circulating pool main body with front and rear curved portions; a swimming tank			
or pool defined by an opening in an upper portion of said circulating ...			
	LEVEL 1-77 OF 225 PATENTS		
5,051,126			
$<=2>$ GET 1st DRAWING SHEET OF 1			
Sep. 24, 1991			
Cermet for tool			
INVENTOR: Yasui, Hajime, Nagoya, Japan			
Suzuki, Junichiro, Hashima, Japan			
... [*1] layer is composed of more transitional metals selected from the group consisting of the group IVb metals than the core, and the core is composed			
of more transitional metals selected from the group consisting of the group Vb metals and tungsten than any outer layer of the Type-II particles.			
[*2] 2. The cermet of claim 1, wherein the ratio of transitional metals in group IVb, transitional metals in group Vb , and tungsten to carbon and nitrogen is 1.0:0.85-1.0.			
[*3] 3. The cermet of claim... LEVEL 1-78 OF 225 PATENTS			

$5,050,323$
$<=2>$ GET 1st DRAWING SHEET OF 2
Sep. 24, 1991
Badge $5,050,323$
$<=2>$ GET 1st DRAWING SHEET OF 2
Sep. 24, 1991
Badge LEVEL
fastening means carried by the back face of said body layer to attach said
body layer to a wearer's clothing; wherein:

 $5,050,323$
$<=2>$ GET 1st DRAWING SHEET OF 2
Sep. 24, 1991
Badge $5,050,323$
$<=2>$ GET 1st DRAWING SHEET OF 2
Sep. 24,1991
Badge

Badge
Badge
$\left[{ }^{* 2}\right]$ 2. The cermet of claim 1 , wherein the ratio of transitional ming mitrogen
group IVb, transitional metals in group $V b$, and tungsten to carbon and nitron
is $1.0: 0.85-1.0$.
[*3] 3. The cermet of claim ... 78 of 225 PATENTS
∞
PAGE
said foam material is left exposed at the peripheral edge of said body layer;
and,
said badge further comprises a protecting transparent film covering said
image-bearing ...
... [*9] front face of said body layer; and,
fastening means carried by the back face of said body layer to attach said
body layer to a wearer's clothing; wherein:
the expanded polystyrene forming the body layer is of the type having no
memory when compressed;
said expanded polystyrene is left exposed at the peripheral edge of said body
layer; and,
said badge further comprises a protecting transparent film covering said
image-bearing ...
... [*10] front face of said body layer; and,
fastening means carried by the back face of said body layer to attach said
body layer to a wearer's clothing, wherein;
the expanded polystyrene forming the body layer is of the type having no
memory when compressed;
said expanded polystyrene is left exposed at the peripheral edge of said body
lioum and indium and at least one material selected from the group consisting
of phosphorous, arsenic and antimony.
Inventor: Menigaux, Louis, Bures sur Yvette, France
Dugrand, Louis, Chelles, France
said badge further comprises a protecting transparent film covering said
image-bearing ...
[*5] 5. A method according to claim 4, wherein the active layers are of type N, and comprise Ga $1-x$ Al x As, x differing each time, and being less
than approximately 10%, while the confining layers comprise Ga $1-y$ Al y...
 LEVEL 1 - 80 OF 225 PATENTS 5,037,505

<=2> GET 1st DRAWING SHEET OF 2

Construction process for a self-aligned transistor
INVENTOR: Tung, Pham N., Paris, France
... [*2] mask,

5,031,025

0

[^12][*1] 1. A papermakers' double layer type fabric comprising in one repeat a
warp layer, said warp layer having an upper surface and a lower surface, said
warp layer consisting of $n \times 2$ of warps wherein n is an ...
lower surface pely each interlaced once in one repeat with a warp, wherein said
lofts are of 1 larger diameter than said lower surface polyester wefts.
[*2] 2. A papermakers' double layer type fabric comprising in one repeat a
warp layer, said warp layer having an upper surface and a lower surface, said warp layer consisting of $n \times 2$ of warps wherein n is an ...
> knuckie so that the knuckles so formed on each of the adjacent lower surface wefts are arranged in a staggered relation.

[*3] 3. A papermakers' double layer type fabric according to claim 2, wherein a non-interlacing warp sandwiched in between a pair of warps interlacing wosition where said pair of warps interlace with the lower surface poly weft at a position where said pair of warps interlace with the lower surface polymeric
weft.
$\left[{ }^{*} 4\right]$ 4. A papermakers' double layer type fabric according to claim 2 ,
wherein in said $n \times 2$ of warps, a non-interlacing warp and a warp interlacing with a lower surface polymeric weft, are alternately arranged.
[*5] 5. A papermakers' double layer type fabric according to claim 2 ,
wherein in said $n \times 2$ of warps, a non-interlacing warp and a plurality of warps
interlacing with a lower surface polymeric weft, are alternately arranged.
[*6] 6. A papermakers' double layer type fabric according to claim 2 ,
wherein said lower surface polyamide wefts are of larger diameter than said
lower surface polyester wefts. lower surface polyester wefts.
[*7] 7. A papermakers' double layer type fabric comprising in one repeat a warp layer, said warp layer having an upper surface and a lower surface, said warp layer consisting of $n \times 2$ of warps, wherein n is an ...
surface polyester wefts being each interlaced twice in one repeat with a warp.
PAGE 93 Pat. No. 5022441, *7
$[\star 8] \quad$ 8. A papermakers' double layer type fabric according to claim 7,
wherein said lower surface polyamide wefts are of larger diameter than said lower surface polyester wefts.

[^13]$\left[{ }^{*} 10\right]$ 10. A papermakers' double layer type fabric according to claim 7,
wherein both said lower surface polyamide wefts and lower surface polyester wefts are each interlaced with two adjacent warps.
[*11] 11. A papermakers' double layer type fabric according to claim 10, wherein said lower surface polyamide wefts are of larger diameter than said lower surface polyester wefts.
[*12] 12. A papermakers' double layer type fabric according to claim 10,
wherein the number of said lower surface polyamide wefts and that of said lower surface polyester wefts are in a ratio of from $1: 3$ to $3: 1$.
[*13] 13. A papermakers' double layer type fabric according to claim 7, repeat with a warp, and said lower surface polyamide wefts are each interlaced

upper surface weft at a position where said pair of warps interlace with the lower surface polyamide weft, is disposed.
[*14] 14. A papermakers' double layer type fabric according to claim 13, wherein a non-interlacing warp is arranged adjacent to a warp interlacing with
said lower surface polyester weft. said lower surface polyester weft.
[*15] 15. A papermakers' double layer type fabric according to claim 13,
wherein at least one of a pair of warps which interlace with said lower surface polyamide weft also interlaces with the lower surface polyester weft.
\[

$$
\begin{aligned}
& \text { wherein sald lower surface polyamide wefts are of larger diameter than said } \\
& \text { lower surface polyester wefts. }
\end{aligned}
$$
\]

$$
\begin{aligned}
& {[\star 16]} \\
& \text { wherein said } \text { iower surface pol double layer type fabric according to claim } 13 \text {, }
\end{aligned}
$$

[*17] 17. A papermakers' double layer type fabric according to claim 13,
wherein the number of said lower surface polyamide wefts and that of said lower
surface polyester wefts are in a ratio of $1: 3$ to $3: 1$.

$$
\text { surface polyester wefts are in a ratio of } 1: 3 \text { to } 3: 1 \text {. }
$$

[*18] 18. A papermakers' double layer type fabric according to claim 13 ,
wherein said lower surface polyamide wefts are each interlaced once in one repeat with a pair of adjacent warps between which a warp interlacing with an upper surface ...
warp located between a pair of warps interlacing with a lower surface polyamide
weft.
PAGE
Pat. No. 5022441, *18
[*19] 19. A papermakers' double layer type fabric according to claim 18 ,
wherein said lower surface polyamide wefts are of larger diameter than said
lower surface polyester wefts.
<=2> GET 1st DRAWING SHEET OF 9 Feb. 26, 1991

INVENTOR: Divigalpitiya, W. M. Ranjith, Vancouver, Canada Frindt, Robert F., Vancouver, Canada
What is claimed is:
[*1] 1. A process for forming sheet-like compositions of the formula:
MX2: Y

$$
4,980,313
$$

8
GET 1st DRAWING SHEET OF 2
<=2>

$$
\begin{aligned}
& 90 \text { OF } 225 \text { PATENTS } \\
& 4,976,990
\end{aligned}
$$

\section*{4,976,990

4,976,990
 066I ‘II • Jə0

INVENTOR: Bach, Wolf, Southbury, Connecticut Ferrier, Donald R., Thomaston, Connecticut Kukanskis, Peter E., Woodbury, Connecticut

Senechal, Mary J., Canton, Connecticut
... [*3] electroless depositing solution to deposit metal fully and
adherently and essentially void-free onto said catalyzed through-hole surfaces.
[*4] 4. In a process for manufacturing printed circuit boards of the multilayer type, in which a planar composite substrate material is provided comprised of a laminate of alternating parallel layers of metal and non-conductive, glass-reinforced thermosetting or thermoplastic material, and in which through-holes are provided ...
... [*4] metal depositing solution to deposit metal fully and adherently and essentially void-free onto said catalyzed through-hole surfaces.
*5] 5. In a process for manufacturing printed circuit boards of the multilayer type, in which a planar composite substrate material is provided comprised of a laminate of alternating parallel layers of metal and non-conductive, glass-reinforced thermosetting or thermoplastic material, and in which through-holes are provided ...

[^14]
$4,963,450$ oct. 16, 1990
 electrophotographic pigment

INVENTOR：Miyazaki，Hajime，Yokohama，Japan Go，Shintetsu，Yokohama，Japan
luchi，Kazushi，Yokohama，Japan
Kanemaru，Tetsuro，Tokyo，Japan
What is claimed is：

＜＝2＞GET 1st DRAWING SHEET OF 5

$$
\text { Jut. 17, } 1990
$$

Liquid－crystal display device using twisted nematic liquid crystal molecules

INVENTOR：Kimura，Naofumi，Nara，Japan

What is claimed is：
a multi－layer－type liquid－crystal cell that is composed of at least first and second cell layers，said cell layers containing liquid－crystal molecules with a twisted nematic orientation therein；

celf－1ayer having an angle of $\dot{\circ}$ ．

4，932，788

$\rightarrow 10$ 1ヨヨHS 9NIM甘タO 7ST $139<Z=>$
roden Gu！molf e fo Kł！lenb 2.47 to Gu！cot！uow
INVENTOR：Yeh，George C．， 2 Smedley Dr．，Newtown Square，Pennsylvania 19073
．．．［＊5］ 1 wherein said flowmeter is a mass flowmeter capable of directly metering the mass flow rate of the vaporized sample．

electrothermal boundary－layer type flowmeter in which temperature sensing and
$\stackrel{\square}{-}$

heating elements are placed outside the pipe carrying said stream of sample vapor and do not obstruct the stream．
opor and do not obstruct the stream

$$
\text { Dec. 19, } 1989
$$

lontronhntoaranhic photose
Electrophotographic photosensitive member
INVENTOR：Mabuchi，Minoru，Tokyo，Japan
．．．［＊6］electrophotographic photosensitive member of claim 1 ，wherein said charge transport layer is laminated on said charge generation layer．
［＊7］7．The electrophotographic photosensitive member of claim 1 ，wherein material and the charge－transporting material are contained in the same layer．

$$
\text { LEVEL } 1-95 \text { OF } 225 \text { PATENTS }
$$

$$
4,886,721
$$

OI 30 LヨヨHS 9NIM甘YO 7SI $1 \exists 9<Z=>$

INVENTOR：Hayashida，Shigeru，Hitachi，Japan

$\stackrel{\rightharpoonup}{\bullet}$
岂

[*1] 1. A method of gilding raised images formed by a thermographic process
on a substrate with a marking layer of the type releasably disposed on a backing
providing a thermally activated adhesive powder of the type that exhibits
adhesive properties while in a solidified state;
on a
film

printing a selected ...

... [*g] percentage basis, of 65% styrene oleophthalic resin; 15% to 20%
acrylic resin; 10% to 15% plasticizer; 5% to 10% microcrystalline wax.
[*10] 10. A method of gilding a substrate with a marking layer of the type releasably disposed on a backing film, comprising the steps of.
providing a thermally activated adhesive powder of the type that will liquefy under a sufficient amount of heat and will exhibit adhesive properties when ...
PAGE 108

LEVEL 1 - 98 OF 225 PATENTS

$4,852,693$

$<=2>$ GET 1st DRAWING SHEET OF 2

INVENTOR: Nakajima, Yoshiaki, Yono, Japan
Suzuki, Tadashi, Machida, Japan
Wada, Yoneji, Urawa, Japan
section. [*4] a separate pump and supplied to said lubricated mechanical
$[* 5]$ 5. A lubrication monitoring apparatus for a machine as claimed in
claim 1 , wherein said filter is a deep-layer type filter.
[*6] 6. A lubrication monitoring apparatus for a machine as claimed in
claim 1, wherein said warning device is connected with a recorder to make a recording when difference in $\operatorname{LEVEL} 1$ - 99 OF 225 PATENTS

4,822,590
$<=2>$ GET 1st. DRAWING SHEET OF 3

Apr. 18, 1989

$$
\text { Aug. } 1,1989
$$

.
4 PAGE 109

$$
\begin{aligned}
& \text { claim } 1 \text {, wherein said warning device is connected with a recorder to make a } \\
& \text { recording when difference in }
\end{aligned}
$$

Forms of transition metal dichalcogenides

Canada
INVENTOR：Morrison，S．Roy，Burnaby，
Frindt，Robert F．，Vancouver，Canada
Joensen，Per，Coquitlam，Canada
Gee，Michael A．，Vancouver，Canada
［Míremadi，Bijan K．，Coquitlam，Canada］
We claim：

［＊1］1．An exfoliation process for preparing a single layer substance of

MX 2

＜＝2＞GET 1st DRAWING SHEET OF 1

Jan．24， 1989
Gas laser with a frequency－selective dielectric layer system
INVENTOR：Krueger，Hans，Munich，Federal Republic of Germany
Good，Hans P．，Sargans，Switzerland
on the Brewster window，said system comprising：
a plurality of successive layers，said plural
a plurality of successive layers，said plurality of layers including only two
layer types and including alternating high refractive index first layers and low refractive index second layers，each of said first layers having substantially a first optical thickness and each of said second layers having ．．． ［
improved frequency selective layer system comprising：
a plurality of successive layers on said Brewster window，said plurality of layers including only two layer types and including alternating high refractive layers having substantially a thickness of 71.2 nm and each of said second layers having ．．．

PAGE 111

SINヨIVd ૬ZZ J0 L0I－โ 7ヨ＾ヨา
4，790，954
Dec. 13, 1988
Mixed metal hydroxide-clay adducts as thickeners for water and other hydrophylic fluids INVENTOR: Burba, III, John L., Angleton, Texas
Barnes, Audrey L., Lake Jackson, Texas
palygorskite, $\quad[\star 16]$ saconite, vermiculite, chlorite, attapulgite, sepiolite,
fullers's earth.
[*17] 17. The method of claim 1 wherein the mineral clay is at least one of the group consisting of amorphous clays of the allophane group and crystalline clay of the 2-1ayer type, 3-1ayer type, expanding type, Mxed met

$$
=2>\text { GET 1st DRAWING SHEET OF } 2
$$

Sep. 20, 1988
Dual mode laser/detector diode for optical fiber
transmission lines
INVENTOR: Hunsperger, Robert G., Newark, Delaware [*18] 18. A SAW device according to claim 16 , wherein said laminated
ructure includes a first layer of said second layer type formed on said
bstrate and a second layer of said first layer type formed on said first
yer, the thickness of said second layer being greater than the thickness of
id first layer.
[*19] 19. A SAW device according to claim 16 , wherein said laminated的 substrate and a second layer of said first layer type formed on said first structure includes a first layer of said first layer type formed on said layer. substrate, a second layer of sat layer type formed on said second layer, the combined thickness of said first and third layers being greater than the thickness of said second layer.

[*22] 22. A SAW device according to claim 17, wherein said first layer
type includes an impurity selected from the group consisting of titanium,
copper, magnesium, zinc and nickel.
$\begin{aligned} & \text { [*23] } \\ & \text { 23. A SAW device according to claim } 22 \text {, wherein said first layer }\end{aligned}$
first and second sublayers having different.
LEVEL $1-103$ OF 225 PATENTS

$$
4
$$

Park, Jung H., Newark, Delaware
first and second surfaces, the first surface in contact with the second surface
fir of the active layer;
a confining layer having a conductivity layer opposite the active layer type and having a surface in contact with the second surface of the waveguide layer
cap and substrate layers; and

$$
4,761,242
$$

<=2> GET 1st DRAWING SHEET OF 2

Aug. 2, 1988

Piezoelectric ceramic composition
INVENTOR: Suzuki, Kazunori, Nagoya, Japan
$\ldots{ }^{[\star 14]}$ constant-temperature characteristic, said additive being selected
from the group consisting of $10-55 \mathrm{~mol} \%$ CaTiO3 and $1-15 \mathrm{~mol} \%$ SrTiO3, and
the balance of the composition being PbBi4Ti4015 having a Bi-layer type structure which PbBi 4 Ti 4015 has a positive dielectric constant-temperature characteristic,
a change in the dielectric constant of the PbBi4Ti4015 which change occurs by a change in temperature being substantially compensated for ...

LEVEL 1 - 105 OF 225 PATENTS

$$
4,753,187
$$

$$
\begin{gathered}
\text { <=2> GET 1st DRAWING SHEET OF } 4 \\
\text { Jun. } 28,1988 \\
\text { Individual submarine diving equipment }
\end{gathered}
$$

INVENTOR: Galimand, Patrice, Paris, France
11. The device of claim 1 , comprising a control for the motor realized by a moulding-on of a contactor of the deformable thin layer type,
moulding-on having the form of a buckle portion completed by a strip having
pressure connecting means for connection around a hand of the diver, the buckle LEVEL 1 - 106 OF 225° PATENTS

$$
\begin{gathered}
4,729,459 \\
<=2>\text { GET 1st DRAWING SHEET OF } 9
\end{gathered}
$$

$$
\text { Mar. 8, } 1988
$$

Adjustable damping force type shock absorber

INVENTOR: Inagaki, Mitsuo, Okazaki, Japan

 Kamiya, Sigeru, Aíchi, Japan
 Ishida, Toshinobu, Okazaki, Japan

member. [*1] said plunger to that of said other end surface of said sliding
[*2] 2. An adjustable damping force type shock absorber according to claim
1, wherein said piezo-electric body is a lamination layer type piezo-electric
body constituted by laminating in an axial direction a plurality of
piezo-electric elements having a piezo-electric effect in which application of a
stress in the axial direction...
damping force sensor.
[*5] 5. An adjustable damping force type shock absorber according to claim 4, wherein said piezo-electric body is a lamination layer type piezo-electric [*6] 6. An adjustable damping force type shock absorber according to claim 5, wherein said lamination layer type piezo-electric body comprises electrode respectively, a first electrode by connecting alternate electrode plates in

LEVEL 1 - 107 OF 225 PATENTS

[^15]a row of a plurality of substantially parallel flat tubes each formed by two
$\ldots . .[7]$ one outermost core plate to assure that said protecting plate is
spaced from said one outermost core plate a distance sufficient to accommodate said further corrugated fin.
[*8] 8. A multi-layer type heat exchanger including:

$<=2>$ GET 1st DRAWING SHEET OF 4
$$
\text { oct. 27, } 1987
$$
Gradient meter with thin magnetic layer
INVENTOR: Chiron, Guy, Gieres, France
Dumont, Andre, St. Egreve, France
... [*1] meter to measure the spatial derivatives
of a magnetic field H utilizing magnetic sonds with a thin layer of the type
which comprises:
a magnetic layer of cylindrical form of revolution, the magnetic layer having anis of easy magnetization that is circular in a plane of the layer in a ... LEVEL 1 - 109 OF 225 PATENTS
4,702,019

$\underset{\sim}{\sim}$
 岂

INVENTOR: Ueno, Yoshiki, Okazaki, Japan

... [*1] selected thickness, so that light reflecting from said mirror and
passing through said first dielectric layer has desired color characteristics.
[*2] 2. A mirror arrangement according to claim 1 , wherein said liquid
crystal layer is of the type whose transparency is reduced when an electric
field is applied thereto compared to that when an electric field is not applied
thereto.
[*3] 3. A mirror arrangement according to claim 1 , further comprising: a
second transparent dielectric layer located on the
LEVEL 1-111 OF 225 PATENTS
rrangement according to claim 1 , further comprising: a
ectric layer located on the
LEVEL $1-111$ OF 225 PATENTS

$$
4,686,159
$$

<=2> GET 1st DRAWING SHEET OF 3
Aug. 11,1987
Laminated layer type fuel cell
Laminated layer type fuel cell
INVENTOR: Miyoshi, Hideaki, Kobe, Japan
What is claimed is:

$$
\text { PAGE } 123
$$

$\quad[* 1]$ 1. A laminated layer type fuel cell for converting electrochemical
reaction of fuel and oxidizer into electric power, said fuel cell comprising a
plurality of gas separation plates, each having rectilinear and zigzag portions
of fuel and oxidizer...

[*2] 2. A laminated layer type fuel cell as claimed in claim 1 wherein the ratio of $1: 1$ and the zigzag portions are alternately disposed at upstream and downstream sides of the reaction gases.
[*3] 3. A laminated layer type fuel cell as claimed in claim 1 wherein the
rectilinear and zigzag portions of fuel and oxidizer channels have a length ratio of $2: 1$ to $4: 1$ and the zigzag portions are sequentially displaced with
respect to each channel.
LEVEL $1-112$ OF 225 PATENTS

$$
\begin{aligned}
& 112 \text { OF } 225 \text { PATENTS } \\
& 4,673,591
\end{aligned}
$$

> We claim:
> LEVEL 1 - 113 OF 225 PATENTS
> [*1] 1. A process for the production of a layer-type magnetic recording binder which consists of not less than 30% of a radiation dispersion, applying the

$$
\begin{gathered}
4,671,969 \\
\text { Jun. 9, } 1987
\end{gathered}
$$

Production of layer-type magnetic recording media
INVENTOR: Lehner, August, Roedersheim-Gronau, Federal Republic of Germany Balz, Werner, Limburgerhof, Federal Republic of Germany
Lenz, Werner, Bad Durkheim, Federal Republic of Germany
125 PAGE
Kohl, Albert, Laumersheim, Federal Republic of Germany Heil, Guenter, Ludwigshafen, Federal Republic of Germany

We claim

$$
\begin{aligned}
& {[\star 1] \text { 1. A process for the production of a layer-type magnetic recording }} \\
& \text { medium by dispersing a finely divided magnetically anisotropic material in a } \\
& \text { binder which consists of not less than } 40 \% \text { of a radiation-curable aqueous binder } \\
& \text { dispersion, applying the }
\end{aligned}
$$

$<=2>$ GET 1st DRAWING SHEET OF 2

Tissue expander with self-contained injection reservoir and

INVENTOR: Dubrul, William R., Santa Barbara, California

[*12] 12. A tissue expander device for surgical implantation beneath the skin and the subcutaneous layer of the type which is expanded after implantation tissue expander comprising:
a thin expandable biocompatible cast silicone elastomer envelope forming an expandable ...

$$
\begin{aligned}
& -114 \text { OF } 225 \text { PATENTS } \\
& 4,671,2 \overline{5} 5
\end{aligned}
$$ by periodic injection of a liquid, such as saline into the expander device, the

$\ldots[\star 16]$ tissue expander of claim 15 wherein the magnet in the injection
reservoir is embedded in vapor barrier material.
[*17] 17. In a tissue expander used for surgical implantation beneath the skin and the subcutaneous layer of the type which is expanded after implantation having an expandable biocompatible envelope forming an expandable fluid-tight chamber configured to include an apex and an injection reservoir fully...
$\ldots . .[* 22]$
reservoir whereby location of the injection reservoir can be
ascertained by external means for locating the magnet.
[*23] 23. In a tissue expander used for surgical implantation beneath the skin and the subcutaneous layer of the type which is expanded after implantation by periodic injection of a liquid into the expander device, the tissue expander having an expandable biocompatible envelope forming an expandable fluid-tight chamber configured to include an apex and an injection reservoir...

INVENTOR: Burba, III, John L., Angelton, Texas

Barnes, Audrey L., Lake Jackson, Texas

$$
\begin{gathered}
4,644,335 \\
<=2>\text { GET 1st DRAWING SHEET OF } 4 \\
\text { Feb. } 17,1987 \\
\text { Apparatus and method for monitoring drill bit condition and } \\
\text { depth of drilling }
\end{gathered}
$$

INVENTOR: Wen, Sheree H., Mohegan Lake, New York
... [*1] number of occurrences of the waveform representing the acoustic
signature for each type of layer; and
means for stopping the drilling operation upon reaching a predetermined count of waveform occurrences for a particular layer type.

[*2] 2. The apparatus of claim 1 wherein said control means includes a
 computer for comparing the detected sequence of waveforms to a reference
 type of layer for each signal; and

 ...means for separately stopping the drilling operation of at least one drill
bit upon reaching a predetermined count of waveform occurrences for a particular layer type for each drill bit.
$[* 7]$ 7. The apparatus of claim 1 or 6 further including a filter means for
filtering out low and high frequency noise.
$[* 8] \quad$ 8. In a multiple...
mper $[* 8]$ said reference signal representing an acoustic signature for a
proper drill drilling having each type of layer, for counting the number of
occurences of the waveform representing the acoustic signature for each layer
of at least one of saidrill bits, and for detecting when the acoustic signature
of said reference signal thereby detecting an improper drill bit condition; and of said reference signal thereby detecting an improper drill bit condition; and -••
[*8] bit upon detection of an improper drill bit condition; and
means for stopping the drilling operation of at least one drill bit upon reaching a predetermined count of waveforms occurrences of a particular layer type for one or more drill bits.
[*9] 9. A method for drilling to a predetermined depth of a multilayer workpiece comprising:

... [*9] layer;

counting the number of occurrences of the waveform representing the acoustic
signatures for each type of layer; and
stopping the drilling operation upon reaching a predetermined count of
waveform occurrences for a particular layer type.
$[\star 1 \theta]$
output signal . The method of claim 9 further including the steps of producing an output signal having a sequence of waveforms representing the acoustic

\ldots [*12] least one of said output signals and said reference signal; and stopping the drilling. operation of at least one drill bit upon reaching a predetermined count of waveform occurrences for a particular layer type for one or more drill bits.
 $$
\text { LEVEL } 1-120 \text { OF } 225 \text { PATENTS }
$$

$$
4,629,632
$$

$$
\text { Dec. 16, } 1986
$$

Production of magnetic recording media
INVENTOR: Balz, Werner, Limburgerhof, Federal Republic of Germany Kovacs, Jenoe, Hessheim, Federal Republic of Germany

Lechner, Hilmar, Frankenthal, Federal Republic of Germany Schaefer, Dieter, Lindenberg, Federal Republic of Germany Buethe, Ingolf, Boehl-Iggelheim, Federal Republic of Germany

We claim:

$$
\begin{aligned}
& {[* 1] \text { 1. A process for the production of a layer-type magnetic recording }} \\
& \text { medium by applying a dispersion of a magnetically anisotropic material in a } \\
& \text { binder solution onto a flexible plastic base provided with an adhesion-promoting } \\
& \text { intermediate layer and then solidifying the } \\
& \text { LEVEL } 1-121 \text { OF } 220 \text { PATENTS }
\end{aligned}
$$

[^16]a first circuit means for receiving data from said first physical layer send channel and receive channel and LEVEL $^{\text {- }} 122$ of 225 PATENTS
INVENTOR: Fox, Richard C., Mobile, Alabama

1, wherein said integral layer of crystalline phosphate is ed by resistance to wear by said piston ring during operation of said
The invention according to claim 1, wherein said integral layer is assisting the seating of said piston ring in said cylinder.
The invention according to claim 1 , wherein said cylinder head is cylinder head.
. The invention according to claim 6 , wherein said ...
LEVEL 1-123 Of 225 PATENTS
4,611,114
<=2> GET 1st DRAWING SHEET OF 2
Sep. 9, 1986
Photoelectric detection structure having substrate with controlled properties

INVENTOR: Dolizy, Pierre, Ris-Orangis, France
Groliere, Francoise, Nogent-sur-Marne, France
SbNä2Kㄴ, ${ }^{[* 8]}$ Cs. according to claim 7, wherein said tri-alkaline material is
[*9] 9. A photoelectric detection structure according to claim 7, wherein said photosensitive layer has a thickness corresponding to a photoelectric
[*10] 10. A photoelectric detection structure according to claim 2, wherein
said photosensitive layer is a bi-alkaline photosensitive material.
[*11] 11. A photoelectric detection structure according to claim...

$$
\text { LEVEL } 1-124 \text { OF } 225 \text { PATENTS }
$$

Distribution transformer with surge protection device
INVENTOR: Schoendube, Charles W., Hickory, North Carolina
What I claim as new is:

INVENTOR: Chenevas-Paule, Andre , Grenoble, France
... [*2] wavelength of the order of 600 nanometers.
[*3] 3. A process according to claim 1, wherein step (h) comprises:
depositing a layer of $n+$ type amorphous silicon on the entire structure;
depositing a conducting layer on the type $n+$ silicon layer;
eliminating the regions respectively of the conducting layer and of the type $n+$ silicon layer situated in line with said grid; and $n+$ sificon layer situated in line with said grid, and

$$
\text { Aug. 5, } 1986
$$

$4,584,553$
Apr. 22,1986
Coated layer type resistor device

INVENTOR: Tokura, Norihito, Nukata, Japan
Kawai, Hisasí, Toyohashi, Japan
an insulator substrate;
a first resistor element formed on said insulator substrate and consisting of
a resistor layer and end conductor electrodes at the ends of said resistor layer: and
[*1] 1. A coated layer type resistor device comprising:
said.. [*1] conductor electrodes and the adjacent intermediate conductor in electrodes in said first resistor element.
[*2] 2. A coated layer type resistor device according to claim 1 , wherein: said end conductor electrodes and said intermediate conductors are formed by
printing on said insulator substrate;
on said insulator substrate having said formed end conductor electrodes and
intermediate conductors, a resistor layer is formed by printing; and
said formed resistor layer is in contact with said formed end conductor
electrodes and intermediate conductors. bridge circuit is constituted by said first and second resistor elements.

LEVEL 1-127 OF 225 PATENTS

$$
4,576,116
$$

<=2> GET 1st DRAWING SHEET OF 1
Mar. 18, 1986
Collapsible house for cats
INVENTOR: Binkert, Gerald A., 308 Gould Ave. SE., Bemidji, Minnesota 56601

(a) a roof formed of a single unitary continuous flexible layer-type material
having a backside and a cushiony outward face, said roof including an elongate having a backside and a cushiony outward face, said roof including an elongate outwardly from the peak, each said roof panel having a bottom edge, the outward face of the flexible layer-type material being the outward face of the roof and being adapted to withstand cat clawing, the peak of the roof being adapted for flexing in a hinge-like manner to permit inward movement of the roof...

... [*1] another when the house is to be collapsed;

(c) a floor panel formed of a single unitary continuous flexible layer-type material having a bottom side and a cushiony top side, said floor panel having opposing edges thereof affixed to the bottom edges of the roof panels to for folding along its longitudinal center line generally parallel to its opposing edges, and the flexible layer-type material adjacent the junction the bottom edges of the roof panels and the opposing edges of the floor panel the roof panels ...
rest, exercise and play, comprising
(a) a roof formed of a single unitary continuous flexible layer-type material having a backside and a cushiony outward face, said roof including an elongate outwardly from the peak, each said roof panel having a bottom edge, the outward face of the flexible layer-type material being the outward face of the roof and being adapted to withstand cat clawing, the peak of the roof being adapted for flexing in a hinge-like manner to permit inward movement of the roof...
... [*10] another when the house is to be collapsed;
(b) a stiffening means on the backside of each roof panel for supporting the
(c) a floor panel formed of a single unitary continuous flexible layer-type material having a bottom side and a cushiony top side, said floor panel having opposing edges thereof affixed by staples to the bottom edges of the roof

$$
\text { Pat. No. } 4576116, * 10
$$

panels to limit the separation distance between said bottom edges, the floor panel being adapted for folding along its longitudinal center line generally the junction of the bottom edges of the roof panels and the opposing edges of
the floor panel being such as to serve a hinge function for allowing the floor

$$
\begin{aligned}
& \text { LEVEL } 1-128 \text { or } 225 \text { PATENTS } \\
& \qquad 4,566,460 \\
& <=2>\text { GET } 1 \text { st DRAWING SHEET OF } 13 \\
& \text { Jan. } 28,1986
\end{aligned}
$$

Miwa, Hirohide, Kawasaki, Japan el ole
probing wave and transmitting said pumping wave. [*21] 21. An apparatus according to claim 10 , wherein said second and said
third transducer comprise a layer type transducer, having a front layer as said second transducer, and a back layer as said third transducer.
[*22] 22. An apparatus according to claim 6, wherein said third means
phase ...

$$
\text { LEVEL } 1 \text { - } 129 \text { OF } 225 \text { PATENTS }
$$

$<=2>$ GET 1 st DRAWING SHEET OF 3
Method of making polysilicon resistors with a low thermal
INVENTOR: Bourassa, Ronald R., Colorado Springs, Colorado
Butler, Douglas B., Colorado Springs, Colorado
... [*11] 11. The method of claim 7 including establishing said first,
second and third poly regions to form back-to-back polysilicon diodes.
[*12] 12. The method of claim 8 including doping a poly layer with the
\because
 regions of .
of claim 12 wherein the
LEVEL $1-130$ OF 225 PATENTS

145
PAGE
$4,547,784$

unsdKБ bu!k̃p lot $2 \supset!\wedge \partial 0$
INVENTOR: Petrovic, Vladan, Essen, Federal Republic of Germany

$$
4,513,016
$$

No-stir dry mix with pudding nuggets for cake with

INVENTOR: Blake, Jon R., 6901 Regent Ave N., Brooklyn Center, Minnesota 55429 Knutson, Richard K., 698 Valley View Rd., Corcoran, Minnesota 55340

$$
\text { Apr. 23, } 1985
$$ VanHulle, Glenn J., 7608 Major Ave. N., Brooklyn Park, Minnesota 55443 ... [*14] length.

[*15] 15. The dry mix of claim 14 wherein the weight ratio of sugar to
granules in the matrix ranges from about $1: 5$ to $1: 6$.

[^17]
LEVEL 1 - 134 OF 225 PATENTS
 510,443
 $<=2>$ GET
 $$
\begin{aligned} & \text { L I - } 134 \text { OF } 225 \text { PAIENIS } \\ & 4,510,443 \\ & \text { GET } 1 \text { st DRAWING SHEET OF } 4 \end{aligned}
$$

 er-type drier in the form of an uprightiket at its top, an outlet at its bottom
of hot arranged between the inlet and
$1-1330 \mathrm{OF} 225$ PATENTS
$4,513,016$
Apr. 23,1985
No-stir dry mix with pudding nuggets for cake with
discontinuous pudding phase

$$
\begin{aligned}
& \text { [*15] } 15 \text {. The dry mix of claim } 14 \text { wherein the weight ratio of sugar } \\
& \text { anules in the matrix ranges from about } 1: 5 \text { to } 1: 6 \text {. }
\end{aligned}
$$

PAGE 147 -
GET 1st DRAWING SHEET OF 4
Apr. 9, 1985
Voltage measuring device
INVENTOR: Inaba, Ritsuo, Hirakata, Japan
Wasa, Kiyotaka, Nara, Japan
$[\star 1]$ 1. A voltage measuring device for receiving and measuring a voltage to
be measured and for providing an output signal corresponding thereto, said
device comprising:
a first medium of the double layer type for propagating surface acoustic
waves, said first medium comprising a piezoelectric thin film which is laminated on a substrate comprising a non-piezoelectric material;
a first transducer means ...
INVENTOR: Sullivan, Donald F., 115 Cambridge Rd., King of Prussia, Pennsylvania
19406

\ldots... [*5] substrate, and

developing the photo images by washing out the unhardened photopolymer, whereby removal of the unhardened liquid polymer layer in contact with the substrate is simple and complete.
[*6] 6. The process of claim 5 wherein the laminated photopolymer layers are of the type that are hardened by exposure to the radiation.
[*7] 7. The photo process of claim 6 including the step of partly curing the liquid photopolymer second layer by exposure to radiation before lamination.

$<=2>$ GET 1st DRAWING SHEET OF 2
Feb. 26, 1985
Forming fabric
091 39甘d

Received: from mailhub.watson.ibm.com [9.2.250.97] by yktvmv.watson.ibm.com (IBM VM SMTP V2R4a) via TCP with SMTP ; Tue, 22 Dec 1998 12:45

PAGE 151

$$
\begin{gathered}
4,477,547 \\
\text { Oct. } 16,1984
\end{gathered}
$$

Method for making complex plate
Method for making complex layer type lithografic printing
INVENTOR: Yamada, Jun, Nagaokayo, Japan
Suzuki, Shigeyoshi, Nagaokayo, Japan
What is claimed is:
[*1] 1. A method for making a complex layer type lithographic printing
plate which comprises forming a toner image on an original printing plate havin plate which comprises forming a toner image on an original printing plate having organic electrophotographic photosensitive layer by electrophotographic process,
said photosensitive layer being a complex layer type photosensitive layer which comprises a charge carrier generating layer comprising a charge carrier
generating substance and a binder mainly composed of a polyamide resin soluble
in alcohol solvent and ...
and thereafter treating non-image area other than the toner image area with the
etching solution.

[^18]
carboxylic acid group, sulfonic acid group or sulfonimide group.
[*4] 4. A method for making a complex layer type lithographic printing
plate according to claim 1 wherein the charge carrier generating substance is an organic pigment or sensitizing dye.
$[* 5] \quad$ 5. A method for making a complex layer type lithographic printing
plate according to claim 1 wherein the charge carrier transport substance is an plate according to claim 1 wherein the charge carric tertiary amino compound, an aromatic tertiary diamino compound, an
aromatic tertiary triamino compound, a condensate or a heterocyclic compound.

$[* 7] \quad$ 7. An original printing plate having organic electrophotographic
photosensitive layer on a support for complex layer type lithographic printing
plate on which a toner image is formed, said photosensitive layer comprising a
charge carrier generating layer comprising a charge carrier generating substance
and a binder mainly...

$\begin{aligned} & \text { Pat. No. } 4477547, * 7\end{aligned}$
... [*7] a high molecular substance having a group soluble in an etching solution mainly composed of alcohol solvent and/or alkali solvent.
8. A printing method which comprises carrying out printing with the
complex layer type lithographic printing plate made by the method of claim 1.
LEVEL 1 - 139 OF 225 PATENTS
<=2> GET 1st DRAlIING SHEET OF 2

4,470,024

$$
\text { Sep. 4, } 1984
$$

Integrated circuit for a controllable frequency oscillator
INVENTOR: Leuenberger, Claude-Eric, Chezard, Switzerland
insulating layer being a portion of said oxide having an oxide layer, said
[*2] 2. The chip of claim 1, wherein said first region is a bulk layer of layer being formed in said semiconductor substrate, and said second region is a
૬̧I $39 \forall d$
PAGE 156
diffusion portion of said one type of conductivity ...

$$
\begin{gathered}
4,422,627 \\
<=2>\text { GET 1st DRAWING SHEET OF } 1 \\
\text { Dec. 27, } 1983 \\
\text { Endless spring, such as ringspring }
\end{gathered}
$$

<sI
 PAGE

$[* 5]$ 5. The spring of claim 1 , wherein each of said first layer type (2)
[*6] 6 . The spring of claim 1 , wherein said plies of said second layer
[*5] 5. The spring of claim 1, wherein each of said first layer type
comprises at least two fiber bundles.
[*6] 6. The spring of claim 1, wherein said plies of said second layer
[*5] 5. The spring of claim 1, wherein each of said first layer type (2)
[*6] 6. The spring of claim 1, wherein said plies of said second layer type are made of fibers of different materials. $[* 2]$ 2. The endless spring of claim 1 , wherein said second layer type
comprises one layer more than said first layer type so that the second layer type forms outer surfaces parallel to said frame plane, and so that said first layer type forms inner layers interconnected by a second type layer between two neighboring first type layers.
[*3] 3. The endless spring of claim 1 , wherein said plies $(5,6)$ of said second layer type (3, 4) comprise at least one first ply (5) with fibers extending in parallel and at 900 relative to said main load application
direction, and at least one second ply (6) with fibers extending in a $+/-450$
[*4] 4. The endless spring of claim 3, wherein each of said second layer type $(3,4)$ comprises said first and second plies $(5,6)$, wherein a second layer type (3) located internally of the spring between two first layer types (2) comprises at least two first plies (5) and a second ply (6) located between of the spring comprises at least one first ply (5) and at least one second ply (6) located on the outside of the spring.
[*7] 7. The spring of claim 1 , wherein said fiber bundles of said first
layer type (2) are made of fibers of different materials.
[*8] 8. The spring of claim 1, wherein said fiber bundles of said first layer type (2) and said plies of said second layer type $(3,4)$ are made of
fibers of different materials.

Pat. No. 4422627, *8
[*9] 9. The spring of claim 1, further comprising adhesive layers (7) operatively interposed between said first and second layer types.
PAGE 158

INVENTOR: Burn, Ian, Williamstown, Massachusetts Neirman, Stephen M., Williamstown, Massachusetts What is claimed is:
[*1] 1. A method for making an intergranular barrier layer type capacitor
(a) preparing a ceramic start mixture consisting essentially of strontium,
titanium and strontium-titanate donor compounds, said donors being. .
LEVEL 1 - 144 OF 225 PATENTS

INVENTOR: Blum, Samuel E., White Plains, New York
Brown, Karen H., Yorktown Heights, New York
Srinivasan, Rangaswamy, Ossining, New York

$\stackrel{\rightharpoonup}{0}$
 능

091 39甘d

$4,403,236$
Sep. 6, 1983
 high capacitance

INVENTOR: Mandai, Haruhumi, Nagaokakyo, Japan
Nishimura, Kunitaro, Youkaichi, Japan
Yamaguchi, Masami, Nagaokakyo, Japan
What we claim is:
[*1] 1. A boundary layer type semiconducting ceramic capacitor comprising a semiconducting ceramic body in which grain boundaries on crystal grans of the semiconducting ceramic body are insulated, characterized in that said

$$
4,403,236
$$

Sep. 6, 1983
Boundary layer type semiconducting ceramic capacitors with
high capacitance
INVENTOR: Mandai, Haruhumi, Nagaokakyo, Japan
$\begin{aligned} & \text { Nishimura, Kunitaro, Youkaichi, Japan } \\ & \text { Yamaguchi, Masami, Nagaokakyo, Japan }\end{aligned}$
semiconducting ceramic body has a composition ...
c... [*I] consisting of $\mathrm{Mn}, \mathrm{Bi}, \mathrm{Cu}, \mathrm{Pb}, \mathrm{B}$ and Si , and that the maximum
crystal grain present in the semiconducting ceramic body has a grain size ranging from 100 mu to 250 mu .
[*2] 2. The boundary layer type semiconducting ceramic capacitor according to claim 1 wherein said composition contains 0.02 to 0.2 mole \% of Mn .
[*3] 3. The boundary layer type semiconducting ceramic capacitor according
to claim 2 wherein Mn is present in at least one of the grain boundaries and the crystal grains.
*4] 4. The boundary layer type semiconducting ceramic capacitor according to claim 1 wherein said composition further contains at least one of 0.05 to 0.5
mole of Si02 and 0.02 to 0.2 mole \% of Al203.
$[* 5] \quad$ 5. The boundary layer type semiconducting ceramic capacitor according
to claim 2 wherein said composition further contains at least one of 0.05 to 0.5 mole \% of Si02 and 0.02 to 0.2 mole \% of Al203.
[*6] 6. The boundary layer type semiconducting ceramic capacitor according
to claim 2 wherein Mn is present in the crystal grains. [*7] 7. The boundary layer type semiconducting ceramic capacitor according and wherein said grain boundaries of the crystal grains are insulated by Mn and at least one other insulating agent.
$[\star 8]$ 8. The boundary layer type semiconducting ceramic capacitor according
to claim 1 in which the amount of the mair. component is 98.1 to 99.88 mole $\%$.
$[* 9]$ 9. The boundary layer type semiconducting ceramic capacitor according
to claim 8 wherein Mn is present at at least one of the grain boundaries and the
crystal grains.
[*10] 10. The boundary layer type semiconducting ceramic capacitor

Method for making a ceramic intergranular barrier-layer

INVENTOR: Neirman, Stephen M., Williamstown, Massachusetts Burn, Ian, Williamstown, Massachusetts

What is claimed is:
[*1] 1. A method for making a ceramic intergranular barrier layer type capacitor comprising:
(a) preparing a ceramic start mixture consisting essentially of strontium, titanium, a strontium-titanate-donor and manganese, said donor being selected
from large cations A, small LEVEEL 1 - 149 OF 225 PATENTS

$$
4,386,135
$$

Stable silicone-coated release liner for pressure-sensitive

INVENTOR: Kodama, Churyo, Ohme, Japan

What is claimed is:

[*1] 1. A fluorescent lamp of the reflective layer type comprising a glass glass tube and a second phosphor layer formed on said first phosphor layer at
.... [*l] m and the average particle size of the phophor constituting said first phosphor layer is smaller than the average particle size of the phosphor constituting said second phosphor layer.
$\left[{ }^{[2]}\right.$ 2. A fluorescent lamp of the reflective layer type as set forth in
claim 1, wherein the average particle size of the phosphor constituting the
first phosphor layer is smaller than 10 mu m . [$\star 3]$ 3. A fluorescent lamp of the reflective layer type as set forth in
claim 1 , wherein the average particle size of the phosphor constituting the
second phosphor layer is smaller than 30 mu m .
$[* 4]$ 4. A fluorescent lamp of the reflective layer type as set forth in
claim 1 , wherein each of the amounts coated of the phosphors of the first and second phosphor layers is 2 to $4 \mathrm{mg} / \mathrm{cm}<2>$.
[*5] 5. A fluorescent lamp of the reflective layer type as set forth in
claim 1 , wherein the reflection angle is in the range of 1800 oto 2400 .
[*6] 6. A fluorescent lamp of the reflective layer type as set fort in

[*8] 8. A fluorescent lamp of the reflective layer type as set forth in
claim 1 , wherein the phosphor constituting the first phosphor layer has a light
emission spectrum different from that of the phosphor constituting the second
phospher layer.

t lamp of the reflective layer type as set forth in s tube is a straight tube. s tube is a circular or curved tube. LEVEL $1-151$ OF 225 PATENTS
 4,363,769
 $<=2>$ GET 1st DRAWING SHEET OF 8

 Dec. 14, 1982Method for manufacturing thin and flexible ribbon wafer of
semiconductor material and ribbon wafer
PAGE 168
I 10 1ヨ3HS 9NIM甘80 7ST $179<Z=>$
INVENTOR: Tsuya, Noboru, 1-38, Kashiwagi 2-Chome, Sendai City, Japan
INVENTOR: Tsuya, Noboru, $1-38$, Kashiwagi 2 -Chome, Sendai City, Japan
Arai, Kenichi, Sendai, Japan
\ldots [*18] extending parallel to a moving direction of the ejected melt so
that at least two jet flows of some or different semiconductor material are
simultaneously ejected through the holes so as form a thin ribbon wafer or
multi-layer type.
$\quad[* 19]$ 19. A method as defined in claim 1 , wherein the raw semiconductor
material is mixed with a substance selected from the group consisting of Ge, Si,
Se, Te, PbS, InSb, ZnTe, PbSe, ...
LEVEL 1 - 152 OF 225 PATENTS
Method of fabricating high－conductivity
re．．［＊1］containing layer on top of said pattern and on said selected
regions，the metallic constituent in said layer being selected from the group
consisting of titanium，tantalum，molybdenum，tungsten，nickel and cobalt，which
metal－containing layer is of the type that，upon sintering，will form a
silicide，
lifting off said pattern thereby leaving on said device only the
metal－containing layer deposited on said selected regions，
sintering said remaining metal－．．．
$\ldots \ldots$［＊4］top of said masking pattern and on said selected surface regions，
the metallic constituent in said layer being selected from the group consisting
of titanium，tantalum，molybdenum，tungsten，nickel and cobalt，which
metal－containing layer is of the type that，upon sintering，will form a
silicide，
removing said masking pattern from said polysilicon layer thereby lifting off
those portions of said metal－containing layer deposited on top of said masking
pattern and ．．．
．．．［＊5］masking pattern and on said surface regions of said polysilicon
layer，the metallic constituent in said layer being selected from the group
consisting of titanium，tantalum，molybdenum，tungsten，nickel and cobalt，which
metal－containing layer is of the type that，upon sintering，will form a
silicide，
removing said masking pattern from said intermediate layer thereby lifting
off those portions of said metal－containing layer deposited on top of said
masking pattern and．．．

Z 50 1ヨヨHS $9 N I M \forall Y O$ 75I 139 ＜Z＝＞

Synthetic bag－type container for human blood and its
fractions，perfusion solutions，dialysis solutions and
INVENTOR：Lena，Paolo，Via Castello，13， 26038 Torre de＇Picenardi（Cremona），
Italy

$<=2>$ GET 1 st DRAWING SHEET OF 4
PATENTS

Nov. 23, 1982 Thermal recording app
 Thermal recording apparatus INVENTOR: Saito, Tamio, Oume, Japan Fukumoto, Yoshikatsu, Hamura, Japan Tagaya, Kiyomi, Oume, Japan
 $$
\begin{aligned} & \text {... }[\star 5] \text { respective switching group and capable of limiting the switching } \\ & \text { operation of said respective switching group. } \\ & \text { [*6] } 6 \text {. A thermal recording apparatus according to claim } 1 \text {, wherein said } \\ & \text { capacitor is an electrolytic capacitor of an electric double layer type } \\ & \text { construction. } \end{aligned}
$$

 [*6] 6. A thermal recording apparatus according to claim 1 , wherein said capacitor is an electrolytic capacitor of an electric double layer type

 [*6] 6. A thermal recording apparatus according to claim 1 , wherein said capacitor is an electrolytic capacitor of an electric double layer type construction.

 construction.}[*7] 7. A thermal recording apparatus according to claim 1 , wherein said detecting means comprises two serially connected resistors in parallel with said
capacitor; and a comparator means, coupled to...
is \mathfrak{l} ess [than the predetermined voltage.
[*12] 12. A thermal recording apparatus according to claim 10 , wherein said
capacitor is an electrolytic capacitor of electric double layer type
construction.
LEVEL 1 - 155 OF 225 PATENTS

$$
4,352,116
$$

L 10 LヨヨHS 9NIMVYO 7SI $1 \exists 9<Z=>$
Sep. 28, 1982
Solid state electro-optical devices on a semi-insulating
INVENTOR: Yariv, Amnon, San Marino, California
Margalit, Shlomo, Pasadena, California
Lee, Chien-Ping, Pasadena, California
$\ldots[\star 15]$ matching parameters, with adjacent semi-conductor layers having
different combinations of constituent elements and being of either of the N or p
type, each of said layers including a region which is doped to a type opposite
the layers's type whereby a PN junction is formed in the second layer; and
a first and second contacts on the top surface of the top third layer, said
first contact being on the surface which is not doped and the second contact on
the...
LEVEL $1-156$ OF 225 PATENTS

$4,341,686$

Adhesive products and a process for their use in
INVENTOR: Chakrabarti, Sarbananda, Ludwigshafen, Federal Republic of Germany Hutchison, John, Wachenheim, Federal Republic of Germany
in a weight ratio of approximately $50: 50$.
[*7] 7. A process for improving the adhesiveness of cellular or noncellular
polyurethanes to solid cover layers of all types wherein the improvement
comprises treating the cover layers with an adhesive product comprising, based on the total weight,
(a) 1 to 10 percent by weight of an aminoalkyltrialkoxysilane,
(b) 1 to 20 percent by weight of a ...

4,287,249

... [*1] socket being telescopically inserted only into another single
corresponding opening in an adjacent contact body.
[*2] 2. In an evaporative cooler including, a casing, at least one contact existing between the layers and which all are passed by air, and means for
supplying water to selected channels in said body from above the body, the improvement comprising ... LEVEL 1 - 158 OF 225 PATENTS

$$
4,305,670
$$

Liquid mixing device
INVENTOR: Moskowitz, Paul M., Brooklyn, New York
Rushansky, Yuliy, Bronx, New York
Rushansky, Yuliy, Bronx, New York
axis of rotation of said other shaft and being located symmetrically around said axis of rotation of said other shaft and being located symmetrically around said
shaft,
said disk serving as a boundary layer type rotor in which boundary layer
effects will occur along the surfaces of said disk during rotation of s disk, effects will occur along the surfaces of said disk during rotation of s disk,
said boundary layer effect causing liquid to move in a downward, ...

LEVEL 1 - 159 OF 225 PATENTS

$$
\dagger 10 \text { Lヨ3HS פNIM甘y0 75T } 1 \exists 9<Z=>
$$ required.

$$
\text { Sep. } 15,1981
$$

Curtain for open front freezer or refrigerator

INVENTOR: Eliason, Carlyle R., 905 W. Inkster, Kalamazoo, Michigan 49008

flexible sheet curtain being extendible across said access opening near at least one of said strip curtain and said air curtain means to
the opposite wall of said cabinet to form an air layer-type thermal barrier between said flexible sheet and strips when access to said access opening is not

[^19]$<=2>$
๑ 10 LヨヨHS 9NIM甘yO 7SI $1 \exists 9$

What is claimed as new and desired to be secured by Letters Patent of the United States is：
$$
[\star 1] \quad \text { 1. A liquid crystal display comprising: }
$$
two parallel plates having inside surfaces on which are formed layer－type electrodes and between which is disposed a liquid crystal mixture to form a
liquid crystal cell，said plates having outside surfaces on which no polarizers
are disposed；
said liquid crystal mixture comprising primarily ．．．
$$
\text { † } 10 \text { LヨヨHS 9NIM甘Y0 75โ 1ヨ9 <Z=> }
$$
Metallized textured surface polypropylene film
Hobbs, Stanley Y., Scotia, New York
Carley, Emilie L., Hartford, New York
$$
\text { LEVEL } 1-164 \text { OF } 225 \text { PATENTS }
$$
$$
4,243,708
$$
$$
\text { Jan. 6, } 1981
$$

INVENTOR：Eustance，John W．，South Glens Falls，New York

$$
4,231,754
$$

[*6] 6. A method for determination of a constituent in a sample which
comprises contacting the sample with the \ldots.
LEVEL $1-1650 \mathrm{~F} 225$ PATENTS

$$
4,229,095
$$

INVENTOR: Chadda, Madan M., Nu rnberg-Gaulnhofen, Federal Republic of Germany Maier, Reinhold, Nuremberg, Federal Republic of Germany \ldots [*1] for producing semiconductor bodies having a glass-covered defined
edge profile, said semiconductor bodies being obtained by etching from a
large-area semiconductor basic wafer having a sequence of layer-type zones of
different conductivity type with at least one pn-junction and a surface oxide
layer thereon, the steps comprising
applying a etch-resistant protective coating onto said surface oxide layer,
LEVEL, 1-167 OF 225 PATENTS
$4,223,234$
$<=2>$ GET 1 st DRAWING SHEET OF 3
... $[* 4] \quad B$ register responsive to applied multiple phase voltages for the
storage in and transfer of charge along the channels of said B register:
said electrodes of said A and B registers being of the single layer type and comprising semiconductor material of one conductivity type and being separated conductivity type; and
Reduction of sparkle noise and mottling in CCD imagers

INVENTOR: Levine, Peter A., Trenton, New Jersey

$<=2>$ GET 1st DRAWING SHEET OF 3
a control electrode insulated from the electrodes of the A register and...
PAGE 184
LEVEL 1-168 OF 225 PATENTS
Z 10 LヨヨHS 9NIMVyO 7ST $1 \exists 9<Z \Rightarrow$
Jun. 3, 1980
Reduction of sparkle noise in CCD imagers
[*1] direction over the channels of said B register responsive to
applied multiple phase voltages for the storage in and transfer of charge along
the channels of said B register, said electrodes being of the single layer type
Reduction of sparkle noise in CCD imagers
INVENTOR: Levine, Peter A., Trenton, New Jersey
 type;
${ }_{185}$ CCD C register including a semiconductor formed with a ...
LEVEL 1-169 OF 225 PATENTS
> $4,160,684$

Method of manufacturing a coalescing demister
INVENTOR: Berger, Jr., L. Joseph, Birmingham, Michigan Guequierre, Denis D., Birmingham, Michigan

[^20]<=2> GET 1st DRAWING SHEET OF 1
Jan. 30, 1979

INVENTOR：Credelle，Thomas L．，East Windsor，New Jersey

 Hannan，William J．，Palm Beach Gardens，FloridaSpong，Fred W．，Lawrenceville，New Jersey
fi．．［＊1］first and second surfaces respectively connected to a surface of a
substrate and to one surface of a photoconductor layer that is adapted to receive an interference pattern of light representative of an image，the improvement comprising a thermoplastic layer of the type that has a frost frequency inversely related to thickness，said thermoplastic layer having a－ multiplicity of frost frequencies，said undulations having a spatial frequency ．．．

less than 100 cycles per millimeter．

Method for producing semiconductor devices with high
LEVELES，said undulations having a spatial frequency
PAGE

$$
4,135,291
$$

乙 10 LヨヨHS 9NIM甘ปO 7ST 1ヨפ＜Z＝＞

Jan．23，1979

INVENTOR：Tursky，Werner，Schwabach，Eichvasen，Federal Republic of Germany Chadda，Madan，Nuremberg－Gaulnhofen，Federal Republic of Germany
．．．．［＊l］method for producing a plurality of semiconductor devices out of a reverse blocking capability and having a sequence of at least three layer－type zones of different conductivity types，of which at least one is highly resistive，and at least one pn－junction，comprising the steps of：
forming grooves of a depth at least equal to the desired thickness of the
．．．．［ $\AA \mathrm{l}]$ said disc into sections of smaller areal expanse capable of being
separated into individual semiconductor device containing wafers；
thereafter subjecting the disc to a diffusion process to produce a sequence
of at least three layer－type zones of different conductivity which form at least of at least three layer－type zones of different conductivity which form at least
one pn－junction in each said section，and a zone of a single conductivity type which passes through the entire disc in the profile region of ．．．
［＊2］a diffusion process include＇s diffusing an impurity which forms a
zone of the opposite conductivity type irito both major surfaces of said disc to
provide，in each said section，a sequence of three layer－type zones of
alternating conductivity types with the zones adjacent both major surfaces being
of said opposite conductivity type and an inner zone of said first conductivity
type，and to provide a zone of said opposite．．．．
LEVEL $1-173$ OF 225 PATENTS 173 OF 225 PATENTS
$4,120,700$

Z 」O 1ヨヨHS 9NIM甘YO 7SI $139<Z=>$

Oct．17， 1978

Method of producing p－n junction type elements by ionized

 cluster beam deposition and ion－implantationINVENTOR：Morimoto，Kiyoshi，Mobara，Japan
produce an ohmic contact with the semiconductor layer of the one impurity type；
ionizing impurity atoms such as can form a semiconductor layer having the type of conductivity opposite to that of the semiconductor layer of the one impurity type；
accelerating the impurity ions by giving them kinetic energies；
implanting the impurity ions in the semiconductor layer of the one impurity type to form an ion－．．．
produce an ohmic contact with the semiconductor layer of the one impurity ty
ionizing impurity atoms such as can form a semiconductor layer having the
type of conductivity opposite to that of the semiconductor layer of the one impurity type；
accelerating the impurity ions by giving them kinetic energies；
implanting the impurity ions in the semiconductor layer of the one impurity
［＊3］
produce an ohmic contact with the semiconductor layer of the one impurity type；
ionizing impurity atoms such as can form a semiconductor layer having the type of conductivity opposite to that of the semiconductor layer of the one
accelerating the impurity ions by giving them kinetic energies;
implanting the impurity ions in the semiconductor layer of the one impurity
type to form an ion-...

INVENTOR: Margen, Peter Heinrich Erwin, Njkoping, Sweden
in said circuit, arranged in said exhaust conduit, the improvement comprising a heat store of the stratified liquid-layer type, the hot side of which is coupled to the hot side of the circuit and the cold side of which is coupled to the cold side of said circuit, valve means for deflecting part of the hot circuit liquid into said store during normal ...
said $\underset{\text { second }}{[\star 2]} \begin{gathered}\text { least one by-pass } \text { line arranged } \text { in said circuit in parallel with } \\ \text { heat }\end{gathered}$
means for controlling the liquid flow through said second heat exchanger;
and,
layer type heat store means for supplying heat to said first heat exchanger in the form of heat extracted from said exhaust air, while said second heat
exchanger is disconnected for defrosting, having the ...

Self imaging system using a waveguide

178 OF 225 PATENTS

4,084,863

$<=2>$ GET $1 s t$ DRAWING SHEET OF 1

inventor: Capelli, Alfred J., Palos Verdes Peninsula, California
... [*1] height of the projection on the substrate. $[* 2]$ 2. In a bearing including a substrate having an irregular surface and
further including a thin and deformable wear resistant layer having a wear
surface wherein the wear resistant layer is of the type which would be deformed
by the irregular surface of the substrate upon loading of the wear resistant
layer against the irregular surface, the wear resistant layer including a porous
backing member and particles of a lubricant. . .
LEVEL $1-1790 F 225$ PATENTS

$$
\text { Apr. 18, } 1978
$$

179 OF 225 PATENTS

4,037,244

 layer.

$$
<=2>\text { GET } 1 \text { st DRAWING SHEET OF } 2
$$

$$
\text { Jul. 19, } 1977
$$

Avalanche photodiode

INVENTOR: de Cremoux, Baudouin, Paris, France
$[\star 5] \quad 5$. diode as claimed in claim 4, wherein said first layer has type
n-conductivity, said second and third layers having type p-conductivity, the
first layer having a doping concentration of the order of $10<16>a t / c m<3>$,
first layer having a doping concentration of the order of $10<16>a t / \mathrm{cm}<3>$
 Apr. 26, 1977
Film blowhead for producing tubular film INVENTOR: Zimmermann, Werner Josef, Lengerich of Westphalia, Germany
the radial planes in parallel relationship.
[*4] 4. A film blowhead according to claim 1 wherein the film blowhead is
of multi-layer type and wherein said air inlet and outlet tubes are disposed
between said axial passage portions of said distributing passages in at least
one radial plane.
LEVEL $1-181$ OF 225 PATENTS

4,015,034

<=2> GET 1st DRAWING SHEET OF 2 Mar. 29, 1977
Register for index marking article
INVENTOR: Smolen, Benjamin Edward, 1501 Broadway, New York, New York 10036
said release surface for securing said carrier to a said sheet.
[*3] 3. Article in accordance with claim 1 wherein said adhesive layer is of the type having an initial low tack which is rendered highly adherent
responsive to localized high pressure such as exerted by a stylus scanned in registry therewith.
覀
INVENTOR: Preissinger, Karl-Heinz, Taufkirchen, Germany, Federal Republic of
of [*1] 1. A method for producing a layer type capacitor comprising the steps
coating an adhesion-imparting layer in a dissolved state onto a first
covering foil,
applying a first conductive layer with pores therein into the exposed surface
of said adhesion-...
... [*1] sides by pressing heated leads at least at one point through said
Received：from mailhub．watson．ibm．com［9．2．250．97］by yktvmv．watson．ibm．com（IBM VM SMTP V2R4a）via TCP with SMTP ；Tue， 22 Dec 1998 12：45． ：13 EST ．ibm．com（igwz．watson．ibm．co 0500 Received：from prod．lexis－nexis．com（prod．lexis－nexis．com［13 r＜dmorris＠watson．ibm．com＞；Tue， 22 Dec 1998 12：45：17－0500
（InterLock SMTP Gateway 3.0 for dmorris＠watson．ibm．com）； Tue，22 Dec 1998 12：45：16－0500
Message－Id：＜199812221745．AA264730
Message－Id：＜199812221745．AA26473＠prod．lexis－nexis．com＞
Received：by prod．lexis－nexis．com（Internal Mail Agent－1）
Tue， 22 Dec 1998 12：45：16－0500
Date：Tue， 22 Dec 1998 12：45：14－050

From：lexis－nexis＠prod．lexis－nexis．com（LEXIS（R）／NEXIS（R）Print Delivery）
 Subject：LEXIS（R）／NEXIS（R）Print Request Job 68990， 4 of 4

covering foil and the respective of said layers into said first covering foil．

Bearing and bearing liner wear resistant compliant layer
INVENTOR：Turner，Peter H．，Burbank，California
．．．［＊2］mixture including the adhesive．
［＊3］3．In a bearing including a substrate having an irregular surface，
I 10 LヨヨHS 9NIM甘yO 7ST 1 Э่ $<\boldsymbol{Z}=>$
May 25, 1976
Sealing means for wind instruments
INVENTOR: Nelson, Robert E., Los Angeles, California
Gilbert, Robert D., Los Angeles, California

$[* 5]$
material and said second layer is Volite material.
[*6] 6. In the sealing means of claim 5 wherein said first layer is Type A
volara material.
$[* 7]$ 7. In the sealing means of claim 6 wherein a third layer of material
having indicia thereon is adhered to said second layer, said third layer being fixedly secured to said...
... [*12] first layer is laminated to said second layer.

[*14] 14. The pad of claim 13 wherein said first layer is Type A Volara
[*15] 15. The pad of claim 14 wherein a third layer of material having

185 OF 225 PATENTS

$$
3,956,624
$$

$<=2>$ GET 1st ORAWING SHEET OF 2
Method and device for the storage and multiplication of
INVENTOR: Audaire, Luc, St-Nizier-du-Moucherotte, France
Borel, Joseph, Echirolles, France
LE Goascoz, Vincent, Claix, France
Poujois, Robert, Grenoble, France
a mutitiplication of two corresponding terms is performed by recording the signal which is proportional to one sample of said function in a memory of the multiple

threshold voltage which is in turn a linear function of the writing signal at
 ［ 10 LヨヨHS 9NIM甘yO 7 SI $\perp \exists 9<Z=>$
$0 \varepsilon L^{\prime} 9 \varepsilon 6^{\prime} \varepsilon$

eb. 3, 1976		
Insulation test apparatus including improved means for simultaneous display		
inventor: Pittman, Paul F., Pittsburgh, Pennsylvania ... [*3] branches is a current transformer and said means for displaying signals is an oscilloscope.		
[*4] 4. The subject matter of claim 2 wherein:		
said switching means comprises a plurality of semiconductor switching devices of the four layer type connected in a series string and provided with means to trigger said series string to conduction to effect discharge of said capacitor.		
[*5] 5. The subject matter of claim 1 wherein:		
said means for displaying... LEVEL 1 - 189 OF 225 PATENTS		
3,930,903		
$<=2>$GET1st DRAWING SHEET OF 1Jan. 6,1976		
Stabilized superconductive wires		
INVENTOR: Randall, Robert N., Wayland, Massachusetts Wong, James, Wayland, Massachusetts		
What is claimed is:		
[*1] 1. Superconductive multi-filament wire product comprising, means defining a copper matrix with a plurality of spaced filaments therein,		
each of the filaments comprising a layer therein of type il superconducting intermetallic compound of Beta-Wol fram structure, being the diffusion reaction product of source filaments comprising a cross-section multilayer configuration of a refractory metal layer each containing LeVEL 1 - 190 Of 225 PATENTS		

802 39४d
INVENTOR: Oswald, Alexis A., Mountainside, New Jersey
$[* 1]$ 1. Tetra-alkyl phosphonium clays of layer and chain type structure.
$[\star 2]$ 2. Tetra-alkyl phosphonium clays of layer type structure.

$[\star 3]$	3. The compositions of claim 2 wherein said layer type clay is a
montmorillonite.	
[*4]	4. Tetra-alkyl phosphonium clays of the formula [R4P +] Clay -
wherein R is a Cl to Cloo aliphatic hydrocarbyl group, and the clay is a	
negatively charged aluminosilicate of layer and chain...	

 a negatively charged layered aluminosilicate of layer type structure.
C8 to C40 alkyl and the low C1 to $C 7$ aliphatic groups are selected from the group consisting of alkyl, alkenyl and alkinyl.

Process for the production of layer circuits with conductive
INVENTOR: Weitze, Artur, Pullach, Germany, Federal Republic of Leskovar, Peter, Munich, Germany, Federal Republic of
We claim as our invention:
[*1] 1. A process for the production of layer-type printed circuits having
 an aperture in a green ceramic substrate, inserting into said aperture, a high
melting metal pin having192 OF 225 PATENTS
$3,922,567$
S 10 L3ヨHS 9NIMBYO 7ST $1 \exists 9<Z=>$
Nov．25， 1975
Integrated IGFET bucket－brigade circuit
and drain regions，said field－effect transistors employing gate electrodes on an
insulated－gate layer，wherein the last transistor in said row is provided with
an electrical terminal to which said source of operating voltage is ．．．
PAGE 210
LEVEL $1-193$ OF 225 PATENTS
LEVEL 1 193 OF 225 PATENTS even－numbered transistors and said second source coupled to said odd－numbered transistors；and
a row of field－effect transistors of the depletion－layer type having source and drain regions，said field－effect transistors employing gate electrodes on a
insulated－gate layer，wherein the last transistor in said row is provided with
an electrical terminal to which said source of operating voltage is．．．
PAGE 210 LEVEL 193 OF 225 PATENTS

-194 OF 225 PATENTS
$3,895.336$

3，895，336

I 10 1ヨ3HS 9NIM甘צO 7Sโ $1 \exists 9$＜Z＝＞
I claim:
I claim:
[$\star 1]$ 1. In a transformer core of the stacked flat-layer type having a
plurality of flat, laminated, layered members of equal width, each of said
members including;
two generally rectangular shaped, parallel, spaced-apart, outside leg members
beveled at each end;
\ldots
LEVEL $1-1950 F 225$ PATENTS

$$
<=2>\text { GET 1st DRAWING SHEET OF } 1
$$

[^21]-196 OF 225 PATENTS
$3,892,655$
$$
3,895,335
$$
Ju1. 1, 1975
Jul. 1, 1975

[^22]wherein th

Jun. 3, 1975

Layered clay minerals and processes for using
INVENTOR: Hickson, Donald A., Richmond, California

What is claimed is:

[*1] 1. A hydroconversion process comprising contacting a hydrocarbon feedstock at conventional hydroconversion conditions with a catalyst comprising:
(1) a layer-type dioctahedral, clay-like mineral, and (2) at least one
hydrogenation component, said mineral having prior to dehydrating and calcining
of said catalyst, the empirical formula: MgO : sSiO2 : aAl203 : bAB : xH20
wherein the layer-lattice ...

$$
\ldots[\star 9] \text { claim } 1 \text { wherein said hydrogenation component comprises platinum. }
$$

$$
\begin{aligned}
& \text { [*10] 10. A catalytic conversion process comprising contacting a } \\
& \text { hydrocarbon feedstock at conventional catalytic conversion conditions with a } \\
& \text { ratalvst comnrising a laver-t vne diontahedral }
\end{aligned}
$$

catalyst comprising a layer-type dioctahedral, clay-like mineral, said mineral
having prior to dehydrating and calcining of said catalyst the empirical
Mg0 : sSi02 : aAl203 : bAB : xH20

$$
3,884,539
$$

I claim:

$$
\text { PAGE } 216
$$

$$
\text { exposing the cathode layer to }{ }_{\text {LEVEL }} \text {. }
$$

$$
\text { LEVEL } 1-200 \text { OF } 225 \text { PATENTS }
$$

3,875,288

May 20, 1975

INVENTOR: Sommer, Alfred Hermann, Princeton, New Jersey

$$
\begin{aligned}
& {[* 1] \text { 1. A method of activating a multialkali electron-emissive cathode }} \\
& \text { layer, of the type wherein a layer of antimony is exposed at elevated } \\
& \text { temperature, within an evacuated body, to vapors of a plurality of alkali metals } \\
& \text { including cesium, to form an electron-emissive compound, where in the improvement } \\
& \text { comprises: }
\end{aligned}
$$

$<=2>$ GET 1st DRAWING SHEET OF 1
CONTROLLABLE SEMICONDUCTOR RECTIFIER
INVENTOR: Semikron Gesellschaft fur Gleichrichterbau und Elektronid m.b.H.,
Zirndorf, Germany, Federal Republic of
I claim:
[$\kappa 1$] 1. In a controllable semiconductor rectifier device including: a
monocrystalline semiconductor body having planar major outer surfaces and four
layer-type zones of alternatingly opposite conductivity types with the one of
the inner zones of said semiconductor body which serves as the base zone, and
which is adjacent to the one of the outer zones of said semiconductor body which
serves as the emitter ... LEVEL $1-203$ OF 225 PATENTS
<=2> GET 1st DRAWING SHEET OF 2

INVENTOR: Schafer, Horst, Zirndorf, Germany, Federal Republic of Herbing, Lothar, Nurnberg, Germany, Federal Republic of

$$
\begin{aligned}
& 204 \text { OF } 225 \text { PATENTS } \\
& 3,854,983
\end{aligned}
$$

monocrystaliine semiconductor body having four layer-type zones of alternatingly monocrystalline semiconductor body having four layer-type zones of alternating
opposite conductivity types and with the one of the inner zones of said semiconductor body which borders on the one of the outer zones of said semiconductor body which serves as the emitter zone of the device having a portion thereof which is to \ddot{O}

INVENTOR: Brodnyan, John G., Langhorne, Pennsylvania

LEVEL 1 － 206 of 225 PATENTS

$$
\begin{gathered}
3,844,979 \\
\text { 0ct. } 29,197
\end{gathered}
$$

［ $\star 1]$ 1．The method of making a high frequency diode device from a body of
semiconductor material having type $n+$ conductivity and having an epitaxial
layer of type n conductivity，the method comprising：
forming a layer of type p conductivity material at a surface of said
crushed foam of a polymeric material and a metal－containing coating of about 0.5

$$
3,849,217
$$

9 J0 1ヨヨHS פNIM甘yd 7SI 1 Э9＜Z＝＞

$$
\text { Nov. 19, } 1974
$$

method of manufacturing high frequency diode
INVENTOR：Kroger，Harry，Sudbury，Massachusetts
Potter，Curtis N．，Holliston，Massachusetts

We claim：

forming a metal layer of chromium over said surface,
INVENTOR: Hickson, Donald A., Richmond, California

[*8] 8. The catalytic cracking catalyst of claim 6 wherein said dehydrated
mineral is composited with a zeolite.
[*9] 9. A catalyst composite comprising:
$\underset{\sim}{*}$
[*1] 1. A layer-type, dioctahedral, clay-like mineral having the empirical
formula
Mg0 $: ~ s S i 02 ~: ~ a A l 203 ~: ~ b A B ~: ~ x H 20 ~$
wherein the layer-lattice structure is composed of said silica, said alumina,
said magnesia, said A and said B, and wherein after calcination a fluoride content of from 1 to 3 weight percent.
[*6] 6. A catalytic cracking catalyst comprising dehydrated, calcined, layer-type, dioctahedral, clay-like mineral having prior to dehydration and calcining of said catalyst the empirical formula
MgO : sSi02: aAl203: bAB : xH20
wherein the layer-lattice structure is composed of said silica, said alumina,
said ...
dehydrated mineral is composited with an amorphous inorganic
 [*9] 9. A catalyst composite compr
wherein the layer-lattice structure is composed of said silica, said alumina,
said...
LEVEL 1-208 OF 225 PATENTS
[*9] 9. A catalyst composite comprising:
A. a layer-type, dioctahedral, clay-like mineral having prior to dehydration
and calcining of said catalyst the empirical formula Mg0 : ssi02 : aAl203 : bAB : xH2O
oxide. ${ }^{[* 7]}$
3,818,248
<=2> GET 1st DRAWING SHEET OF 2
Jun. 18, 1974
SELECTIVELY CONNECTED FOR PREDETERMINED VOLTAGE BLOCKING AND
... [*1] minimizes the turn on time of said first number of devices.
[*2] 2. The subject matter of claim 1 wherein: said voltage varies over a
range of at least an order of magnitude; said switching devices are of the four
layer type; said means for selectively connecting is such that said second
number of said swtiching devices is in two groups of approximately equal size at
the ends of the series connection.

$$
\begin{aligned}
& \text { [*3] 3. The subject matter of claim } 1 \text { wherein: } \ldots \text {... } \\
& \text { LEVEL } 1-209 \text { OF } 225 \text { PATENTS } \\
& 3,816,343 \\
& \text { Jun. } 11,1974
\end{aligned} \text { KAOLINITE COATED WITH } \begin{aligned}
& \text { SYNTHESIZED LAYER-TYPE SILICATE } \\
& \text { MINERALS }
\end{aligned}
$$

INVENTOR: Hoffman, George W., Houston, Texas

Granquist, William T., Houston, Texas

Having described the invention, we claim:

$[\star 1]$

1. The process of preparing a synthetic layer-type mineral-kaolinite complex which consists in commingling kaolinite with a reaction mixture
thereafter autoclaving the mixture thus formed at a temperature within the
a minor proportion of alumina;
... [*1] alumina of 0.2 to 0.6 ; mixture to be converted to a layer-type clay-like mineral;
and cooling said mixture and recovering said complex therefrom.
solids in said reaction mixture to said kaolinite is within the range of from 5 $: 1$ to $1: 5$.
[*3] 3. A complex consisting essentially of particles of kaolinite coated with a layer-type mineral having the empirical formula:
nsi02:A1203:mAB:xH20 nSi02:Al203:mAB:xH2O
water;

n is from 2.4 to 3.0,
m is from 0.2 to 0.6 ,
A is one equivalent of

<=2> GET 1st DRAWING SHEET OF 3
NEGATIVE-POSITIVE, POSITIVE-POSITIVE EXPOSURE STATION
INVENTOR: Fields, Gary D., Parker, Colorado
... [*15] comprising:
a liquid crystal layer of the type having the capacity to store an image at
least temporarily; and
$3,720,847$
[^23]
I claim:

 $[* 2]$ 2. A power current cryotron comprising a tubular insulating member having an axis and a layer type gate conductor superconducting layer on said insulating member, said layer having a thickness in the order of magnitude of the depth of penetration of a magnetic field into the superconducting layer, said insulating member and said \ldots LEVEL $1-212$ OF 225 PATENTS

- 212 OF 225 PATENTS
3,719,535
<=2> GET 1st DRAWING SHEET OF 1
Mar. 6, 1973

... [*1] sequence of steps and the use of materials for minimizing the
number of steps required, comprising the steps of:
providing a semiconductor body of a first type of conductivity and having an
upper surface；
forming a first passivating layer of the type operating to act as a diffusion
barrier on said upper surface；
forming a plurality of apertures in said passivating layer which are aligned
each to the other；
forming a second passivating layer of the type through which conductivity
type determining impurities pass over said first layer and said exposed surface of said semiconductor body；
forming a third passivating layer of the type operating to act as a diffusion
barrier over said second layer；
patterning said third layer such as to form at least one aperture overlying a
selected aperture in said．．．
of steps requireps and through the use of materials for minimizing the number of steps required，comprising the steps of：
providing a semiconductor body of a first type of conductivity and having an upper surface；
forming a first passivating layer of the type operating to act as a diffusion barrier on said upper surface；
forming a plurality of apertures in said passivating layer which are aligned
each to the other for exposing an equal plurality of surface．．．
LEVEL 1－213 OF 225 PATENTS

$$
\text { LEVEL } 1 \text { - } 213 \text { 0F } 225 \text { PATENTS }
$$

CONTINUOUS MOVING LAYER TYPE ADSORPTION DEVICE

INVENTOR：Maeda，I samu，Niihama－shi，Japan
What I claim is：
［＊1］1．A continuous moving layer type adsorption device employed in a gas
desulfurization system，comprising：
a．an adsorption vessel main body filled with activated charcoal，and
b．a rectifying device，said adsorption vessel main ．．．

$$
3,716,969
$$

Z 10 1ヨヨHS 9NIM甘yO 7SI 1ヨ9＜Z＝＞

 ，$\varepsilon \angle 6 T$＇0Z •qə」
a．an adsorption vessel main body filled with activated charcoal，and
b．a rectifying device，said adsorption vessel main ．．．
LEVEL $1-2140$ F 225 PATENTS

［＊1］1．A stacked layer type capacitor for being supported on its lead
INJNOdWOJ 7VJI\＆1Jヨ7ヨ OJLJVLNOJ LNO\＆」
> ＜＝2＞GET 1st DRAWING SHEET OF 1

Jan．9， 1973
photographic light－sensitive material as
215 OF 225 PATENTS
$3,710,211$

benzimidazoles，
naphthoselenazoles，indolenines，
as
［＊5］
claimed in claim 1 ，wherein，after development，cyan，magenta，and yellow images
are formed in the red－sensitive，the green－sensitive，and the blue－sensitive
silver halide emulsion layers，respectively．
［＊6］6．The multi－layer type color photographic light－sensitive material as claimed in claim 1，wherein the silver halide is selected from the group consisting of silver bromide，silver iodide，silver chloride，silver

LEVEL 1

ACTINIC LABEL－MAKING TOOL
INVENTOR: Heuser, Elliott G., Mequon, Wisconsin
Muttera, Jr., William H., Whitefish Bay, Wisconsin
We claim:
[*1] 1. A label-making tool adapted for the manufacture of labels from tape which has an adhesive layer and an ultraviolet-imaging layer of the type which activates to visibly change color upon exposure to ultraviolet light and deactivates upon exposure to visible light, said tool comprising, in combination:

$$
\begin{aligned}
& \text { I. a housing having a first portion adapted to } \\
& \text { LEVEL } 1-217 \text { OF } 225 \text { PATFNTS }
\end{aligned}
$$

layer of Type 304 austenitic stainless steel which is sandwiched between and metallurgically bonded to two relatively thicker outer layers of Type 1008

$$
\text { NOI } \perp \text { JNNOJ } 7 \forall J I \& \perp J \exists \exists ~ 9 N I X \forall W ~ \$ 0 ~ 0 O H \perp \exists W ~ N O I \perp O ח \& \perp S N O J ~
$$

INVENTOR: Cummings, Harold K., Whitewater, Wisconsin

$$
\ldots\left[{ }^{*} 1\right] \text { contact therewith. }
$$

$$
\begin{gathered}
3,696,499 \\
\text { Oct. } 10,1972
\end{gathered}
$$

METHOD FOR MAKING A COMPOSITE TUBE 18500 F . to about $2,0050 \mathrm{~F}$. for a period of time in the range from about one-half LEVEL 1 - 218 OF 225 PATENTS

$$
3,688,395
$$

wherein said insulated wire is wound to form a coil of the multi-layer type.

$$
\text { [*3] 3. The invention in accordance with claim } 1 \text {, }
$$

wherein said base member is a terminal to which said insulated wire is to be
electrically connected. electrically connected.

[^24]Group VI metals and compounds of Group VIII metals.
 nSi 02 : AL203 : mAB : xH2O

$\begin{aligned} & \text { where the layer lattices comprise said silica, said alumina, and said B, and } \\ & \text { where }\end{aligned}$ PAGE
Pat. No. $3664973, \star 13$
n is from 0.4 to 15.0
m is from 0.2 to 0.6
PAGE 239

LEVEL 1-220 OF 225 PATENTS

$$
\begin{gathered}
3,626,352 \\
\text { Dec. } 7,1971
\end{gathered}
$$

ATTENUATOR SWITCHES HAVING DEPOSITED LAYER-TYPE CIRCUITRY
INVENTOR: McCoig, Kenneth W., Anaheim, California

contact means, attached to said first wafer, for making electrical connection
to conductors of said resistor array, said contact means having contact ends spring biased against said ...
.... [*2] circuit depending on the relative orientation of said first and
second wafers.
.... [*2] circuit depending on the relative orientation of said first and
second wafers.
[*3] 3. An attenuator switch as defined in claim 2 wherein said
layer-type resistors are fabricated of cermet or conductive plastic
[*4] 4. An attenuator switch as defined in claim 2 wherein said resistor
array comprises first, second, and third resistors connected as a pi ...
... [*11] spaced parallel relationstip with a plurality of rotary wafers,
a shaft extending through an, opening in the middle of each stationary wafer and cooperating to rotate simultaneously all of said rotary wafers,
a deposited layer-type attenuator section disposed on each of said stationary
wafers, each attenuator section comprising deposited layer-type resistors and conductors,
a set of deposited layer-type conductive switch pads disposed on each rotary
wafer, and
spring-metal contacts extending from each stationary wafer and electrically connected to the attenuator section thereof, said contacts cooperating with depending on the rotational position of said shaft.
[*12] 12. A step attenuator switch as defined in claim 11 wherein said wafer through spaced holes therein.

[*14] 14. A step attenuator switch as defined in claim 11 wherein...

$$
\begin{aligned}
& \text { di.. [*14] each contact being attached by a fastener spaced a selected } \\
& \text { distance from a free end of said each contact, }
\end{aligned}
$$

said attenuator section comprising first, second, and third deposited layer-type resistors connected in pi configuration, a first deposited to one of said contacts, a second deposited layer-type conductor connecting the junction of said second and third resistors to a second of said contacts, the junction of said first and third resistors being connected to a common terminal by a third deposited layer-type conductor, and
a pair of input/output terminals electrically connected respectively to said
third and said fourth contacts.
[*15] 15. A bridged-T attenuator comprising:
a wafer of electrically insulative material,

wiper contact means rotatable with respect to said wafer and cooperating with
said deposited layer-type components for controlling the attenuation of said attenuator.
Pat. No. 3626352, *13
[*16] 16. A bridged-T attenuator as defined in claim 15 wherein said wafer
comprises a refractory material and has a central opening ...

[*17] 17. A bridged-T attenuator as defined in claim 16 further comprising:
a first annular deposited layer-type conductive switch pad disposed on one
major face of said wafer surrounding said opening and electrically connected by

a first plurality of deposited layer-type conductive switch pads disposed in a circle on said one major face surrounding said central opening, a pair of said first plurality of switch pads being electrically connected respectively to said
a first plurality of deposited layer-type relative elements disposed on said one major face and electrically connected between adjacent ones of said first plurality of switch pads, said wiper contact means selectively electrically
bridged-T circuit. $\left.{ }^{*} 17\right]$ controling the effective resistance of one portion of said
Pat. No. 3626352, *17
[*18] 18. A bridged-T attenuator as defined in claim 17 further comprising:
a second annular deposited layer-type conductive switch pad disposed on the
other major face of said wafer surrounding said opening and electrically connected by means of a deposited layer-type conductive strip to the junction of said pair of fixed resistors,
a second plurality of deposited layer-type conductive switch pads disposed in a circle on said other major face surrounding said central opening

[^25]
3,617,491

Nov. 2, 1971

~
䓕
COMPONENT AND A THORIUM OR URANIUM COMPONENT, AND PROCESS
INVENTOR: Csicsery, Sigmund M., Lafayette, California

3,617,489
Nov. 2, 1971

PAGE 245
3,611,078
Oct. 5, 1971
STABILIZED AC SUPERCONDUCTOR
INVENTOR: Massar, Ernst, Erlangen, Germany, Federal Republic of
we claim
[*1] 1. An AC superconductor, comprised of a superconducting layer of type
I intended for the load current, which is placed with a minimum contact
resistance upon a metallic stabilizing layer of a superconducting material of
type III, which during overloading absorbs the current, at least partially and
temporarily, said superconductor of type I encloses said superconductor of type
III provided for stabilizing purposes in the form of a tube.
[*2] 2. The superconductor of claim 1 wherein the superconducting layer of
type is lead.
[*3] 3. The superconductor of claim 1 , wherein the superconductors are
concentric tubes.
[*4] 4. The superconductor of claim 3, wherein at least two mutually
contacting layers of superconducting material of type III, provided for
stabilization, are ...
\ldots... [*7] tube upon whose outer wall the superconductor layers are placed.
$[* 8]$ 8. The superconductor of claim 5 , wherein the thickness of the
respective superconducting layer is between 1 and 10 mu .
[*9] 9. An AC superconductor, comprised of a superconducting layer of type
resistance upon a metallic stabilizing layer of a superconducting material of
type III, which during overloading absorbs the current at least...
critical field strengths for for stabilization, are present which have higher critical field strengths for the alternating current the further they are from
the superconductor of type II which is provided for the current load.
[*12] 12. The superconductor of claim 9 wherein the superconducting layer
$\begin{array}{lll}\text { J0B } & 68990 \\ & 12 / 22 / 98\end{array}$
*
*
Received: from mailhub.watson.ibm.com [9.2.250.97] by yktvmv.watson.ibm.com (IBM VM SMTP V2R4a) via TCP with SMTP; Tue, 22 Dec 1998 12:46•

MORRIS, DAN
IBM CORPORATION
YORKTOWN PATENT OPERATIONS
T. J. WATSON RESEARCH CENTER

100G6J YOUR SEARCH REQUEST IS:
CLAIMS(LAYER-TYPE OR (LAYER PRE / 1 TYPE))
AND SUPERCOND!
YORKTOWN HEIGHTS, NEW YORK 10598-0218
MAIL-IT REQUESTED: DECEMBER 22, 1998

YOUR FOCUS SEARCH REQUEST AT THE TIME THIS MAIL-IT WAS REQUESTED:
LAYER PRE/ 1 TYPE
NUMBER OF PATENTS FOUND WITH YOUR FOCUS REQUEST:

DISPLAY FORMAT: KWIC

SEND TO: MORRIS, DAN IBM YORKTOWN PATENT OPERATIONS
DISPIAY FORMA
8LZO-8650L Y甘ON MIN SLHЭIJH NMOLYYON

FACSIMILE

DATE: \qquad $2-18-99$

NO. OF PAGES TO FOLLOW:

To: Ene: Examine M. Kopec
ADDRESS: \qquad

PHONE NO. \qquad
raxno. $703 \quad 305 \quad 6078$
from: Daniel P. Morris
PHONE NO. \qquad 9149453217

LOCATION: \qquad

CONTACT \#: \qquad

CLASSIFICATION:
\qquad IBM CONFIDENTIAL \qquad IBM INTERNAL USE ONLY
\qquad `PERSONAL \qquad UNCLASSIFIED

THIS MESSAGE IS INTENDED ONLY FOR THE USE OF THE INDIVIDUAL OR ENTITY TO WHICH IT IS ADDRESSED, AND MAY CONTAIN INFORMATION THAT IS PRIVILEGED, CONFIDENTIAL AND EXEMPT FROM DISCLOSURE UNDER APPLICABLE LAW. IF THE READER OF THIS MESSAGE IS NOT THE INTENDED RECIPIENT, OR THE EMPLOYEE OR AGENT RESPONSIBLE FOR DELIVERING THE MESSAGE TO THE INTENDED RECIPIENT, YOU ARE HEREBY NOTIFIED THAT ANY DISSEMINATION, DISTRIBUTION OR COPYING OF THIS COMMUNICATION IS STRICTLY PROHIBITED. IF YOU HAVE RECEIVED THIS COMMUNICATION IN ERROR, PLEASE NOTIFY US IMMEDIATELY BY TELEPHONE AND RETURN THE ORIGINAL MESSAGE TO US AT THE ADDRESS ABOVE VIA THE USS. POSTAL SERVICE.
** TX STATLIS REPGRT **

DATE TIME TO/FROM
02/18 12:03 917033056078

AS OF FEE 18. 99 12:04 FAGE.01

MODE MINASE PGS CMDH STATLIS

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: J. Bednorz et al.
Serial No. 08/303,561
Filed: September 9, 1994

Date: December 15, 1998
Group Art Unit: 1105
Examiner: M. Kopec

For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, AND METHODS FOR THEIR USE AND PREPARATION

The Commissioner of Patents and Trademarks
Washington, D.C. 20231

AFFIDAVIT UNDER 37 CFR 1.132

Sir:

I, Thomas M. Shaw, being duly sworn, do hereby depose and state:

I received a B.S. degree in Metallurgy from the University of Llverpool, Liverpool,
England and a M.S. and PhD. degree in Materials Science (1981) from the University of California, Berkeley.

I have worked as a postdoctoral researcher in the Material Science Department of Cornell University from 1981-1982. I worked at Rockwell International Science Center in Thousand Oaks, California from 1982-1984 as a ceramic scientist. I have worked as a research staff member in Ceramics Science at the Thomas J. Watson Research

Center of the International Business Machines Corporation in Yorktown Heights, N.Y. from 1984 to the present.

I have worked in the fabrication of and characterization of ceramic materials of various types, including superconductors and related materials from 1984 to the present.

Attached is a resume of my publications. I have reviewed the above-identified patent application and acknowledge that it represents the work of Bednorz and Mueller, which is generally recognized as the first discovery of superconductivity above $26^{\circ} \mathrm{K}$ and that subsequent developments in this field have been based on this work.

That all the high temperature superconductors which have been developed based on the work of Bednorz and Mueller behave in a similar manner, conduct current in a similar manner and have similar magnetic properties.

That once a person of skill in the art knows of a specific transition metal oxide composition which is superconducting above $26^{\circ} \mathrm{K}$, such a person of skill in the art, using the techniques described in the above-identified patent application, which includes all known principles of ceramic fabrication known at the time the application was filed, can make the transition metal oxide compositions encompassed by the claims in the above-identified application, without undue experimentation or without requiring ingenuity beyond that expected of a person of skill in the art. This is why the
work of Bednorz and Mueller was reproduced so quickly after their discovery and why so much additional work was done in this field within a short period of their discovery.

The general principles of ceramic science referred to by Bednorz and Mueller in their patent application can be found in many books and articles published before their discovery. An exemplary list of books describing the general principles of ceramic fabrication are:

1) Introduction to Ceramics, Kingery et al., Second Edition, John Wiley \& Sons, 1976, in particular pages 5-20, 269-319, 381-447 and 448-513, a copy of which is attached herewith.
2) Polar Dielectrics and Their Applications, Burfoot et al., University of California Press, 1979, in particular pages 13-33, a copy of which is attached herewith.
3) Ceramic Processing Before Firing, Onoda et al., John Wiley \& Sons, 1978, the entire book, a copy of which is attached herewith.
4) Structure, Properties and Preparation of Perovskite-Type Compounds, F.S. Glasso, Pergamon Press, 1969, in particular pages 159-186, a copy of which is attached herewith.

An exemplary list of articles applying their general principles of ceramic fabrication to the types of materials described in applicants' specification are (these references are cited on applicant's 1449 form submitted August 5, 1987 and in PTO Form 892 in Paper \# 20, Examiner's action dated August 8, 1990):

1) Oxygen Defect $\mathrm{K}_{2} \mathrm{NiF}_{4}$ - Type Oxides: The Compounds $\mathrm{La}_{2-x} \mathrm{Sr}_{\mathrm{x}} \mathrm{CuO}_{4 \times 2+\delta}$, Nguyen et al., Journal of Solid State Chemistry 39, 120-127 (1981).
2) The Oxygen Defect Perovskite $\mathrm{BaLa}_{4} \mathrm{Cu}_{5}-\mathrm{O}_{13.4}$, A Metallic Conductor, C. Michel et al., Mat. Res. Bull., Vol. 20, pp. 667-671, 1985.
3) Oxygen intercalation in mixed valence copper oxides related to the perovskite, C. Michel et al., Revue de Chemie minerale, p. 407, 1984.
4) Thermal Behaviour of Compositions in the Systems $\times \mathrm{BaTiO}_{3}+(1-x) \mathrm{Ba}\left(\mathrm{Ln}_{0.5} \mathrm{~B}_{0.5}\right) \mathrm{O}_{3}$. V.S. Chincholkar et al. Therm. Anal. 6th, Vol. 2., p. 251-6, 1980.

By:

Sworn to before me this LITh day of \qquad , 19 98

SANDRA M. EMMA
Notary Public, State of New York
No. O1P04935290
Qualified in Westchester County,
Commission Expires July 5.2002

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: J. Bednorz et al.
Serial No. 08/303,561
Filed: September 9, 1994
For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, AND METHODS FOR THEIR USE AND PREPARATION

The Commissioner of Patents and Trademarks
Washington, D.C. 20231

AMENDMENT AFTER FINAL REJECTION UNDER 37 CFR 1.116

Sir:
In response to the Office Action dated June 25, 1998, please consider the following:

REMARKS

In the referenced final Office Action, the Examiner refers to three affidavits (of Mitzi, Tsuei and Dinger) submitted by applicants to overcome the rejection under 35 USC 112 for a lack of enablement. The Examiner's comments are at (paragraph (d)(iv) page 7, 5 lines from the bottom to page 8,4 lines from the bottom. The Examiner states:
(d)(iv)(1) "Those affidavits do not set forth particular facts to support the conclusions that all superconductors based on the applicants' work behave in the same way and that one skilled in the art can make these superconductors without undue experimentation."
(d)(iv)(2) "Those affidavits do not overcome the non-enablement rejection."
(d)(iv)(3) "Those affidavits are not deemed to shed light on the state of the art and enablement at the time the invention was made."

Moreover, in applicant's response dated May 14, 1998, applicants referto Poole et al. which states at page 59 thereof "[c]opper oxide superconductors with a parity sufficient to exhibit zero resistivity or to demonstrate levitation (Early) are not difficult to snythesize. We believe that this is at least partially responsible for the explosive worldwide growth in these materials" (see applicant's response for the entire text that is quoted and Attachment A thereof for copies of relevant pages from Pool et al.)

In response the Examiner states:
(1) Initially, however, it should be noted that the Poole article was published after the priority date presently claimed. As such, it does not provide evidence of the state of the art at the time the presently claimed invention was made.
(2) Moreover, the present claims are directed to processes of using metal oxide superconductors, not processes of making them. Even if the Poole article provided direct evidence of the state of the art at the time the invention was made, which it apparently does not, that evidence still does not pertain to the issue at hand, namely, the process of using metal oxide superconductors to conduct electricity under superconducting condition.

Applicants respectfully disagree with the Examiner. In further support of applicants position that all their claims are fully enabled, applicant's submit herewith the affidavit under 37 CFR 1.132 of Peter Duncombe which provides a list of books and articles published prior to applicants filing date showing the general principles of ceramic science used by applicants and which are used as stated by Poole et al. to make the
high Tc superconductors taught and claimed by applicants which "are not difficult to synthesize."

The affidavit of Peter Duncombe provides complete copies of two of his notebooks in which he sets forth particular facts in which he recorded the synthesis and properties of high Tc superconducting materials fabricated according to the general principles of ceramic science as taught by applicants.

Applicants submitted by facsimile an affidavit of James W. Leonard on December 15, 1998 which states that 5,689 articles cited the applicants' Zeitschrift fur Physik BCondensed Matter, 64, pp. 189-193 (Sept. 1986) article. It cost $\$ 2.50$ per citation to print each citation for a total cost of $\$ 14,222.50$. Applicants will supply this list at the USPTO's request.

In view of the changes to the claims and the remarks herein, the Examiner is respectfully requested to reconsider the above-identified application. If the Examiner wishes to discuss the application further, or if additional information would be required, the undersigned will cooperate fully to assist in the prosecution of this application.

Please charge any fee necessary to enter this paper to deposit account 09-0468.

If the above-identified Examiner's Action is a final Action, and if the above-identified application will be abandoned without further action by applicants, applicants file a Notice of Appeal to the Board of Appeals and Interferences appealing the final rejection of the claims in the above-identified Examiner's Action. Please charge deposit account 09-0468 any fee necessary to enter such Notice of Appeal.

In the event that this amendment does not result in allowance of all such claims, the undersigned attorney respectfully requests a telephone interview at the Examiner's earliest convenience.'

MPEP 713.01 states in part as follows:

Where the response to a first complete action includes a request for an interview or a telephone consultation to be initiated by the examiner, ... the examiner, as soon as he or she has considered the effect of the response, should grant such request if it appears that the interview or consultation would result in expediting the case to a final action.

IBM CORPORATION
Intellectual Property Law Dept.
P.O. Box 218

Yorktown Heights, New York 10598
(914) 945-3217

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: J. Bednorz et al.
Serial No. 08/303,561
Filed: September 9, 1994

Date: December 18, 1998
Group Art Unit: 1105
Examiner: M. Kopec

For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, AND METHODS FOR THEIR USE AND PREPARATION

The Commissioner of Patents and Trademarks
Washington, D.C. 20231

AFFIDAVIT UNDER 37 CFR 1.132

Sir:

I, Peter R. Duncombe, being duly sworn, do hereby depose and state:

I received a B.A. degree in Chemistry from the State University of New York at New Paltz, New Paltz, N.Y. and a M.S. degree in Chemical Engineering (1983) from the State University of New York at Buffalo, Buffalo, N. Y.

I have worked as a graduate research assistant in the Chemical Engineering Department of SUNY at Buffalo from 1980-1983. I have worked as a chemical engineer in Ceramics Science at the Thomas J. Watson Research Center of the International Business Machines Corporation in Yorktown Heights, N.Y. from 1984 to the present.

I have worked in the fabrication of and characterization of ceramic materials of various types, including superconductors and related materials from 1984 to the present.

Attached is a resume of my publications (Attachment A).

I have reviewed the above-identified patent application and acknowledge that it represents the work of Bednorz and Mueller, which is generally recognized as the first discovery of superconductivity above $26^{\circ} \mathrm{K}$ and that subsequent developments in this field have been based on this work.

That all the high temperature superconductors which have been developed based on the work of Bednorz and Mueller behave in a similar manner, conduct current in a similar manner and have similar magnetic properties.

That once a person of skill in the art knows of a specific transition metal oxide composition which is superconducting above $26^{\circ} \mathrm{K}$, such a person of skill in the art, using the techniques described in the above-identified patent application, which includes all known principles of ceramic fabrication known at the time the application was filed, can make the transition metal oxide compositions encompassed by the claims in the above-identified application, without undue experimentation or without requiring ingenuity beyond that expected of a person of skill in the art. This is why the
work of Bednorz and Mueller was reproduced so quickly after their discovery and why so much additional work was done in this field within a short period of their discovery.

The general principles of ceramic science referred to by Bednorz and Mueller in their patent application can be found in many books and articles published before their discovery. An exemplary list of books describing the general principles of ceramic fabrication are:

1) Introduction to Ceramics, Kingery et al., Second Edition, John Wiley \& Sons, 1976, in particular pages 5-20, 269-319, 381-447 and 448-513, a copy of which is attached herewith.
2) Polar Dielectrics and Their Applications, Burfoot et al., University of California Press, 1979, in particular pages 13-33, a copy of which is attached herewith.
3) Ceramic Processing Before Firing, Onoda et al., John Wiley \& Sons, 1978, the entire book, a copy of which is attached herewith.
4) Structure, Properties and Preparation of Perovskite-Type Compounds, F.S. Glasso, Pergamon Press, 1969, in particular pages 159-181, a copy of which is attached herewith.

An exemplary list of articles applying their general principles of ceramic fabrication to the types of materials described in applicants' specification are (these references are cited on applicant's 1449 form submitted August 5, 1987 and in PTO Form 892 in

Paper \# 20, Examiner's action dated August 8, 1990):

1) Oxygen Defect $\mathrm{K}_{2} \mathrm{NiF}_{4}$ - Type Oxides: The Compounds $\mathrm{La}_{2-x} \mathrm{Sr}_{x} \mathrm{CuO}_{4-\mathrm{x} 2+\delta}$, Nguyen et al., Journal of Solid State Chemistry 39, 120-127 (1981).
2) The Oxygen Defect Perovskite BaLa $\mathrm{Cu}_{5}-\mathrm{O}_{13.4}$, A Metallic Conductor , C. Michel et al., Mat. Res. Bull., Vol. 20, pp. 667-671, 1985.
3) Oxygen intercalation in mixed valence copper oxides related to the perovskite, C. Michel et al., Revue de Chemie minerale, p. 407, 1984.
4) Thermal Behaviour of Compositions in the Systems $\times \mathrm{BaTiO}_{3}+(1-x) \mathrm{Ba}\left(\mathrm{Ln}_{0.5} \mathrm{~B}_{0.5}\right) \mathrm{O}_{3}$, V.S. Chincholkar et al. Therm. Anal. 6th, Vol. 2., p. 251-6, 1980.

I have recorded research notes relating to superconductor oxide (perovskite) compounds in technical notebook IV with entries from November 12, 1987 to June 14, 1988 and in technical notebook V with entries continuing from June 7, 1988 to May 2, 1989. Complete copies of each of these notebooks are attached - Attachment B-Book IV and Attachment C-BookV. Below is a listing of some of the compounds I prepared and recorded in these notebooks according to the teaching as described in the Bednorz and Mueller patent application using the general principles of ceramic science as described in the books and articles listed above.

In Book IV, $\mathrm{Y}_{1} \mathrm{Ba}_{2} \mathrm{Cu}_{3} \mathrm{O}_{x}$ batch C 1 pellet pressing, sintering notes and powder processing specifications start on page 2 and continue intermittently to pg. 40 (pg. 13 has superconductive susceptibility curves for pellet 9). Batch $\mathrm{C} 2 \mathrm{Y}_{1} \mathrm{Ba}_{2} \mathrm{Cu}_{3} \mathrm{O}_{3}$ detailed from pages 14 to 47 .

In Book V green phase $\left(\mathrm{Y}_{2} \mathrm{BaCuO}_{\mathrm{x}}\right)$ microstructural photomicrographs are logged on pages 15-17 with notes continuing to pg . 19. The perovskite superconductor BiSrCaCu oxide $\left(\mathrm{Bi}_{2.15} \mathrm{Sr}_{1.68} \mathrm{Ca}_{1.7} \mathrm{Cu}_{2} \mathrm{O}_{8+\delta}\right)$ and related perovskites $\mathrm{Ca}_{(2-x)} \mathrm{Sr}_{\mathrm{x}} \mathrm{CuOx}$ and $\mathrm{Bi}_{2} \mathrm{Sr}_{2} \mathrm{CuO}_{x}$ synthesis notations start and continue through pg. 61 with microstructural photomicrographs.

A series of $\mathrm{Y}_{1} \mathrm{Ba}_{2} \mathrm{Cu}_{3} \mathrm{O}_{\mathrm{x}}$ stoichiometric perturbations to study compositional effects on 2nd phase or grain boundary phases and their effect on conductivity (resistivity), sintering behavior etc., continue until the end of the book notes on the page dated May 2, 1989 (page not numbered). These are typical perovskite synthetic procedures, microstructural photomicrographs, powder processing methods, characteristic susceptibility curve(s), sintering behavior and the like. Additional notes may be available in later notebooks.

The undersigned affiant swears further that all statements made herein of his own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or patent issuing thereon.
By:

Sworn to before me this \qquad $p^{\text {² }}$ day of \qquad , 19 98. $\frac{\text { sondend }}{\text { Notary Public }}$

SANDRA M. EMMA
Notary Public, State of New York
No. O1PO4935290
Qualified in Westchester County
Commission Expires July 5, 202?

ATTACHMENT A

1. Compensation doping of Ba 0.7 Sr 0.3 TiO 3 thin films

Copel, M Baniecki, JD Duncombe, PR Kotecki, D
Laibowitz, R Neumayer, DA Shaw, TM APPLIED PHYSICS LETTERS V73 N13 SEP 281998 P1832-1834
2. Method for Forming Noble Metal Oxides and Structures Formed Thereof. June 1998.

Duncombe, P. R. Hummel, J. P. Laibowitz, R. B.
Neumayer, D. A. Saenger, K. L. Schrott, A. G.
RC 98A 41575
3. Growth of Bismuth Titanate Films By Chemical Vapor Deposition and Chemical Solution Deposition. March 1998. RC-21124
Neumayer, D. A. Duncombe, P. R. Laibowitz, R. B.
Shaw, T. Purtell, R. Grill, A.
4. Dielectric relaxation of Ba 0.7 Sr 0.3 TiO 3 thin films from 1 mHz to 20 GHz Baniecki, JD Laibowitz, RB Shaw, TM Duncombe, PR
Neumayer, DA Kotecki, DE Shen, H Ma, QY
APPLIED PHYSICS LETTERS V72 N4 JAN 261998 P498-500
5. Contrasting magnetic and structural properties of two La manganites with the same doping levels
McGuire, T.R. Duncombe, P.R. Gong, G.Q. Gupta, A. Li, X.W. Pickart, S.J. Crow, M.L. J. Appl. Phys. (USA) Vol.83, No. 111 June 1998 P7076-8
6. Effects of Annealing Conditions on Charge Loss Mechanisms in MOCVD (Ba0.7,Sr0.3)TiO3 Thin Film Capacitors.
Baniecki, J.D., Laibowitz, RB Shaw, TM Duncombe, PR Saenger, KL Cabral C Kotecki, DE , Shen, H, Lian, J., Ma, QY
7. Low Operating Voltage and High Mobility Field Effect Transistors Comproising Pentacene and Relatively High Dielectric Constant Insulators RC21233(94806) 7/17/98 Dimitrakopoulos, CD Purushothaman S , Kymissis J. Callegari A. , Neumayer DA, Duncombe PR, Laibowitz RB, Shaw JM
8. Maximum Magnetorsistance in Granular Manganite/Insulator System close to Percolation Threshold PACS 10/06/98
DK Petrov, L Krusin-Elbaum, JZ Sun, C Feild, \& PR Duncombe
9. Magnetorsistance and Hall Effect of Chromium Dioxide Epitaxial Thin Films X.W. Li, A. Gupta, T.R. McGuire, P.R. Duncombe, Gang Xiao
10. Progress Report on High-k dielectric material: amorphous BST from solgel (09/98) P. Andry, D. Neumayer, P. Duncombe, C. Dimitrakopoulos, F. Libsch, A. Grill, R. Wisnieff

$$
\operatorname{RC} 21352(96175) 2 \operatorname{Dec} 1998
$$

Infog a te from The IBMTotal Information Retrieval Center

SEND MEND OTHED

INCOMPLETE
Personal Inventor History

| Name: Duncombe, P.R. | Serial $: 155139$ | Loc:RES YORKTOWN | |
| :--- | :---: | :---: | :---: | :---: |
| Patent Pts $: 36$ | TDB Pts:1 | Total Pts:37 | Plateau Lvl:3 |
| Plateau Date $: 10 / 24 / 98$ | File Update: $11 / 02 / 98$ | | |
| Awards Due: None | | | |

Title: NOVEL METAL ALKOXYALKOXIDECARBOXYLATES AND USE TO FORM FILMS $06 / 17 / 98$ Opened as Discl Yo8980231_ Status:Filed
06/22/98 Discl Review Action:File
09/04/98 Filed as Docket Yo998254 in US Rating: 2 Pts:3
Co-inventors: Neumayer, D.A.
Title: SELECTIVE GROWTH OF FERROMAGNETIC FILMS FOR MAGNETIC MEMORY, STORAGE-BASED DEVICES, AND OTHER DEVICES
06/17/98 Opened as Discl Y08980225
Status:Filed
06/29/98 Discl Review
Action:File
10/15/98 Filed as Docket Yo998268 in US Rating: 2 Pts:3
Co-inventors: Gina, S. Gupta, A. Bojarczuk, N.A. Karasinski, J.M.
Title: BEOL DECOUPLING CAPACITOR MATERIALS
01/28/98 Opened às Discl Yo8980024 in US Status:Opened
06/24/98 Discl Review Action:File
Co-inventors: Rosenberg, R. Ning, T.H. Shaw, T.M. Edelstein, D.C. Neumayer, D.A. Laibowitz, R.B.
3) "FAgricanon of SoonTium Bismuth Tratalataf Bismith Titanite Muitilayer ferprelectaric Titie: FERROELECTRIC THIN FILM STRUCTURES 10/01/97 Opened as Discl Yo8970512 in US Status:Opened 09/16/98 Discl Review

Action:File
Cojindentors: Shaw, TM. Neumayery D.A. Laibowitz, R.B.
$10 / 30 / 40$ SENT TO CONNSEL (L. Schuvs: $)$
Title: CAPACITORS WITH AMORPHOUS DIELECTRICS AND IMPROVED DIELECTRIC PROPERTIES MADE USING SILICON SUREACES AS ELECTRODES
06/06/97 Opened as Discl YO8970261 in US Status:Opened Co-inventors: Shaw, T.M. Neumayer, D.A. Laibowitz, R.B.

Title: FABRICATIOS OF THIN FILM FIELD EFFECT TRANSISTOR COMPRISING AN ORGANIC SEMICONDUCTOR AND CHEMICAL SOLUTION DEPOSITED METAL OXIDE
03/25/97 Opened as Discl Y08970113 Status:Filed
03/25/97 Discl Review Action:File
03/25/97 Filed as Docket Yo997083 in US Rating: 2 Pts:3

- $03 / 24 / 98$ Filed as Docket Yo997083 in JA \quad Rating: 2

03/16/98 Filed as Docket Yo997083 in TA Rating: 2
03/12/98 Filed as Docket Yo997083 in KO Rating: 2
04/24/98 Last office Action
Co-inventors: Purushothaman, S. Dimitrakopoulos, C.D. Furman, B.K. Neumayer, D.A. Laibowitz, R.B.

Title: NOVEL ALKOXYALKOXIDES AND USE TO FORM FILMS
10/30/96 Opened as Discl YO8960411
Status:Filed
03/10/97 Discl Re:iew
Action:File
(5).

01/30/98 Filed as Docket YO997069 in US
Co-inventors: Nemayer, D.A.

Title: THIN-FILM FIELD-EFFECT TRANSISTOR WITH ORGANIC SEMICONDUCTOR REQUIRING LOW OPERATING VOLTAGES
09/11/96 Opened as Discl Yo8960358 03/04/97 Discl Review

03/25/97 Filed as Docket Y0997057 in US
03/12/98 Filed as Docket Yo997057 in Ko.
04/10/98 Last Office Action
Co-inventors: Purushothaman, S. Dimitrakopoulos, C.D. Furman, B.K. Neumayer, D.A. Laibowitz, R.B.

X Title: high dielectric constant, barium lanthanum titanate thin film capacitors for RANDOM ACCESS
06/20/96 Opened as Discl Yo8960255 in US Status:Opened
Co-inventors: Gupta, A. Shaw, T.M. Laibowitz, R.B.
Title: METHOD FOR FORMING NOBLE METAL OXIDES AND STRUCTURES FORMED THEREOF
10/30/95 Opened as Discl Yo8950450
Status:Filed
11/12/96 Discl Review
11/05/97 Filed as Docket YO996239 in US
Action:File
(8) $10 / 20 / 98$ Filed as Docket Yo996239 in JA

07/30/98 Filed as Docket YO996239 in TA Rating: 2
Rating: 2
Pts: 3

Co-inventors: Schrott, A.G. Saenger, K.L. Hummel, J.P. Neumayer, D.A. Laibowitz, R.B.

Title: PEROXIDE ETCHANT PROCESS FOR PEROVSKITE-TYPE OXIDES
10/23/95 Opened as Discl Yo8950434 Status:Filed
08/08/97 Discl Review Action:File
04/08/98 Filed as Docket Yo997256 in US Rating: 2 Pts:3
Co-inventors: Rosenberg, R. Cooper, E.I. Laibowitz, R.B.
Title: RF TRANSPONDER FOR METALLIC SURFACES
08/02/95 Opened as Discl Yo8950329 in US
Status: Opened
Co-inventors: Afzali-ardakani, A. Feild, C.A. Duan, D.W. Brady, M.J.
Moskowitz, P.A.
Title: METHOD FOR CLEANING THE SURFACE OF A DIELETRIC
09/06/95 Opened as Discl FI8950292
09/06/95 Sent to Evaluator
02/05/96 Evaluated
04/19/96 Discl Review
Action: Search
19/96 Discl Review Action:File
Rating: 2
Pts: 3
11/29/97 Filed as Docket FI996047 in KO
Rating: 2
05/26/97 Filed as Docket FI996047 in TA
Rating: 2
$06 / 11 / 98$ Last office Action
Co-inventors: Kotecki, D.E. Wildman, H.S. Yu, C. Natzle, W. Laibowitz, R.B.
Title: NANO PHASE FABRICATION OF COPPER-GLASS CERAMIC COMPOSITE VIAS IN CORDIERITE SUBSTRATES
10/05/92 Opened as Discl YO8920907 in US Status: Published
10/08/92 Sent to Evaluator
12/17/92 Discl Review Action: Publish
01/06/93 Mailed to Tech Discl Bulletin (09/02/93 Published pts:l
Co-inventors: Kang, S.K. Shaw, T.M. Brady, M.J.
Title: METHOD OF SINTERING ALUMINUM NITRODE
11/06/92 Opened as Discl. FI8920668 in US
Status:Closed
11/06/92 Sent to Evaluator
12/18/92 Closed
Co-inventors: Takamori, T. Shinde, S.L.
Title: METHOD OF SINTERING ALUMINUM NITRIDE

11/06/92 Opened as Discl FI8920667 in US
Status:Closed
11/06/92 Sent to Evaluator
12/18/92 Closed
Co-inventors: Takamori, T. Shinde, S.L.
Title: ALUMINUM NITRIDE BODY AND METHOD FOR FORMING SAID BODY UTILIZING A VITREOUS SINTERING ADDITIVE
08/13/92 Opened as Discl FI8920525 Status:Filed
08/17/92 Sent to Evaluator
09/29/92 Evaluated
12/23/92 Discl Review
Action: Search
Action:File
05/10/95 Filed as Docket FI992168B in US
Rating: 2 'Pts:3
05/28/96 Issued as Patent 5520878 in US
Co-inventors: Takamori, T. Shinde, S.L.
Title: ALUMINUM NITRIDE BODY AND METHOD FOR FORMLNG SAID BODY UTILIZING A VITREOUS SINTERING ADDITIVE
08/13/92 Opened as Discl FI8920525 Status:Filed
08/17/92 Sent to Evaluator
09/29/92 Evaluated
12/23/92 Discl Review
Action: Search
Action:File
12/22/93 Filed as Docket FI992168A in US
Rating: 2
Pts: 3
01/09/96 Issued as Patent 5482903 in US
Co-inventors: Takamori, T. Shinde, S.L.
Title: GOLD DOPING OF YBA2CU3O7-8 AS A MEANS OF INCREASING TRANSPORT CRITICAL CURRENT DENSITY
02/12/92 Opened as Discl YO8920161 in US Status:Closed
02/14/92 Sent to Evaluator
05/15/92 closed
Co-inventors: Daeumling, M. Shaw, T.M.
Title: PROCESS FOR PRODUCING CERAMIC CIRCUIT STRUCTURES HAVING CONDUCTIVE VIAS
07/19/89 Opened as Discl YO8890552 Status:Filed
07/25/89 Sent to Evaluator
08/10/89 Evaluated Action:Search
07/30/90 Discl Review Action:File
12/17/92 Filed as Docket YO990091B in US Rating: 2 Pts:3
08/16/94 Issued as Patent 5337475 in US
Co-inventors: Vallabhaneni, R.V. Giess, E.A. Farooq, S. Cooper, E.I. Kim, Y.H. Vanhise, J.A. Aoude, F.Y. Muller-landau, F. Shaw, R.R. Walker, G.F. Rita, R.A. Neisser, M.O. Park, J.M. Shaw, T.M. Brownlow, J.M. Kim, J. Knickerbocker, S.H.

Title: VIA PASTE COMPOSITIONS AND USE THEREOF TO FORM CONDUCTIVE VIAS IN CIRCUITIZED CERAMIC SUBSTRATES
07/19/89 Opened as Discl yo8890552
Status:Filed
07/25/89 Sent to Evaluator
08/10/89 Evaluated Action:Search
07/30/90 Discl Review
Action:File
03/20/91 Filed as Docket Yo990091A in US Rating: 2 Pts:3
02/01/94 Issued as Patent 5283104 in US
Co-inventors: Vallabhaneni, R.V. Giess, E.A. Farooq, S. Cooper, E.I. Kim, Y.H. Vanhise, J.A. Aoude, F.Y. Muller-landau, F. Shaw, R.R. Walker, G.F. Rita, R.A. Neisser, M.O. Park, J.M. Shaw, T.M. Brownlow, J.M. Kim, J. Knickerbocker, S.H.

Call your award coordinator, IPL department, or T/L 826-2680 for help.

Emp. Ser: 155139
Date: 10/23/95

- T.R. McGuire, A. Gupta, P.R. Duncombe, M. Rupp, J.Z. Sun, R.B. Laibowitz, W.J. Gallagher \& G. Xiao "Magnetoresistance and Magnetic Properies of ($\mathrm{La}_{1-\mathrm{x}}$) $\mathrm{MnO}_{3-\mathrm{s}}$ Thin Films" 3M Conf. Proc: 4/96
- T.R. McGuire, P.R. Duncombe, G.Q. Gong, A. Gupta, X.W. Li \& G. Xaio "Magnetoresistance \& Magnetic Properties of (La_{1-1}) $\mathrm{MnO}_{3 \rightarrow s}$ (Vacancy) Bulk Materials" $11 / 963 \mathrm{M}$ conf CMR Open Forum entry
- J.Z. Sun, L. Krusin-Elbaum, A. Gupta, G. Xiao, P.R. Duncombe, W.J. Gallagher \& S. P. Parkin "Magneto-Transport in Doped Manganate Perovkites" 3M conference 11/12-15/96 Atlanta, Georgia
- P. Lecoeur, A. Gupta, P.R. Duncombe, G. Gong \& G. Xiao "Emission Studies of the Gas-Phase Oxidation of Mn during Pulsed Laser Deposition Managanates in O2 \& N2O Atmospheres" JAP 80(1), 7/1/96
- J.Z. Sun, L. Krusin-Elbaum, A. Gupta, G. Xiao, P.R. Duncombe, W.J. Gallagher \& S.S.P. Parkin "Colossal Magnetoresistance in Doped Manganate Perovskites" IBM J\&D to appear 1996/97
- A. Gupta, G.Q. Gong, G. Xiao, P.R. Duncombe, P. Trouilloud, P. Lecoeur, Y.Y. Wang, V.P. Dravid, \& J.Z. Sun "Grain Boundary Effects on the Magnetoresistance Properties of Perovskite Manganite Films"
- J.Z. Sun, W.J. Gailagher, P.R. Duncombe, L. Krusin-Elbaum, R.A. Altman, A. Gupta, Y. Lu, G.Q. Gong \& G. Xaio "Observation of Large Low-field Magnetoresistance in Tri-layer Perpendicular Transport Devices Made Using Doped Manganate Perovskites" to appear Appl. Phys. Lett.
- J.Z. Sun, L. Krusin-Elbaum, P.R. Duncombe, A. Gupta \& R. B. Laibowitz "Spin-Polarized Tunneling in Doped Perovskite Manganate Trilayer Junctions" APL submission 11/96
- T.R. McGuire, P.R. Duncombe, C.Q. Gong, A. Gupta, X.W. Li \& G. Xiao "Interlayer Exchange Coupling \& Magnetoresistance Of LCMO/LSMO 67/33 Multilayers" APL submission
- R.B. Laibowitz, T.M. Shaw, D.E. Kotecki, S. Tiwari, A. Gupta, A. Grill, \& P.R. Duncombe "Properties and Applications of Thin Films of Lead Lanthanum Titanate (PLT) and Barium Strontium Titanate (BST) APS mtg 3/18-22/96
- P.R. Duncombe. S.L. Shinde, \& T. Takamori "Aluminum Nitride Body Utilizing A Vitreous Sintering Additive" US05482903 1/9/96 (EF Plaque)
- P.R. Duncombe, S.L. Shinde, \& T. Takamori "Aluminum Nitride Body \& Method for Forming Said Body Utilizing a Vitreous Sintering Additive" US05520878 issued 5/28/96; I.A. Patent issue Award: 8/96
- Ali Afzali-Ardakani, Mike Brady, Dah-Weih Duan, Peter Duncombe, Chris Feild, and Paul Moskowitz "RF Transponder for Metallic Surfaces" Docket\#:YO895-0329 submitted: 8/2/95
- D.E. Kotecki, R.B. Laibowitz, W. Natzle, C. Yu, H. Wildman, P.R. Duncombe "Method for Cleaning the Surface of BST Prior to Electrode Deposition" Application \#:FI996047 draft \#l under review
- E.I. Cooper, P.R. Duncombe, R.B. Laibowitz, "Peroxide Etchant Process for Titanate Dielectrics" Docket: YO895-0434 rated file; in prep.
- D.A. Neumayer, P.R. Duncombe, R.B. Laibowitz, \& A. Grill "Sol-Gel Processing of BaSrTiO3 Films" submitted to International Symposium on Integrated Ferroelectrics (ISIF: 3/2-5/97) Santa Fe, N.M.
- A. Grill, R. Laibowitz, D. Beach, D. Neumayer \& P.R. Duncombe "Effect of Base Electrode on the Crystallization \& Electrical Properties of PLT" IBM RC 20402 (90185) 3/5/96
- D.A. Neumayer, P.R. Duncombe, R.B. Laibowitz \& A. Grill "Effect of TiOx Nucleation Layer on Crystallization of Sol-Gel Derived Bi4Ti3O12 Films" ISIF submission 3/97
- C.D. Dimitrakopoulos, P.R. Duncombe, B.K. Furman, R.B. Laibowitz, D. Neumayer, S. Purushothaman, J. Shaw "Field Effect Transistor for Low Voltage Operation" Disclosure YO896-0358 rated file: 9/11/96
- R.B. Laibowitz, P.R. Duncombe, D. Neumayer,K.L. Saenger, A.G. Schrott "Noble Metal Surfaces" YO896-04xx rated "file" 10/96
- T. Shaw, R.B. Laibowitz, P.R. Duncombe \& A. Gupta "High Dielectric Constant Barium Lanthanum Titanate-Based DRAM Structures" Disclosure \#: YO898-0681 rated File 5/96 in preparation
- D. Neumayer, P.R. Duncombe "Fabrication of Barium Strontium Titanate Films" YO896-04xx rated File 10/96 in preparation

401001
Technical Notebook

IBM Technical Notebook

88.7 better

$$
p_{1} \rightarrow 83.4
$$

HI

$$
{ }_{13} \mathrm{SrTO}_{3}-\mathrm{ST} 3 \rightarrow 32 \text { hrs Stapes. } \Rightarrow 48
$$

$\mathrm{N}^{\mathrm{H} / \mathrm{S}_{\mathrm{r}} \mathrm{T}_{1} \mathrm{O}_{3} \Rightarrow \mathrm{ST3} \Rightarrow \text { cooled in mewing see book III, P9 (A7) }}$
$\sim 48 h_{i}$ (+ coding 3 mornings, stepwise) sintering pellet
Cutting recurs
stat 0.425 (0)

$$
\begin{align*}
& .485(100 \quad \rightarrow 0.042(1.08 \text { ma }) \text { oK } \\
& \frac{0.060}{0.545}(0.045 \Delta \text { Resid.g. actual } \Rightarrow 0.052 \rightarrow 1.32 \mathrm{~mm} \\
& .0465(1.18 \mathrm{~mm} \tag{53}\\
& 0.0523
\end{align*}
$$

bottom ($0.6-0.69$) of flat 1.52 mm 1013

$$
4.178
$$

$$
\begin{array}{ll}
0.584 & 0.287 \\
1.483 & 0.729
\end{array}
$$

$$
1,26
$$

$$
3.316
$$

$$
\frac{68.9}{\text { nave }}
$$

$\begin{array}{ccc}61 & 150-26,000 \cdot 01-3300 \\ 4.01 & 0.578 & 0.248\end{array}$
$\begin{array}{ccccc}4.01 & 0.578 & 0.248 & 0.542 & 3.46 \\ & 1.468 & 0.630 & & \end{array}$
density est. (figure 65\%) $\Rightarrow \frac{1.066}{5.785}$ enact (5.37-6.27)

61 hes

$2: 54435$
"Off" for slow - cool (frost stepped to s40)
 trapan topnospert to support plates atc. $\times \times N$ N

$$
\begin{aligned}
& \frac{2.925}{5.5 \%}=80.18 \\
& 9.29-3.105 \Rightarrow 6.685
\end{aligned}
$$

10/18
G1 - post 4.044 split in 4 prices (seeminour on coo lines)
$\begin{array}{llllll}624.1 & 0.579 & 0.253 & & 3.75 \\ & 1.471 & 0.643 & 1.093 & & \begin{array}{lll}\text { pellet slightly } \\ \text { disfigured, butane }\end{array}\end{array}$
33

$$
4.155
$$

$$
\begin{array}{ll}
0.510 & 0.220 \\
1.295 & 0.559
\end{array}
$$

0.7365 .64 about expected density

DiD 1 Pe

$$
\begin{array}{llllll}
\text { D.D.1 } & 0.5765^{\prime \prime} & 0.191^{1} & & & \\
3.10 & 0.50 & & & & \\
& 0.51 & 88.2 \\
3.1 & 0.53 & 0.165 & & 8.559 & \\
& 1.303 & 0.419 & 0.61 &
\end{array}
$$

4
1124
1

IBM Technical Notebook
Therndyme Tube furnace setup specs
thencuple: $\delta 1 a, ~ \sim 0.255$ length $20^{"}+\ggg$ set $23 "$
Strip complete of plug in jacks, ied. wire, S couples.
1130. Analytical Submission

'New' $28 \mathrm{~g} \mathrm{~g}^{20.25}$ GRINDING 20 IBM Technical Notebook of $S_{8} T_{1} J_{3}$ in mill $(3: 10)$ O_{2}, compressed $A 18, \mathrm{CO}_{2}$ cylinders obtained o/ Regulators $(4: 17)$ A_{r}, al Regulators
$Y_{I E L D} \Rightarrow 20.4 \mathrm{~g} \therefore$ past be some from do batch ore $\mathrm{Z}_{\mathrm{N}} \mathrm{O}_{2}$ COMBINED w/ OLD puDS $\rightarrow 23 \mathrm{~g}$ of milled ponder $12 / 2 \mathrm{C1}$-bath 45.6 grams lett

$\frac{10.5-}{29.5}$ left for pellets
~ 10 fongursing change $T F E / T u l v e r v e$
New BOTIZES ERDERCD, 10 TEFLION AUAMABLE, - approx- 60 hes total
 ST 5, ST6 - start 10A.M er, ri, wmerzous neterouptions due to fuericea ST5 edge chaps inside of thenalfenctions + , out $12: 00$ pr. $12 / 10$ $\begin{array}{lll}* 4.08 & 0.285 & 0584 \\ & & 0.52\end{array}$
$\begin{array}{llllll}(\$ 0.01) & 0.237 & 0.520 & & 4.94 & 1.027 \\ & 0.602 & 1.321 & 0.825 & & \end{array}$
STG lon chip dung iso passing in $3 / 4$ side, mast do
H. $4.128 \quad 0.886 \quad 0.886$
$\begin{array}{llllll}4.15 & 0.513 & 0.249 & & 1.92 & 1.023 \\ *^{\prime} \text { bleating } & 1.303 & 0.632(5) & 0.843 & & \end{array}$

The above understood
ubmit an Invention possibly important new and inventive.
ip
IBM Technical Notebook

pellets not in best shape after so at 26000

$$
\begin{aligned}
& 0.574 \\
& 1.459
\end{aligned}
$$

0.185
+

$$
\begin{gathered}
* \operatorname{DRC}_{3} 3 \\
3,318
\end{gathered}
$$

$$
\begin{array}{ll}
0.579 & 0.181 \\
1.471 & 0.460
\end{array}
$$

0.782
4.24
66.6%
s coble stael

 HAD BAKK Pressure
$12-8$
100% E/G mix \rightarrow New whit call.
($4.0 \mathrm{~g}, E$ basis (tronsteved to jan Son physical mixer) $92.0913 \mathrm{~g} / \mathrm{mM}$ cation $\therefore 4.0 / 92.0913=0.0434 \mathrm{mM}$
0.0434 mM is basis fore mus of 0.7 mME Eutectic
$0.0434 \%=0.220 \mathrm{mM}$ total $\therefore 0.3 \mathrm{mM} 2.41 .7$
$0.3(0.0620)=0.0186 \mathrm{mM}(94.6725 \mathrm{~g} / \mathrm{mML} 211)=1.761 \mathrm{~g} 211$

1.761 g 211
$4.0 \mathrm{~g} E$
5.761 g

$5.76(1) \mathrm{g}$ mix

1 pellet parsed $\Rightarrow E G 1 \Rightarrow$ to temp 12/10 © 3:40-45 PRo 0 out $5: 45$
$\begin{array}{llllll}2.57 & 0.660 & 0.153 & & 3.478 & 0.38 .9^{\prime 4} 774 \%\end{array}$
$R Q$. dussity calk $0.3(6.00)+0.7(4.9) \Rightarrow 5.23$ approx themencitace

Restated Son our nite run.

Date and sign every entry. Have eve entry witnessed. Submit an Invention anything possibly new and inventive.

This Page is:
isibly important .osure of
\square Unclassified
ernal Use C

IBM Confidential-RestrictedRegistered IBM Confidential* *Register with tocal Recorder

IBM Technical Notebook

16

1II. DENSITY MORSSHEET
oplantional equation $v_{p}=v_{e} \cdot\left[\begin{array}{l}v_{A} \\ 1\end{array}\right]$
$Y_{p}=$ Volume of powder (ce)
$V_{c}=$ Voluee ac semple Cell Holder (cc)

P_{1} - Fremura meading after Added V_{h}

$k \rightarrow \operatorname{S.CNL}_{\operatorname{RONS} 1}$	RON 2	Run 1
F 1 18. 508		
$P_{3} 5.014$		
$\mathrm{v}_{\mathrm{p}} \quad$ 3.082 ce	__cs	cc
ocusity _6.13 n/ee	___ of/ce	H\%ce

STHBEQpycmonetis run 2 true poroer density

operational dquation $v_{p}=v_{c} \cdot\left[\begin{array}{c}v_{A} \\ 1-p_{2} / p_{3}\end{array}\right]$
$v_{\rho}=$ Voluse of Powder ict
v_{c} - volude of Sample cell Holder (ec)
$V_{A}=$ Added Volume
$P_{2}=$ Pressure Reading after Pressurizíng Cell
3. Pressure Reading after aúded $\mathbf{V}_{\boldsymbol{A}}$

16

SIERTOPYCHOMETES TRUE POWOER OENSITY

v_{p} - valume of Powder (es)
$c^{-}=$volume of sample cell holder (cc)
P_{2} = Pressuce Reading after pressurizing Cell
P_{1} - Pressure Reading aftec Added V_{A}

\square \square Undassitied IBM Confidential-Restricted \square IBM Internal Use Only [IBM Confidential

Registered IBM Confidential* -Register with local Recorder

Date and" . . every entry. Have every possibly important
entry wit. d. Submit an Invention Disclosure of anything

$$
\text { ET } \quad y_{0,02} B_{000,38} C_{0,6}
$$

off comp
${ }^{1}$ Based on 7 determinations
${ }^{2}$ Calculated atomic ratios

$$
\begin{aligned}
& \text { So․ } 123
\end{aligned}
$$

$$
\begin{aligned}
& B=(0.66 i) \Rightarrow \quad-0.023 \quad 0.344-3.30 \\
& \because \pm 0.036 \quad 0.96^{3},-1.036 ?
\end{aligned}
$$

$$
\begin{aligned}
& T_{1} \mathrm{O}_{2} \rightarrow 47.90 / 1978988 \rightarrow 59.95 \quad \begin{array}{l}
\text { Anal } 1 \\
57.3
\end{array} \text { eRRor repartod. } \\
& \mathrm{SrCl}_{3} \rightarrow 87.62 / 147.62935 \rightarrow 59.35 \quad \text { at Anaclezed } \\
& \mathrm{BaCO}_{3} \Rightarrow 137.34 / 197.34435 \rightarrow 69.59(2) \\
& \mathrm{BaO}_{\mathrm{aO}}^{\Rightarrow} \quad 89.566 \quad 88.9 \quad 99.26 \text { ! } \\
& \mathrm{Si}_{\mathrm{H}} \mathrm{O}_{3} \Rightarrow \mathrm{Sr}_{T_{L}} \Rightarrow 47.74(5) \text { mew. } 183.5182
\end{aligned}
$$

${ }^{12}$ 12/4 Lith well hopes pellets
IBM Technical Notebook

C1P11-15026

| 3.673 | 0.574 | 0.215 | | 4.03 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | 1.458 | 0.546 | 0.9116 | |

63.3.
ci fp(\#)? 15026
$\begin{array}{lllll}3.058 & 0.568 & 0.206 & & 3.606\end{array}$
56.6 as usual

- no final density recorded

To temp (100C/mir Ramp trim RT) (Oat $10: 50$ A, M
how (looting) side vidushot 974 high (doukisid) overstion 978. Stable volution $974-976$
shat amp down $\frac{1: 00}{12: 599 p . M . ~(t o ~} 600 \mathrm{C}$ where soak Son 48 Hover)

${ }^{14} \mathrm{C} 2 \mathrm{Batch} \rightarrow \mathrm{Y}_{1} \mathrm{Ba}_{2} \mathrm{Cl}_{3} \mathrm{O}_{7}^{18 \mathrm{Mm} \text { Tochntal }} 2$

Bu cO conserssau): $93.1868 \frac{192.35}{153.34}=119.932(3) \div 0.99 \Rightarrow(221.14(4)$
COO $\Rightarrow 36.25(31 \Rightarrow 36.2893(1) \Rightarrow \times 2 \Rightarrow 72.57(9)$
O.K. everything is Ban peel by analysis, so aby not not convect $\rightarrow 119.93$ apply le BaCO_{3}
tare: $+\frac{1799.67}{400.54} \operatorname{coser}^{\prime}$ read, bot wall fare
Reads: $120.57(1-6) \operatorname{asc} 4 / 5$
tain: 0.847 CuO

$y_{2} l_{3}$ trassual quart

$\left.\begin{array}{c}\text { Expected } \\ \text { dorkerght }\end{array}\right\} \overline{227.46} \mathrm{~g}$ dry
$\mathrm{Ba}_{4} \mathrm{O}$-5.2 ogle $\mathrm{BaOO}_{3}-4.43 \quad \mathrm{y}_{2} \partial_{3}$ - $5.01 \quad \mathrm{CeO} 0.6 .3-6.49$
\therefore flumping oceans woof seletwe lois, b_{B} cl s should preferentially be
The above understood
and witreacorl hov
Date

Except Son 1 bump（ 0.06 g veavered $) \Rightarrow$ very smooth，ovevertful preparation．Placedin hying oven for weekend drying lover cleared le f fore use also）
12／21 After beeping up coke ord re－bakung under vac＠ 70 C for $3^{\text {thess }}$
［朝这 \＃1 transferal mealy wort 75 per cure

$$
\begin{aligned}
& 166.67^{90.07} \\
& \text { tare } \frac{86.21}{80.016} \\
& -.01
\end{aligned}
$$

$C R O 2 \quad 172.72$ 0.3 g recovered on bushing lake． $\frac{94.98}{77.74}+$ $\frac{226.29}{227646}$ total 99.7%

68.29

2i100-1700 psi Ar usage 16 the sax @ 1800 wo/ te bl up /400 dow iv atop Running Si-Christy pun Provo 05
\therefore fore $12 / 21 \rightarrow \otimes \operatorname{Sr}_{1} \mathrm{O}_{5}$ rue $\quad 24$ hes $\Rightarrow 1000$ psi

$$
\frac{16}{40 \text { hes }} \Rightarrow 1500 \mathrm{psi} \Longrightarrow \text { max permissible }
$$

Set for $36 \Rightarrow \operatorname{RAup} \operatorname{simects}$ (a) $1: 25 \mathrm{~m}, \mathrm{~m} \cdot 12 / 21$

$$
\begin{aligned}
& \text { (a)N:25 prim. } 12 / 21 \\
& \frac{3}{40} \text { firs to temp } \\
& 36 \text { hours soak } \\
& \hline 10: 25
\end{aligned}
$$

1600 psi@ 300 C rampup $\frac{4.25}{44.5}$ hours total should be O.K
(3 Hins 31000) $)=15,000$ pectedod us, Age.
122229200 Aa
18.3 pork heres Let $\therefore \Delta t \rightarrow 16.7+3 \rightarrow 19.7\{(16-11250)$ psi $\Rightarrow 4,750$
$\therefore 241.1 \mathrm{psc} / \mathrm{hr} . \quad 19.3+4.25=23.55(241.1 \mathrm{psi} / \mathrm{m})=5,680$

Gide pm

$$
\begin{array}{ll}
c o p m \\
11,250-9500 \Rightarrow 2,250 /(16.7-10.2) & =2250 / 6.5=346.2!
\end{array}
$$

$346.2(00.2+4.25)=05,000$ psi $+(9000)=4,000$ to spare

12-22
IBM Technical Notebook
C2 RAN SUMS GEOD, NO APPARENT LIQUD, LARGE SHRNKAGE NO VISIBLE GREEN, GOOD BLACK COLOR, BE PORE UNLOADING

$$
\Delta=0.52994-0.41176=0.1182 \% \text { total }
$$ WRONG?

Actud Yields - 14 HR BN @ $940 C$

The above understood

$$
\begin{aligned}
& \text { crux \# } 1 \\
& \text { fess icace. }
\end{aligned}
$$

$$
\begin{aligned}
& 80.76+(80.76 \times(-0.1182))=71.214 \quad \frac{120: 54}{227.46}=0.52994 \text { ut } \% \mathrm{BaCO}_{3} \\
& \begin{array}{c}
\text { CRux } \\
\text { coital } \\
\begin{array}{c}
172.72 \\
\text { cu } 98
\end{array}
\end{array} \quad \frac{153.34}{197.35}(0.52994)=0.41176 \\
& \text { as above } \quad 77.74=68.551 \\
& \begin{array}{c}
\text { crus \#3 }
\end{array} \frac{1.73 .16}{} \frac{105.17}{68.29}= \\
& \text { asabore }=\frac{60.218}{199.983} \text { total } / 0.997=200.58 \mathrm{JJ} \mathrm{~K} \text {. }
\end{aligned}
$$

$18>$ is Technical Notebook

$$
\begin{aligned}
& \frac{153.34}{192.35}=0.776995(120.54)=93.6589997 \quad 526.881 \mathrm{~g} \\
& 26.881 \mathrm{~g} / 3 \text { crus }=\sim 8.96 \mathrm{~g} / \text { owaible } \sim \text { connect }
\end{aligned}
$$

Indirdeal nugget inevures during grinding
12/29
aux $3 \quad 66.72$ volooded
105.17 tare
171.82 loaded
$\frac{121.91}{.09}$ peareorsly

$$
\frac{121.91}{609} \text { prowersly }
$$

$$
\begin{aligned}
& 169.38 \\
& 171.82 \\
& \hline-2.44 \\
& +\frac{1.55}{3.99}
\end{aligned}
$$

$$
\begin{aligned}
& 86.20 \text { tare (} 0.19 / 20 \text {) } \\
& 78.75 \text { load (}-0.02778 .73 \\
& \frac{78.69}{06} \text { glow after guiding } \\
& \begin{array}{l}
\frac{164.85}{78.65} \text { gloss } 0.09 \mathrm{~g} \text { loss }=0.07620 \text { lust } \\
\hline 15 \% \text { los }
\end{array}
\end{aligned}
$$

$\cos x(\$ 75.49 / 8$ unloaded

$$
2 \frac{75.16}{\frac{170.14}{75146} \text { load (pecans) }} 0.03 \text { loss }
$$

Samples were wamplately convert top, as walt loss woricated il

$12 / 29$ New los see consistent any aux loading Conversion now up to $70.8 \sim 71 \%$. 6 whtradweigherg loss
ane 2
culvadd
ground
72.02
$\begin{array}{ll}\text { curs } & 86.27 \\ \text { gut } & 75.40\end{array}$
$\operatorname{ciux} 3 \quad 105.19$
gur post 64.15

$\left.\begin{array}{r}199.53 \\ 95.01\end{array}\right\} \quad 195.48 \quad-4.05$
Reground, to 1 curable

$$
\begin{aligned}
& 286.00 \\
& \frac{8.27}{199.73 \text { of } 202.47 \text { tostant }} \text { (butocgi) }
\end{aligned}
$$

$$
\therefore(202.4)-199.73)=2.74 \mathrm{~g} \operatorname{loss}(1.35 \%)
$$

(befogs)

$\omega_{a s} 85 \%$ rared before the un.
total loss so Jan silently less the ow 2432 g (7.46 ($88.5-85 \%$) Expect less thar, but approx. 3.0 g loss for complete $p \times \mathrm{w}$, $0.52994 \% \mathrm{BaCO}_{3}\left\{\left(0.77095 \%\right.\right.$ of $\mathrm{Ba}_{\mathrm{c}}\left(\mathrm{O}_{3}\right.$ is $\left.\mathrm{BaO}_{\mathrm{a}} \mathrm{O}\right)$ Look for 283 g total upon works!
1/5

\square

$$
\begin{aligned}
& \mathrm{T}_{1} \mathrm{O}_{2}-79.8988 \mathrm{~g} / \mathrm{M} \\
& \mathrm{SrCO}_{3}-147.6235 \\
& S_{r} T_{1} O_{3}-183.5182 \\
& S_{r O}-103.6194 \\
& \begin{array}{ccc}
T_{1}-47.90 & \ln S_{r} T_{1} O_{3} & 26.1009
\end{array} \\
& S_{r}-87.62 \quad \forall \mathrm{~N} \quad 42.7446
\end{aligned}
$$

TAke tronsfened Amount to sHAKER JAR $\left(S K C O_{3}\right)$ as basis for $T_{1} O_{2}$ ADJt ions,

$$
\begin{aligned}
& \begin{aligned}
\left.\frac{48,50(}{147.6235} 0.328(54) \mathrm{moles}\right) \times 79.8988 \mathrm{~g} / \mathrm{m}_{1} \mathrm{O}_{2} & =26.2498 \mathrm{~g} \\
& =26.25415
\end{aligned} \\
& \begin{array}{r}
251.01 \\
\hline 207.56 \\
\hline 48.5 \phi
\end{array} \\
& \begin{array}{r}
251.07 \\
\frac{26.25}{277.32} / \text { target } \\
\hline 277.351 .07 \\
26
\end{array} \text { actual } 277.35 / 6
\end{aligned}
$$

This Page is:
\square IBM Confidential
'9M Confidential-Restricted legistered IBM Confidential* -Register with local Raconder

Date and overy entry. Have every possibly important entry with. Submit an Invention bisclosure of A: Au: amything prooroly new and inventive.

COMPS SCRIPT A1 dated $87 / 12 / 02$ 14:32:25 Pago 1

Date: 2 December 1987, 13:24:31 EST From: PLECHAT at YKTVHZ To: PRD

The laboratory results on your samples are:

HHIP
Date: 21 October 1987, 10:45:18 EDT
From: PLECHAT at YKTVMZ
To: PRD
The laboratory results on your samples are:

$$
\begin{array}{lll}
\text { \# Cl } & \mathrm{Y} & \mathrm{Ba} \\
& \mathrm{Ba}_{0.35} \mathrm{Cu}_{0.72} \mathrm{Cu}_{\mathrm{X}} & \mathrm{Cu}=1,
\end{array} \text { ICP }
$$

Ocher results to Lollow from Olson, HMP
Note: I have produced a light green compound from 123 with the formula: $\mathrm{Y}_{12} \mathrm{Ba}_{3} \mathrm{Cu}_{\mathrm{O}} \mathrm{X}$. If interested.get in touch with me. \qquad
\qquad
\qquad

Date and sign every entry. Have e' entry witnessed. Submit an Inventic anything possibly new and inventive.

Possibly important closure of
withal
18M Technical Notebook

Post
196.56
194.16
-2.40

Lost another 2.4 g . Must be totally convected © thispant.
uniaxial -7,000/0.371=18,870 PSi
$\begin{array}{lllll}0.126 & 0.6 H & 2.53 & 4.19 & 6508\end{array}$ no ll final dens. data
$C 2 P 2 \rightarrow W_{0}$ leave notes on publ of er tor busy. Still see loo. on suable however, dishiontening.
\rightarrow I mill $4.2 \mu \mathrm{~m} \overline{\text { BSD }} 10-1 \sim$ flat dist.
green 27 isopuessed.

$$
\begin{array}{llllll}
0.580 & 0.194 & & 4.274 & 67.1 \% & (\text { high irs } \\
1.473 & 0.493 & 0.84 & &
\end{array}
$$

C2P3- mill 22.53 un ave, much better bibowzd pellet

$$
\begin{array}{llllll}
3.55 & 0.576 & 0.210 \\
1.163 & 0.533 & 0.896 & 3.96 & 62.2 \% &
\end{array}\left(\begin{array}{l}
\text { good } \\
\text { agoermat } \\
\text { w) C. }
\end{array}\right)
$$

C2P2- removed © $600^{\circ} \mathrm{C} \Rightarrow 20 \%$ p to $800,10 \% / 40975,20^{\circ}$ dow r
$1 / 13$

$$
\begin{array}{lllll}
3.59 & 0.554 & 0.186 & & 4.89 \\
& 1.407 & 0.472 & 0.734 & \\
3.57 & 0.514 & 0.185 & & 5.57 \\
& 1.313 & 0.47 & 0.636 &
\end{array}
$$

76.8% I terrible shelly oi her Due. to pella atPation 87.4%
~ 88

pellet hos steess crockeing And whomo mirrastructuy with.
large grain intenor ond pexpheral egohshal of small glarns large grair intervor ond pespheral eggsh $2 Q$ of small glawn.

Date and sign every entry. Have es entry witnessed. Submit an Invention: anything possibly new and inventive.

This Page is:
'ossibly important closure of
\square
\square IBM internal Use C.IBM Confidential-FestrictedRegistered IBM Confideritial*: "Register with local RecorderIBM Confidential

see pg 27 Son REST

 CIPR

Gaj 3.00

0.574	0.775		
1.478	$0.444(5)$	0.7626	$3.93(4)$
0.506	0.150	61.8%	
1.285	0.381	0.494	6.01

$$
\begin{array}{cccc}
\text { Grod } 289: 0.574 & 0.169 & 0.736, & 3.92(78): 61.6 \%
\end{array}
$$

C1P15 ${ }^{*}$

$$
\left[\begin{array}{llll}
3.05 & 0.575 & 0.129 & 0.762 \text { 分 } \\
& 1.4600 & 0.455 & 62.8 \%
\end{array}\right.
$$

(*) No poota on final pellts - Tom tock
\qquad
1/19 Runs w furnace as:- all ramps $18 \mathrm{C} / \mathrm{m} \omega$

\therefore sinter tine

6:18 PM.
pap down to 600 C sank
1/20 1:A9 PM.
CHECK $2: 22$ (270C).

Pellet. Thickness expenment DD mull pride 3775/26,000 DT2.0

Cottrig Pancunatusns for C1P12, 13

$$
\begin{aligned}
& 0.56 \\
& \frac{0.06}{0.646 / 3}=3=0.03 \text { blade thanes }+0.0
\end{aligned}
$$

$C 1 P R \quad(0.025) 5=0.125$
$(0.025) \begin{aligned} & 5 \\ & (1) \\ & 6\end{aligned}=0.125$
a
use 2 cuts \{ no 'parallelurg'

$$
\begin{aligned}
& 0 . \phi 50 \\
& \frac{0.040}{0.11 / 3}=0.037+0.015=0.0517 \\
& 10 \text { from edge }
\end{aligned}
$$

1 cit made, But pelt mas crack.

$$
\begin{aligned}
(0.025) 6= & 0.150 \\
& \frac{0.040}{0.17 / 3}=0.037+0.015=0.052
\end{aligned}
$$

$1 / 21$
DI 1.751 in famma/no gree w data (sc ramp to thy to eliminate sinter-crackincs)
DT175(2)
$\begin{array}{lllllll}1.88 & 0.575 & 0.111 & & 3.98 & 62.5 & \\ & 1.4605 & 0.282 & 0.472 & 2 & \text { Never Run }\end{array}$
\qquad
See sheets
Data Pouts (Multiples)

$$
\begin{array}{lll}
{ }^{83} & D_{1} & D_{1} \\
82.95 & \text { DREg DOP12 } & D_{p} \\
\hline
\end{array}
$$

$$
\text { Nr e made : } 97.3-95.8
$$

$$
889^{\prime} e^{89.3} \text { cifpl, (pAjc1p7 }
$$

" 91 " 91.3 caps, cap, cups 91.9

Single Point trends ${ }^{*}$
$87.5 \quad 87.5 \mathrm{JP1}$
" 77 C2P2
"93" 93 DOP13

83 nor clear, seems to be closed
95.4 Definitely buck open !
886.6 woicates closure

* small volumes yeld bu D values for closed prensity.
$32 \quad 3500 / 26,000$
2/02: Sutermen: Porosity Inquiry C1 1 Ca @ 975 . $\left\{\begin{array}{l}10 \% \text { min. }\rangle_{\text {rap }} \text { from-RT, } 2 \text { hour soAk, } 10 \% \Rightarrow \text { to RT no } \\ \mathrm{O}_{2} \text { equilibration. ' In ORder from left to right in onyx, }\end{array}\right.$ C1P16 3.03

$$
\begin{array}{llll}
0.575 & 0.128 & & 4.00 \\
1.460(5) & 0.452 & 0.757 & 62.8 \\
0.500 & 0.159 & 50 & \text { polished } \\
1.293 & 0.386 & 0.507 & 5.92
\end{array}
$$

CTB17

$$
\begin{array}{llllll}
3.26 & 0.575 & 0.191 & & 4.01 & 62.9(5) \\
& 1.460(5) & 0.485 & 0.812(5) & \\
3.22 & 0.508 & 0.164 & \\
& 1.290 & 0.1166 & 0.544(5)
\end{array}
$$

C2P7 goop $\left\{\begin{array}{l}\text { Sense, bait exterior crecleing due to oxygen penetrations. } \\ \text { Will }\end{array}\right.$ Will guide col by opening furnace. Quench.

$\iint_{1} \int_{1 \pi}^{c 2-8} 0.50$ dry

Goober top slice - no sorsob cuolung 6. mile slice of $3 / 4$ ($\omega /$ chip) $>$ H. bottom slice of $\mathrm{C} 2-5$ above.

- 94.5 mins $/ 60 \mathrm{mw} / \mathrm{HR}=1.525$ ARS OR 1 he 345 mins (1.045 START 1:45-2:15 (1/2 hr sinter) w/ quach.

$$
\left.\begin{array}{cccccc}
C 2-11 & 3.02 & 0.575 & 0.182 & & 3.775 \\
& 1.460(5) & 0.477(5) & 0.80 & & \\
2.98 & 0.505 & 0.39 & 0.3 \% & 0.51 & 89.64
\end{array}\right) \sim 90
$$

Date and sign every entry. Have aw
entry witnessed. Submit an Invention
and
\square IBM Confidential-Restricted
SIBM Confidential
Registered IBM Confidential
Register with local Recorder
$D \leq 4_{\mu \mu} \quad D \leq 6 \mu \mu$
D ω_{6}^{-7}
D 59

$C 2$ PSIS

1) $C 2$ MIL PASS II
2) C2 + PASS III of $1 / 2$ of (1)
(3) C2 mill pass fix of other $1 / 2$ of (1)
(4) fines firm (1), (2), (3IIT)
$\otimes 3^{\text {red min ie weiss weffectue de to clogged bay }}$
\qquad
$36 \mathrm{Sr}_{\mathrm{T}} \mathrm{TiO}_{3} 3 / 4$ Synthesis ${ }^{180}$ Tsechnical Notabook
Prep:

\qquad

Transter

$$
\begin{aligned}
& \text { tore } 89.20 \\
& \frac{166.23}{21.03} \text { simal uggt } \\
& \frac{21.062}{-0.03 \mathrm{gs}} \mathrm{~s} \text { expede) } 0.04 \\
& \frac{185.56}{19.33 \mathrm{~g}} \text { total pul }
\end{aligned}
$$

Pamp@700C/HR to

$$
\begin{aligned}
& A 5 O C \Rightarrow \text { te temp } \sim 3.25 \\
& 0.39 / 150.97 \quad(0.258 \% \text { loss }) \\
& \text { GROOND yold } \Rightarrow 61.39 / 62.16 \Rightarrow 98,8 \% \\
& \sim 1 \% \text { gunding }
\end{aligned}
$$ ~ 1% gunding loss

Clean x-ray. Mol a Hodr. $1 \mathrm{hr}^{t}$ mixing
tan

\qquad
\qquad
\qquad
\qquad

$$
\begin{aligned}
& \text { Top } \begin{array}{l}
\text { Theoretical expeted } 151.36 \text { oyout top } 3 / 50.97 \\
\qquad \frac{19.33}{120.69} \text { wy top }
\end{array}
\end{aligned}
$$

$$
14.87+62.16=77.03 \text { r conat }
$$

$$
0,-1+0
$$

$$
\begin{aligned}
& \text { GROUND } \\
& \text { QHODR } \\
& \text { PROJEC }
\end{aligned}
$$

38 SrTiO $_{3} G B$ DOPing in
$10 \mathrm{~g} \mathrm{STSO}_{3}$ w $2 \mathrm{~L} \% \mathrm{~B}_{12} \mathrm{O}_{3}$ odd ed

$$
\begin{aligned}
& s_{p} g-8.8 m_{1} .820^{\circ} \mathrm{C} \\
& 10 \mathrm{~g}+0.2 \mathrm{~g} \mathrm{~B}_{12} \mathrm{O}_{3} \Rightarrow 10 \mathrm{c}
\end{aligned}
$$

$0.2 \mathrm{~g} \mathrm{AO}_{2} \quad 7.1 \mathrm{~g} / \mathrm{Cc} \mathrm{C}$, Deamporsoabave 300 C
$\mathrm{AgNO}_{3} \gg \mathrm{mp}-212 \mathrm{C}$. bp dump $1628549 \mathrm{~m} \mathrm{\omega}$ $4.38 \mathrm{~g} / \mathrm{cc}$
\qquad

$$
0.2 \mathrm{~g} \mathrm{AgNO}_{3} \times 169.874 \mathrm{~g}
$$

$$
2 \mathrm{AgNO}_{3} \vec{\Delta} \mathrm{Ag}_{2} \mathrm{O}+2 \mathrm{NO}_{2}+0
$$

\qquad

$$
\begin{aligned}
& 0.2 \mathrm{gAg}_{2} \mathrm{O}_{x} \Rightarrow \frac{1231.2394}{169.8249 \mathrm{ghma}_{3}}
\end{aligned}
$$

$$
\begin{aligned}
& \times 2=0.29
\end{aligned}
$$

Conmento greer D's fally consectact, ever w/ proseme varation The above understood
snd witnesead hv

IBM Technical Notebook

[CPE:	Fis)	be\%
16.6:	18.6	it.t
18.8-s.e	3.5	2:.
9,88-8.6e	4. 5	8.1
-8.et-7.fe	4.8	2 t
7.e8-6.68	11.1	34.:
6.te-5.et	1 1. $¢$	96.6
5. 5 ¢ 4 - 4.68	: $3 . \varepsilon$	6.4.:
4.ee-3.8e	6.¢	\%.*
1.etre2.tr	17.t	$8 \cdot$
2.8t-..4t	i..	96.5
1.tet.t.te	3.7	166.6
0 (fic)	5.	

- oisipigulem grafr if: ve...

- Fisiriention male (er vo...

- elstrikyibe geafe cer wil.

42
3/15. DC batch III $\int_{\mathrm{F}}^{\mathrm{T}} \mathrm{T}_{4} \mathrm{O}_{3}$ jus tow $\frac{200.11(206,}{} \frac{256.06(2),}{49.99 \mathrm{~g}}{ }^{\prime}$ loss $0.05(0.1 \%)$ desued 50 g

$$
\begin{aligned}
& \frac{22.06 \cdot 2}{283.122} \operatorname{tafor} \\
& \frac{283.13}{27.07} \\
& \frac{17.02}{} \text { total }+0.008
\end{aligned}
$$

88.34(5s) Pt que tace
17.02 total above
$\frac{1.02}{165,36(7)}$ expected comb, wait
$\frac{165.34}{.03 \mathrm{~g}}$ enure max, $\triangle \checkmark$ OK. (0.04% evan)
~ 184.54 (19.20 tacit $) \checkmark \cup$ expect ~ 1540 out top
150.15 after cubing
$3 / 10 \quad 4120<100$ pest 59.85 g

7070 glass count $1^{1 / 2 .}$

$1.5 x^{2}(0084)$

$$
\begin{aligned}
& 1.5\left(00816.1 s^{3}\right) x^{2}=21 \mathrm{lbs} \\
& 0.200 x^{2}=2 \mathrm{lbs} \\
& x^{2} \cong 18.66 \\
& x=3.774 .08
\end{aligned}
$$

check derosedy conversion:

$$
\begin{aligned}
& 1 b=0.435 \mathrm{kgg} \\
& 0.0048965 \frac{\mathrm{~d}}{\mathrm{cc}} \times \frac{16,381 \mathrm{cc}}{1 \mathrm{~m}^{3}}=0.0826 \\
& 4 \times 4 \times 1.5 \text { Or } 5 \times 5 \times 1
\end{aligned}
$$

(a) $1^{\prime \prime}$ thick

$$
\begin{aligned}
0.08 x^{2} & =2 \\
x^{2} & =25 \\
x & =5
\end{aligned}
$$

IBM Technical Notebook
3/21 $1^{s T}$ pellet 700 C for: 12 re $\Rightarrow 16-17$ hrs. 3 to risimp: @

$$
10 / \mathrm{min}): \circ \operatorname{sen}^{\circ} \mathrm{ck} 16-17 \text { hrs. }
$$

CRP12 for greer dicta on all pellet. ...e pg 37
C2P13 $2^{\text {nd }}$ poet 750 C : to ancexicumently
Peter,
Since we didn't get to discard this eysidnent in move de tail, here is what need to happen. 5 pellets -C 2

$$
\begin{aligned}
& \begin{array}{ccccc}
\left.1^{s+t}\right) & -700^{\circ} \mathrm{C} & \sim 12 \mathrm{hr} & \mathrm{O}_{2} & 3.08 \mathrm{~J} \\
\left.2^{n d}\right) & 750^{\circ} \mathrm{C} & \sim 12 \mathrm{Lr} & \mathrm{O}_{2} & 3.02 \mathrm{~V}
\end{array}
\end{aligned}
$$

After the intermeliate temperature anneal, weigh al mearve each pellet. If no sintering; or at least a negligible a mont, hor occurred, gl PR en refire each sample to 12 his again it the some. intermediate tampeptive el then sinter each pellet for 2 hs of $900^{\circ} \mathrm{C}$ Romp form the nitemeliste T to 9000° fast $\left(\sim 20^{\circ} \mathrm{c} / \mathrm{min}\right)$.

Also sinter e the 5 ye pellet of $90^{\circ}{ }^{\circ} \mathrm{C}$

Duane
$\sim 4^{n}-9: 00 \mathrm{~min}+7+1+3$
$\begin{array}{ll}8 \text { c2p12 } \\ 3.06(1-0.02) \\ \text { © } & 3.01\end{array}$
0.572
0.50
1.27
0.191
0.162
0.44

0.572
0.504
1.280
0.187
0.163
wo subentry, bat 5.5750% aughts loss
0.414
0.533 87.4

In furnoce $\sim 3: 00$ pm., taipped offor $9752 x$, colled to 14000 , then to 1600 C . Temp recquepo/resct to 1650 (a) M 1:30 P.M.

\qquad
 used fats, fire $21 / 22 / 2$

stad/sminsh $21 / 22$

- Dy sha coxty a yull y Elts.
\therefore Mbe ato bata g sie,?

46,22
IBM Technical Notebook
C3-Sythesis
(hiencuance)
Synthesis
BaCO_{3}

$\omega 0 \Rightarrow 36.25(31 \Rightarrow 36.2895(0) \rightarrow \times 2 \Rightarrow 2.57(9)$

Reads: $120.57(4-6) \cos$ It
Co

 3, $44 / 5$ temensual quart
40_{3}

$\begin{aligned} & \text { take } 0,85 \Rightarrow z^{\prime} \delta \\ & \text { weight } 34.35\end{aligned} 3 / 22$,
total

$$
\begin{aligned}
& \text { eight } \frac{34.35}{\text { trowsfunc }} \text { to nt, tool expected } \Rightarrow 0.03 \%
\end{aligned}
$$

$$
\frac{230.56}{\frac{116.57}{113.99}+2 \frac{230.41}{117.17}} \Rightarrow 227.23 \cdot 0.1 \% \text { loss ar }
$$

 "puodryge', theol let cool vide vacuum to umare any sate reside.

325

$$
\frac{219.22}{102.65} \frac{\frac{218.34}{10.17}}{101.79} \underset{100.34}{18.36} \Rightarrow \frac{203.82}{202.13} \quad 0.83 \% \text { (Is) }
$$

C2p14 \&c epis \Rightarrow original gresin δ info on pg 37 ; both 3.11 then f now C2p14: ($800^{\circ} \mathrm{C}$ pretreat). pug e-212c pM. $59.9 \mathrm{n} .0: 18$ HRS
$\begin{array}{lllllll}3.09 & 0.573 & 8.191 \\ 1.455 & 0.485 & 0.806 & 3.83 & 60.1 & \text { No oppucalalle sateeing }\end{array}$
 \because

3.09	0.565	0.187		
3.08	1.45	0.535	0.168	4.02
0.6301				

$$
\begin{aligned}
& \text { C2p18 (control) 37/27500 } \\
& \begin{array}{lllllll}
2.92 & 0.574 & 0.180 & & 3.453 & 60.1 \% & 0 . K
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 19923 \text { inti gro yield }
\end{aligned}
$$

STD-1f graw size sligtlly langen- Neterioi dauly uni Sorm ~ 25 um are wy accos iovid
Re-sinterd overnite to chole for gojum graur grouth.

slice back up to 1650@5:008 (tht Rearlied cua to contul couple farlure) 63 HRS SHUT OH $3 / 24$ ($22 / h_{r}$).

$3 / 24$ from pg 45 .
IBM Technical Notebook
after additional 12 hi min time $\frac{150.02}{\frac{149.81}{0.21 \mathrm{~g}}}$: Assume constant wow total loss:

$$
\begin{aligned}
& \begin{array}{lll}
165.22 \\
150.02 \\
\text {. Wential } & \Delta \\
16 \mathrm{HR} & -15.20 & 98.6 \% \\
\text { RateS }
\end{array} \\
& 149.81 \quad 28 \mathrm{HR}=\frac{.21}{15.41} \\
& 1.4 \%
\end{aligned}
$$

$>61 \mathrm{gs}$ recovers after mortar gurueing.
PD
>2 HRS on shaker mill a/ 5 mm bills. 2.81 mu awe. flatten Tetter \$ossiee,
$>60.4 \mathrm{~g}$ hater yid d
$>48.8 \mathrm{~g}$ MI JET YIELD
0.762 cm

Slip-cost calculations: de $0.9^{\prime \prime} \delta . \delta^{\prime} \Rightarrow 2.286 \mathrm{dim} \quad 0.3^{\prime \prime} \mathrm{Jessined}$ greer the hebe

$$
\left.\frac{\pi-(2.286)^{2}}{4}(0.762)=3.1275 \mathrm{cc}(4.81 \mathrm{~g} / \mathrm{cc})=15 \mathrm{~g} \int_{1} T_{1}\right)_{3}(0.6)=\frac{9.0 \mathrm{~g}}{\text { approx dusty }}
$$

This Page is: \square Unclassified
\square IBM Internal Use OnlyIBM Confidential

3M Confidential-Restricted
Registered IBM Confidential* -Register with local Recorder

Date and: refry entry. Have every possiblyamporest entry withe. Submit an Invention Disclosure of onitaint wit anything possibly new and Inventive.

- ostribusjon table ky Ho.

CISIECION EFRFH (RY VOL.

- LIKE OH $6 \mathrm{HH} \circ \mathrm{SEi}$
- DATE

- olstriculoh thole (ry vol.:

320
4 moles

$$
5.412 \mathrm{~g} \mathrm{TO}_{2}
$$

15.4112 g total
15. $\frac{\$ 8}{2.25}$ aster mixing bRewery

Pasc隹 Nate

 enow. It is 5.116 net 4.52

B. $975 \quad 0.584 \quad 0.242$
$2.420 \begin{array}{lllll}0.458 & 0.190 \\ 1.16 & 0.483 & 0.510 & \text { (4.745 ! } & \text { a8.6) wet rocgoos }\end{array}$
 anything possibly new and inventive.
Mu. N. N.

$$
3.357
$$

$$
\mathrm{STH}_{3} \mathrm{O}_{3}
$$

$$
\begin{array}{cccc}
13.531 & \mathrm{TO}_{2} \quad 0.16935 & 0.00084675=1 / 2 \text { mole } \%
\end{array}
$$

$$
\frac{25.00}{38.531} \mathrm{SrO}_{3}
$$

$$
\begin{aligned}
& 0.00484625 \text { miles }(29.90)-0.06766+13.531=13.46 \\
& 0.00984 .25(1427.63) \rightarrow-0.125+25 .=24.875
\end{aligned}
$$

$$
0.00084675(447.63) \rightarrow-0.12 .5+25 .=24.875
$$

Summary of conditions, quantities's

* these quarts are $\times 2$ since there are 2 moles of $\mathrm{Al} \leqslant \sqrt{ }$ in $\left.\mathrm{Al}_{2} \mathrm{O}_{3}\right\} \sqrt{ } \mathrm{O}_{\xi}$ Correction: $\frac{116}{147.63}=0.00108$ miles SrCO_{3}

$$
\begin{aligned}
& \text { IBM Technical Notebook }
\end{aligned}
$$

$$
\begin{aligned}
& 147,63
\end{aligned}
$$

$$
\begin{aligned}
& 0.1 \pm 54 \quad 0.308 \\
& 183.5182
\end{aligned}
$$

 AISTAEE, Now uncorrectable. Would) here been : $0.00084675(2)=0.0016935 \mathrm{~g} 3001,10 \mathrm{mocec}) \therefore$ $0.0016935(147.63)=0.25 \mathrm{y}$ however, decontway over Residual pare educed actual $J_{2} \partial_{S}$ addition, AND Though vionsprctuométrec (stuffily) ail use to see what happens,
38.02 ged fatter overate race © ~ 901
38.53 vital
0.51 loss in mixing 1.3%
88.88 tare (zeno)

'Serene sintering, dark black appearance of pare body.

$$
\begin{aligned}
& 126.96 \\
& 11768
\end{aligned}
$$

$$
\begin{aligned}
& 126.66 \\
& 117.68
\end{aligned}
$$

$$
25 y \operatorname{sicd}_{3} \times \frac{N 103.62}{142.63} \simeq 17.55
$$

$$
\frac{\bumpeq .05}{117.73} \text { spllege }
$$

18.81
-16.96
~ 7.40 gexpeced loss $\left.\frac{-117.08}{9.288}\right|_{0}$ some bound water? 26.18 g ground yules

$0.06084\left(95(2)=6.0016935 \mathrm{mels} / / \mathrm{A}\left(\mathrm{NNO}_{3}\right)_{3} \% \mathrm{H}_{2} \mathrm{O} \quad 375,19\right.$ $1 / 2 \mathrm{mb} \% \quad 1 \mathrm{mle} \%$ Al $1: 1$ so se 0.0016735 mes

(303192)

13.531
$=\frac{0.58}{13.396}-\pi_{2}, 0.6353 \mathrm{~g}$ Al nitrate in sold

38.29 mix yeld
39.03 themed

$\frac{39.03}{0.24}$ mix loss
1.9%

I_{N}^{\prime} Surface to temp by $12: 00 \mathrm{pm}, 4 / 6 / 88 \Rightarrow 16 \mathrm{lms}$ Som $4 / 7$
Little s sintering of para., light $\mathrm{Sr}_{1} T_{3} \mathrm{O}_{3}$ cor, mottled.
118.54
$\frac{127.82}{-9.28 \mathrm{~g}}$! stowe as SOB2! belquing the same, even thergh

and

Date and sig \quad en entry. Have every possibly important a
entry witness,
, ubmit an Invention anyithing possibly new and inventive.

56
Confidential-Restricted D. . sistered IBM Confidential

IBM Technical Notebook

119

$\mathrm{ZnO}_{2} \mathrm{~B}_{2} \mathrm{O}_{1}$

Fic. 100 --System $\mathrm{ZnO}^{1}-\mathrm{Br}_{3} \mathrm{O}_{2}$
D. E. Harrison and F. A. Hummel. J Electrockem. Sox.
 anales Real Sor. Espan. Fis. Quim. (Madrid) Ser. A (Nov.
Dec.) 263-20s (196i). Dec.), 263-20s (1961).

Fic. $\mathbf{3 0 1}$--System $\mathrm{ZnO}_{-1} \mathrm{Br}_{\mathrm{r}} \mathrm{O}$.

$$
\text { Yu. S. Leonov. Zhur. Ncorr. Kkim. 3, } 1248 \text { (1958). }
$$

93.

Figs. 2334-2336
wo Oxide

$\mathrm{SrO}-\mathrm{ZrO}_{3}$

Pwo 2335.-Sysem Sro-Srzoro.

zero of after addition
probably static
In drying ovens 100 C under douse vacuum (e) $1: 30$ p.m. $4 / 6 / 80$

This Page is:
\square Unclassified
IIBM Confidential

IBM Confidential-Restricted \triangle Registered IBM Confidential* -Register with local Recorder

Date ar i every entry. Have every possibly important entry wi. ied. Submit an Invention Disclosure of anything possibly new and inventive.

58
IBM Technical Notebook

\qquad 2: $\quad 89.6$ \qquad 97.5
\qquad
\qquad
$\begin{array}{ccc}\text { ExCESS DOPIN6 } & 1: 1 / 2 \text { mol } \% & T_{1} O_{2} \\ u & 1 & 2: \\ & S_{r} C_{3}\end{array}$ \qquad
\qquad

\qquad Z: 102 \qquad 104 \qquad
\qquad
MECHANICAL MANIPuATON" \qquad
fives: 103.4
fives $1 / 3$, med $2 / 3$ max: 102.3
MED: 100.4

Date and sign every entry. Have every entry witnessed. Submit an Invention (
ably important
This Page is: anything possibly new and inventive. sure ofIBM Confidential

$1 \times 2 \mathrm{~A}_{4}$

ExTERIOR
~HEMOENEOS
\qquad

IBM Technical Notebook
$1,3,10 \% B_{i}$ in copper.
5 g total per batch

Reloaded 1% \& well continue w/ 3\%. Will make a new 10% And) a 50% and fire @ 750 C . Grable shortage \Rightarrow will Kkely modify Above.

 did not producE expuete) densification/solidification of pucks.)

DD ; 35% B/ $/ C$ melts $\sum_{1} 1$ Bi curule fling: 25%

34

$$
\begin{aligned}
& 1.75 \mathrm{Bi}^{\prime} 3.25 \mathrm{C} \\
& 6.25(6) \text { looted } \\
& \frac{6.30(1)}{4.95} \text { statating total }
\end{aligned}
$$

$$
\Delta=-0.02
$$

Possible most 6.30 density. $\boldsymbol{x}=0.03$

post $12.81 \quad$ Argon $/ H_{2} 25 \%$ Bi Run \& Pellet Run - -
pellet: $\begin{array}{lllllll}4.87 & 0.485 & 0.222 & & 1.232 & 0.564 & 0.672\end{array} \quad 7.25 \quad 79 \%$

$$
\begin{aligned}
& 8.96 \times 0.75+0.25(9.8)= \\
& 6.72+2.45=9.17
\end{aligned}
$$

 $B_{12} \mathrm{O}_{3}$: spy. 8.8 map. $820^{\circ} \mathrm{C}$

62
IBM Technical Notebook
SrTiO_{3} GRAin Grout Experiment - MECHANICAL MEASIRES

1) PSD weighting
2) Fines full density $\}$ Sire sintering of polished smitice
3) Reacted to constant weight (list batch) sintering as in ${ }^{2} 2$
finEs $=F$
2.04

$f_{\text {wow }} / \mathrm{med}$ dm $=F M$

2.19	0.577	0.154		3.32	69.0
2.17	1.465	0.391	0.659		
	0.544	0.135	0.92	102.3	
	1.28	0.343	0.441		

REMARKS \rightarrow *some pate adhered

Sintering Regime
Rapid Temp w/ $10 \mathrm{cc} / \mathrm{min} \mathrm{O}_{2}$
1550 C withal set, after reaching temp tore 1 HIe, 1640 C overnice 5:20 p.m. $\sim 1100 \mathrm{C}$, Tconmea blowiv. $\therefore \sim 30-45$ minutes @ 1540 . Restarted (o) $\sim 5: 55$ \& brought directly to 1640 C .

LEAK TESTING: - GET ARR HIGH VAC.
 STARTNG WIfI Rerghing <compat>ᄃ<compat>ᅩ
Well chase pumpdown thieu ge HVAC value alone tomonow.
$A / \lambda \eta \rightarrow$ Vacations
$A \sqrt{2} 8$ Pump down through high voc vitally qusuccess sal, must hive bee stol value, bu af le felewdicon at down to 250 million in 15 minutes. Fill cod true damping.
$1 / 240$
Down to 10 them Rough, $30 \mathrm{w} /$ HVAJ only, Rathe quick leak- -oral when both closed offindcating leaks in system:

1) furnace
2) Elbow connection
3) Pump

5/13 Proved CSS lest Monday cha lu!)

First Milling. Actufeef-teflon liver: (13). 48.17g kNown, but "Sew" divan before total proussedught. checker 49.69 g yield δ

PASS II 5/16
47.ig yield: moet fluffier, looks r like 3 pun purr. IMMEDINTELY RREnMILING
海 66 bor PSD sheets $\sim 2 \mathrm{gloss}$!

$$
\begin{aligned}
& \text { PASS II } 45.8 \\
& 45.8 \\
& \text { PASS IV } \\
& \text { - } 44.5 \\
& \frac{18.0}{26.5} 5 \text { pellets }
\end{aligned}
$$

 however dtlabdion seems simulant $\{$ some
bypassing muss have raceurad. Will work in TuesdAy. \qquad

B1/Cu 25/75 erucible parted, sinter overnice in $\mathrm{Ar}_{\mathrm{H}} / \mathrm{H}_{2}(5)$ © 7500 C .
$H_{1} \rightarrow \ll 0$ mash Eu, spheres ("New")

$$
\pi_{2} \rightarrow \frac{10 \mu m}{}
$$

$\#_{3} \rightarrow$ penetration
(cold)
sphere. Q
\#2: $\quad \begin{gathered}1.25 / 5.01 \\ 624\end{gathered}$
\#1.

$$
\begin{array}{r}
25 / 5.00 \\
6.35 \\
-1.35 \\
\hline 500
\end{array}
$$

POST 6.31

$$
6.32
$$

$8.0-8.5 \mathrm{~mm} l$
6.32
$9.65-9.75 \mathrm{~mm}$ dian
8.37
$9.6 \xi^{8 \prime \prime}-10.0$
After interruptions: $5 / 241$ stat at $\{$ polishing
$6 / 8 / 80$ finis: $6 / 8 / 88$ after
$\left\{\begin{array}{l}\text { Porosity is redhead, and } 3^{\text {Rd }} \varnothing \text { 'oxide' has beer eliminated } \\ \text { in forewing gas. }\end{array}\right\}$
\qquad

0.80
3.33

C3P3: $\begin{array}{lllllll}3.58 & 1.472 & 0.478 & \underset{0}{2} & 4.40 & 69 \%\end{array}$

C3P4 : $3.37 \quad 1.476 \quad 0.440$

C3P6
Course

$$
\begin{array}{llllll}
2.52 & 1.50 & 0.32 & 0.56 & 4.46 & \\
2.50 & 1.482 & 0.316 & 70.1 \% \\
& & 0.55 & 4.55 & & 71 \%
\end{array}
$$

$T_{1} \mathrm{O}_{2}$－Gere 3－9＇s

$$
-\frac{16.3620}{}-\frac{8610}{15.501 \mathrm{~g}} \mathrm{~T}_{1} \mathrm{O}_{2} \text { weighed }
$$

$$
\begin{aligned}
& \text { 5/18 }{ }_{\text {POST }} \\
& 105.0174 \\
& \frac{104.9395}{0.0797} \frac{\text { grazing } \Delta T}{15.501}=0.5 \%+
\end{aligned}
$$

89． 4610 aux
$105.01741 \mathrm{cuvx}+T_{1} \mathrm{O}_{2}$

$$
\begin{aligned}
& E Q \gg 105.0084 \\
& \frac{10.0174}{0.00010 .0799}=88.5 \% \mathrm{bak}
\end{aligned}
$$

$$
99.64 \% \rightarrow 0.3 \% \quad \Delta+0.0554
$$

SrCO_{3}

$$
18: 4193
$$

$$
\frac{0.8780}{17.5473} \rightarrow \frac{0.8752}{17.5441}
$$

$$
\Delta 0.0032 \approx \Delta \Delta D . f \int_{0}^{1}
$$

109.9615
$\frac{92.3660}{17.5955} \Delta+0.0514 \quad \Delta \Delta D, f \Rightarrow 0.004 \mathrm{~g} \sim 4 \mathrm{mg}$ chlubation

5／19 $\mathrm{T}_{1} \mathrm{O}_{2}\left\{\mathrm{SPPCO}_{3} 2^{\text {nd } \mathrm{CaQ} \text { POST } \mathrm{SnCO}_{3}}\right.$

$$
\begin{aligned}
& 105.0174 \\
& \frac{104.8670}{.15}(-0.0003 \mathrm{cal}) \\
& \sim 1 . \%
\end{aligned}
$$

$$
\begin{gathered}
\begin{array}{l}
109.9615 \\
109.858 \\
\hline 0.1035
\end{array}(-0.0063 \mathrm{cal}) \\
\sim 0.6 \%
\end{gathered}
$$

\qquad

This Page is: \square Unclassified
r \square IBM Intemal Use Only
\square IBM Confidential
[1 Confidential-Restricted [. .egistered IBM Confidential -Register with local Recorder
. every entry. Have every possibly important entry witntsised. Submit an Invention Disclosure of anything possibly new and inventive.

Date and sign every entry. Have every "os -" '" important
This Page is: entry witnessed. Submit an Invention Discl-anything possibly new and inventive. ofIBM Internal Use OnlyRegistered IBM Confidential*IBM Confidential

HF Silvan Etch/Wesh/Buffen Solus.
 QuEncH \rightarrow 10:1 DIE: NHyOH Regent $50 \mathrm{ml}: 500 \mathrm{ml}$

BHF deon $\rightarrow 10: 1: 2: 2\left(\begin{array}{c}\text { NHHYF } \\ \text { Reagan } \\ \text { NHF: Glyarn) }\end{array}\right)$

MSG:FROM: SARDESAI--FSHVMCC TO: MDT --YKTVHT

05/18/88 12:39:40
TO: MDT • --YKTVMT
From: Viraj Sardesai
8-533-8545, SCL Pers Metals, GTD E.Fishkill
IBM INTERNAL USE ONLY (Unless otherwise specified)
SUBJEGT: BHF concentrations used in SCL
Michael,
We use 40:1 BHF for prep platinum, emitter screen ox removal and for s metal preclean.
The chemical is commercially available premixed solution and has 40 parts (by
volume) of 40 wt pct NH 4F solution mixed with part of 49 wt pct HF solution.
Both NH 4F and HF are in aqueous solutions. Manufacturer specs the HF concentra-
cion to 0.61 to 0.77 moles per liter and specific gravity of 1.106 .
For S postL/O BHF clean 10:1:2.2 (NH4F:HF:Glycerin) is used prepared similarly and quenched in $10: 1 \mathrm{NH} 4 \mathrm{OH}$ solution (28 Wt pct NH 4 OH solution

cc: szECSY - Fsh ${ }^{c}$
Regards,
VIRAJ
FSHVACC(SARDESAI),D/11G B/322 2/5T1

BHF concentrations used in SCL
\qquad by \qquad

This Page is: \square Unclassified IBM Internal Use Only IEM Confidential

IF Onfidential-Restricted ered IBM Confidential -Register with local Recorder very possibly important anything possibly new and inventive.

NOTES: Pellets w@4:55 with flowing O_{2} (bottled, Sessicated) - Heating started@ $5: 15 @ 20 \% \mathrm{miv}(97 c @ s$ start)
 Sintering © 975 C for 2 Hrs . till $8: 35 \mathrm{pm}$.
Quench ! remove.
no (appreciable) ia. \varnothing !

22.4 total ing yeld

System mecharical pump down <20-30 mastes Torbordeculen \downarrow, diewn \rightarrow to 5×10^{-5} arthen 1 he
 Stant wo $9: 15$ oreignally.
Biock,-of Hlowge, neu Gaitou purge $\{$ pluy fittinos still

Bi/Cu Free-Cuable Sista Vacuum RuN
To glass shop $6 / 7 / 88$. Batch sine to be 4.0 to allow far ease of manipulation ouringy sealing of quartz tube. $4.0(0.25)=1.00 \mathrm{~g} \quad B_{i}$
b $(0.75)=3 . \operatorname{cog}$. C (will use $10 \mu \mathrm{in} C$ pard)

(1) 5 gean Hf new conical cumae
mix 9.03
to ce $\frac{4.03}{5.00}$
PRC

$$
\begin{align*}
& 0.25(5)=1.25 B_{2} / 3.75 \mathrm{C} \tag{I}\\
& 0.20(5)=1.00 D_{i} / 4.00 \mathrm{Cu} \\
& 0.10(5)=.5 B_{i} / 4.5 \mathrm{Cu}
\end{align*}
$$

yous, but some areas sign $O_{k} k$,
less small routs, some goorneqisins verses (II), hourger laugevord's arystiry. Nerd
 microsiopic 0 rom shout maury small "pectests" or voids. Visually ancalou
(Iii) $\begin{aligned} & 6.31 \text { "old" } \begin{array}{l}62 \\ 1.31\end{array} \quad \text { not densify fully }\end{aligned}$
al los, poscoblé

 J1
\qquad

oistribunen takle sey vel. Derry
 16.8
9.8
 $8.88-7.04$
$7.06-6.48$ \qquad
\qquad
\qquad
\qquad
\qquad
\qquad Distribu
ocm:

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\square

$$
\text { DAIE } 5 / 19
$$

$$
\begin{aligned}
& \text { SAPPLE CSELD=-1. } \\
& \text { SOLVEN ... } 150
\end{aligned}
$$

- cembities
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
- distribuigok taele (ey : fa.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
- DISTRI暗明 GRAPY (RY vol.: \qquad
 O(P) FCS

- DISTRIBUTLON GRAPH (EY YOL.?
\qquad

\qquad
olstrievidon thate (e, vol

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad ?
\qquad
\qquad

Administrative Notes
TR PART 2

\qquad
\qquad

\qquad

\qquad
\qquad

 $\begin{array}{ccc}\text { 9.8R-8.06 } & 2.5 & i .2 \\ 8.86-7.86 & 5.5 & 12.7 \\ 7.86-6.86 & 9.8 & 1.7 \\ 6.06-5.86 & 14.2 & 31.5\end{array}$ $\begin{array}{lll}6.06-5.86 & 14.5 & 31.5 \\ 5.06-4.06 & 14.6 & 46.5 \\ 4.86-3.88 & 16.6 & 6 . .:\end{array}$ $\begin{array}{ccc}4.06-3.86 & 16.6 & 6 . . \\ 3.00-2.86 & 17.9 & 81 . i \\ 2.68-1.66 & 15.5 & 94.5 \\ 1.86-6.80 & 4.5 & 184.5\end{array}$
 - onstridion grafy (fy :c.

\qquad
\qquad
\qquad
\qquad
\qquad

E

ATTACHMENT C

普㱏童里
YO 10179
Technical Notebook

$D U N C O M B \in, P$ ．

$6 / 4 / 58$
Next "transition" Heat Treatment (B)

I. $25 \mathrm{c}-975 \rightarrow \Delta 950 \mathrm{c} / 10 \mathrm{C} / \mathrm{min}=1.583 \mathrm{~h}$ ($1 \mathrm{~h} 35 \min$)
II. 975 C for $30 \mathrm{~min}=0.5 \mathrm{~h}$
III. $975 \mathrm{c}-690 \mathrm{C}=285 \mathrm{c} / 10^{\circ} \mathrm{C} / \mathrm{h}=28.5 \mathrm{~h}$
total: $28.5+0.5+1.58=30.58 \mathrm{~h}$
Proposed: prat tlC 10 A.M. Monday

$$
\begin{aligned}
& \begin{array}{l}
10-11: 35 \mathrm{am}, ~ h r a t ~ u p ~(R A m p t) ~
\end{array} \\
& 11: 35-12: 05 \mathrm{pm} \rightarrow \text { dwell }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 4:35 ppm. Tvesduy fir }
\end{aligned}
$$

On (2) 11: <10 A.M. $6 / 13$

Drop to 946 @ $100 / \mathrm{min}$ then slow ramp to Oct $17 \mathrm{C} / \mathrm{min}$
Estimated Quench time 25 h 24min or 3:36.p.n. 6/14/88 $6 / M 188 \Rightarrow$ 2r45 updated QuenctitiME

- Date and sign every entry. Have every form important
entry witnessed. Submit an Invention Dis ire of

RI entry witnessed. Submit an Invention
anything possibly new and inventive. $\{100,10 \% \mathrm{miN}, 1550 \mathrm{C}, 61 \mathrm{~mm}, 10 / \mathrm{mw}, 100 \mathrm{C}\}$ RON

IBM Confidential-Restricted Registered IBM Confidential*
${ }^{6 / 29 / 485}$

$1: 48$	1	1550	29.7	700	5.4	7.47	80	$1.6 / 12$
$2: 18$	1550	1550	29.2	690^{+}	5.25	2.469	0	$1.25 /$
$2: 38$	1415	1407	20.3	625	4.25	2.34	\times	$8 \times 10^{-6} / 2$
$3: 45$	679	678	3.6	300	1.5	6.61	-	$28 E-6 / 2$
$4: 20$	333	325	0	0	0	6.29	x	$27 /$
445		0	0	0				

$$
47 / 5 / 88 \quad \text { TB }-2
$$

The PV Prog MaNor $A \sqrt{ } \quad \rho_{?}^{\text {modern }} \triangle S P$

 5:30-2 2 \& 40100 Prog off

Notes: 300 C (1) $10: 36 \therefore 2 \mathrm{~h} 15 \mathrm{~m}$ to sip. $\Rightarrow 12: 45$ (est) i th $\Rightarrow 2: 45$ R4ypdum ~3.5hes fan curling, 2100 C opening ()) $6: 15$ sopping. (Due to the wal muss lay)
 and multiple phase bound dang.

$\mathrm{Bi} 25 \rightarrow$ some obvious large i pod impiovemieni on at leastade $/ 2$ $\mathrm{BC} 20 \rightarrow$ possible risible eurdonce of compiessconn, wed to sections.
Objectives:

1) isopress as above
2) study welting/denssification rs
3) slice temperature Relationship.
4) anneal remaining sections

Thu e PV Pase M\% A V gunter $\triangle S^{m N P} f_{N}$
$12: 30 \quad 16601687 \quad 40.1 \quad 760 \quad 64 \quad$ — \quad - $5 E-5$
$12.4218931935 \quad 66.290084-\quad 4 E-4$! I gym

$2: 461727169138.97907 .5$ - 2E-6 Good vac for 1800 C RUN
$3: 20100410006.74752 .5$ - 9.8 E-
$3: 45 \quad 522 \quad 520 \quad 1.0 \quad 200 \quad 0$
A.1i0 25 off - STP 300 off $7.5 E-7$ epteligpisinom 7 4.30138 < 1933

$$
4 ; 38
$$

Argon flush after 10 shut of $3,5 E-4$ STR shit dour to mu il beanies moshorical off

This Page is: \square Unclassified \square IBM Intemal Use Only $\square 18 \mathrm{M}$ Confidential gistered IBM Confidential* - Register with local Reconder IBM Technical Notebook

SET-UP for ${ }^{\circ} \mathrm{C}$

$0318000 \quad 5.1 \quad 566.7 \quad 1800 h^{5}$

07 Fer 20 an save 23 toto
 sec 05 ends $45: 30$ p. M. Next day OM.
Thesoures from $2 / 13 / 87$ (Book II pg 49 notes)

Prig of 180 for Borstal Run 97 III Resulted in yield of moly stage Ans)
 moment will apps. hour pressure to 100 pig. And apply Saul y weld with Donees STTils our d sminlan 87III RuN guided only partial cracking of sample.

$$
\begin{aligned}
P_{\text {staple }}=\frac{(4.9)(190)}{(0.221)} & \approx 2,440 \\
& \approx 2,225
\end{aligned}
$$

$10 / 14$ I 88 Bxstal R RUM Techncen Noobsook
final Proc Seq TT 'dunatuor Rent e time Pig $01100^{\circ} \mathrm{C}$ 0.1h bairn 110 $02 \quad 600 \mathrm{~h}$ 2.8h 110
$03.1800 \mathrm{4} 4.5 \mathrm{~h}=4.3510$ 04
sol 21.25 h Nom.
1.4-4.0,E-5 torr NOFE: Thermel cate $69 / 4$ ramp shining Are, howeren temp foll from ~ 1290 to 1730 in sarah aver bette $80 / \mathrm{h}$ rang kubece in. 4E-5-8E-7
OF. 100 C
Run notes: @ ~7:00 pm 7/13 TC feal c notice of during inspretion. beaned as prassble Seems to have taken up p. See note above.
Results: Surely crearepe xstal. Some stick mg, but no, Rx with Mo him on stage, but corboni/Mo peN from top kAn/ shim couple. Pitting / soughing top sentace \&ickely initiating

Thy 10 g batch
2.5 g Bi 7.5 g Cu use

248 tare.
12.49 ate tearstenal

Also took $1 / 220\{25 B, A g / H z(s)$ Rus isostatically pursed forms AND will Aves while sintering tare,
Totemp@3:00 p.m. 7/2s/88. 18h $\rightarrow 9$ A.M.7/26/88 4:20 p.4. 7/25/88-2 new type D $\left\{25 \mathrm{Re} / W_{3} R \mathrm{Re}\right\}$
thermaroupte seems stable as well as 818 preogermma (a) 750 C
$9.99(8) \quad 4.060$
Date and sign i entry. Have every possibly important entry witnessed. . imit an Invention Disclosure of anything possibly new and inventive.
\qquad
\qquad
SAMPLE I. D. \qquad
DATE \qquad
$V_{c}=$ Volume of Sample Cell Holder (cc)
$\mathbf{V}_{\mathbf{A}}=$ Added volume
$\mathbf{P}_{\mathbf{2}}=$ Pressure Reading after Pressurizing Cell
$\mathbf{P}_{\mathbf{3}}=$ pressure Reading after Added V_{A}
$P_{2} \mathbb{R}_{3}-3.5415 \quad \begin{gathered}3.54129 \\ \text { DATA }\end{gathered} \quad 3.5419$

RUN 2
RUN 3
19.656
19.746 \qquad
-5.548
\qquad
1.219 cc
$-1.206 \mathrm{cc}$

$$
\ldots \quad \mathrm{g} / \mathrm{cc}
$$

$8.26 / 9.17=90 \%$

$$
8.13760,1 \mathrm{cc}
$$

$$
8.14 / 9.17=89 \% \quad 8.23 / 9.17=89.45
$$

16
Average: $89+89: 75 \approx 89.5$ Between $80,-90 \%$

Date

Date and sign every entry. possibly important entry witnessed. Submit an Inventi. isclosure of anything possibly new and inventive.

This Page is
\square
\square IBM Confidential
 initial comporitions:
\% Bi (ha) $/ \mathrm{Cu}(\mathrm{slid})$
Conditions: 400 C in N_{2}

$$
\begin{array}{cc}
1 & . \text { Hena } \\
-3 & \\
-10 & \ldots
\end{array}
$$ ovenisite.

Nores: convitrons Aws \% comp. B_{c} fod nat lead to duschenthen (surtering) fy plugs: No aight luss. 5 g stmples in
B. $\% \mathrm{Bi} \% \mathrm{Cu} \quad$ Condituons: 750 C in N_{2} 50
bulawe (3)?
 - films influmeing badraniore. $50 / 50$ mix too invec lia. fur poccoats aphenant 10% too little lia. NO appeatalle ong bss.
E. $\%$ B.

25
balouke.
Covitions: 'puckeo' pudx ameille "fuen"surfer $750 c$ ovanite
in $\mathrm{Ar} / \mathrm{H}_{2}$. Nocompurtion.

… - in fornung do, wetting seamg ouphase compleate. Litle drferoner bation 2100 mesh sphopenl C ano 10 um (3), theye $10 \mu \mathrm{~m}$ sams by give battia overoll Rosults,

F. Vacuum 25Bi RuN

 gocam tube.
C. $\%$ B. -25
$\%$ gu 35
 Fon $25 \%{ }^{\circ}$ Suly dewre body
... Dfwidy beasotwg desived proco oe Caze.
 smallur: sample dowerty is of kats same or hy tien. stol ewhine of ,umple welliwg. Minas thund B eundent of possibe ocide)?
D. Coupressad poot rwi
$\%$ B
25
 corenite
wores: ~calc. dews ty $25 B_{i}$ parsed (Ti\%) ploweleasis.
 stuj prewois howidy howsity du fo piblet

C. \%Bi \% \%
 -25.
Resits: Goov aras and cacttury whot $20\{25 \%$ samples, Loverer 20% seams better Srerall cuith small exi form pores wheneas 2.5% has soms voids As uell as poes.
$20\{25 \%$ Be sapptes puesses to 27, go psi isostafically Some collapse of buge pousity voids. Lithe efthety small prousity.
Aureal ing eftect: 0.02 \{ 0.04 g of Pi-e.ch hao.
 $V_{\text {ry }}$ goud Lokwg viatually duse 20% staple.
'Bar': 25% Bi (10 g latha) is prifeeres bat frest ploced is howse rocurn (desse calin) then sinteod overivte pen sti tpoatent prodejigy rery good looking micosstucture with the prosity.
\qquad

Date and siç - bry entry. Have every possibly important entry witnesser. Submit an Invention Disclosure of anything possibly new and inventive.

Date and sign every entry. H

GREEN phase substrate work
have one remAining substrate, $\sim 80-90 \%$ dense, single phase, sinter T1 1350 C
(i) pressed $0.2^{\prime \prime}, 0.2 \mathrm{~g}$ pellet of eutectic

8-18-88 week summary
week summary 211 coons "Of yip"
1500 C pellet almost totally melts (2ϕ) with interaction between $\mathrm{Al}_{2} \mathrm{O}_{3}$ And 1 Q . $\varnothing \mathrm{A}$.
$1400 C \quad \begin{aligned} & \text { pellet retains sis integrity, Bu large amount of } \angle I Q \text { forms } \\ & 2 \phi, \text { interaction wo l liQ } \phi \text { and support }\end{aligned}$ 2ϕ, interaction a/ la ϕ And support
1360C liQ ϕ stull present, though diminished. less interaction: for short sinter time 211 millard "on"
$134 \mathrm{C} \quad 211$ 1H 100X milledpurt

211 mulled 1235 C 2 HRS 1000 X

Condusiow: sintung bo 1292 C ar higher cerates 2 material sistereng@1235c.does not wo duce Adequate suterurg. poll et Remains green as opprota) to hugh temp where pellet turns be bit hipesumably this is not simply sintering (a) 1265 C may be optimal.

5500

$$
2.56 \quad 1.548 \quad 0.399 \quad 0.7509 \quad 3.41 \% /(60.36)=-450 \%
$$

150

$$
\therefore \quad \begin{array}{llll}
1.472 & 0.389 & 0.662 \quad 3.87 /(6.36) & \sim 60.9 \\
(6.00) & \sim 64.5
\end{array}
$$

Post \rightarrow pellet not good ens to bother. 2ϕ, stuck, etc. $(1292 \mathrm{C})$ 1265 C pellet II (150 29)
$2.56 \quad 1.457 \quad 0.398 \quad 0.66 \quad 3.88 /(6.00)-64.5$ pellet crocked on checking must REDO, TEmp O,K. Though (wises 5C) pellet III w firwoer (0) 4:10 to temp (6) $4: 30$
set 1255, Trample ~ 1270
$2.53 \quad 1.286 \quad 0.360 \quad 0.47 \quad 3.38 /(6.00) \quad 89.7 \%$
8/23/88 15029, pellet IV (second 'good')

2.81	1.455	0.4188	0.7283	3.86	$N 64.3 \%$
$8 / 26$	1.283	0.384	0.4964	5.64	0.84

15030, pellet I (edge chipping during us pressing.) O.K.
$2.94 \quad 1.456 \quad 0.457 \quad 0.761 \quad 3.86 \sim 64.4 \%$ consistent
$4: 20$ to temp © 1267 C
$\begin{array}{llll}2.93(5) & 1.283 \\ 249 & 0.4-\quad 0.517 & 5.67 \text { u } 94.5 & \sim 65 h\end{array}$ 3 good slices

The above understood
0.04 g 0.33 mm Siam pellet set on edger of polished 211 substrate whin itself rests on A price of 211 resting in $A \mathrm{Al}_{2} \mathrm{O}_{3}$ beat et on a bod of 123 . A dent to subspace is small of subshate to minimize continue. 211 to sliced to st re le edge
Heat treatment: $10^{\circ} \mathrm{C} / \mathrm{min}$ to 1000 C in flowing ∂_{2} previous exp. in ain $/ \mathrm{O}_{2}$ showed incongruent melting of eutectic (a) $\sim 1000 \mathrm{C}$.

10:45 A.M. Te 500C $\therefore 1000 \mathrm{C}$ plateau should be aerated (11:35
will allow to melt for $1 \mathrm{~h} \rightarrow 12: 35$

$$
\begin{array}{ll}
10 c / \min \rightarrow 285 & 1: 00 \\
50 / \operatorname{lon} \rightarrow 100
\end{array}
$$

\rightarrow ord an in $\rightarrow 300 \mathrm{C}$ quench
Flow not pronounced. Not alt of liq. formation. Pix taken.
Redo in $A_{1 r} / O_{2}$ where prev exp. showed alot of la. formation.
$9 / 6$
IBM Technical Notebook

$$
2 \quad 2 \quad 1 \quad 2
$$

$C_{a_{(2-x)}} S_{r_{x}} C O_{x} \leftarrow$ Nature letters $(1-x)$ © $C_{A_{0.86}} S_{r_{0 . \mu}} C_{v,} O_{2}$
$\begin{array}{lllll}B_{i 2} & S_{r_{2}} C_{1} O_{X} \quad 2.1 & 1.6\{2.21 .6 \text { so use } 2.15 \\ B_{i} \quad 208.980 \quad B_{12} O_{3} & 4.6582 \mathrm{~g} / \mathrm{m} \text { moles? }\end{array}$
$\begin{array}{llll}S_{r} & 87.62 & S_{r} O & 103.6194\end{array}$
$\begin{array}{ll} & \text { a } \\ \text { 40.08 } & C_{A} O \quad 56.0794\end{array}$
Cu $63.54 \quad$ Cu 79.5394

$\mathrm{SrCO}_{3}-147.62935 \quad \mathrm{CaCO}_{3}-100.08935$
$\frac{S_{C N} 0_{3}}{S_{r} O}: \frac{147.62935}{103.699}=1.42472693(26.1120885)=37.20259576$

$$
\frac{\mathrm{CACO}_{3}}{\mathrm{CAO}^{2}}: \frac{1100.08935}{56.0794}=1.78477926(9.841935)=17.56568146
$$

$229 / 6$
(1) ${ }^{\circ}$ Mixed, ground and calcered @ 775 C 21 h (PG)
(2) Ground kant in $\mathrm{Al}_{2} \mathrm{O}_{3}$ boat covered ry Av foil
(3) 800 for 6 h
(3) gid and recalcured
(6) 850 C for 16 h
(4) Ged mull for pulletrestion

$$
\begin{aligned}
& 150.2715195 / 4=37.5678798818 .78393994 \mathrm{~g} \\
& 37.20259576 \\
& 9.30064894 \\
& (0.70088889)=6.528 \\
& 17.56568146 \\
& 4.39142037 \\
& (0.5602933 x) \approx 2.41605 \\
& 23.86182 \\
& \frac{5.965455}{57.22540} \\
& \frac{-2.9726}{52.522 \mathrm{~g}} \text { batch }
\end{aligned}
$$

scale uperenttheng by 1.5

$$
\begin{aligned}
& 28.176 \\
& 13.950 \\
& \text { * } \\
& 13.95(77075)=9.7895 \quad 4.16 \mathrm{~g} \text { loss } \\
& \frac{8.948}{57.661\left(\text { less }^{2} \mathrm{CO}_{2} \text { loss }^{*}\right)}
\end{aligned}
$$

Extol 2 moles convection

(1) Purr. transferred to $0 . D$. tall bottle, shaken for >15 miss.
(2) f to 400 ml beaker w/ $\approx 150 \mathrm{ml}$ (made up to) est 150
(3) Continuously stored w/ mag. sterner while removing solent- $11: 30 \rightarrow 1: 20$
(4) Stirrer rembere) lowered No 'low'; dry for avens (a) 2:00

Ir over arden voe @ "3" 2!05 $3: 45$

$$
\begin{equation*}
146.59(8) \tag{beaten 150.46}
\end{equation*}
$$

$$
\frac{89.12}{57.47} \sqrt{5} 57.69(0.4 \% \text { loss })
$$

$152.23(2) \mathrm{w} / \mathrm{top}$
146.59
$\frac{142.15}{4.44}$ post 20 NO ERIDENGE OF VAPOR
4.44 g loss $\Rightarrow 7.06 \mathrm{~g}$ expected oo 63% conversion if no B. loss:
$\frac{89.12}{53.03} \quad \sim 51.2652 .86 \mathrm{vec} 99.7 \%>$ Post gid $51.43 \quad 97 \%$

240/9
IBM Technical Notebook
$\mathrm{BrSraCl}_{1} \mathrm{Ca}$ Calcunaturn II : gold lived $\mathrm{Al}_{2} \mathrm{O}_{3}$ boat 86.51 bravely fits in longe boat
35.13 51.38 is $51.43 \quad 0.1 \%$ tempter loss

$$
\begin{array}{r}
85.10 \\
35.13 \\
\hline 49.97
\end{array}
$$

419.34 In furnace (tube) for 850C, 16 Lh coldéviations. $84.50(48)$

$\frac{83.58}{35.13}$ post 850 C 16 h calunation
$\frac{35.13}{48.45}$ need on X-RAy

9-7
$B_{L_{2.15}} S_{r_{l 6}} C C_{1} O_{x} \quad$ (if. dater 19 21)
2.15 naples $\mathrm{B}_{22} \mathrm{O}_{3}$. 1.00181013 bit $2 \mathrm{Bi}_{i}=1 \mathrm{~B}_{1} \mathrm{O}_{2}$. \therefore

$$
\text { Bio } \quad 0.50090507 \mathrm{~kg} / \mathrm{m} / \mathrm{M}
$$

1.6 males $S_{r} O \rightarrow(1.6)(103.6194)=0.16579104 \mathrm{mg} / \mathrm{mM}$
$1.0 \mathrm{mpl} \mathrm{Cu} \rightarrow \quad=0.0795394$

$$
\mathrm{Sr}_{\mathrm{r}} \mathrm{O} \rightarrow \mathrm{Sr}_{r} \mathrm{CO}_{3} \rightarrow 1.42472693(0.16579104)=0.2362(0696)
$$

scale foetor bor 50 g lot ~ 60
(60)

$$
\begin{aligned}
& (0.50090507)=30.0543 \quad \mathrm{Bi} \text { ax } \\
& (0.23620696)=14.1724 \quad \mathrm{Sr} \text { as sse } e_{3} \\
& (0.0795394)=\frac{4.7724}{48.9991} \mathrm{Cu}_{2}^{\alpha \alpha} \mathrm{g} \text { el }
\end{aligned}
$$

$\mathrm{Ca}_{0.86} \mathrm{Sr}_{0.14} \mathrm{Cl}_{1} \mathrm{O}_{2}$

$$
0.86(56.0794)=0.048228284(1.785)=0.0861
$$

$$
0.14(103.6194)=0.014506716(1.42472693)=0.02066811
$$

$$
1.0(29.5394)=0.0795394
$$

scale factor for jog batch (340)
$340(0.048228284)=16.398$

$$
\begin{gathered}
29.27 \\
7.028 \\
27.04 \\
\hline 63.34
\end{gathered}
$$

26
SiCO_{3} decomp. (4) $1340^{\circ} \mathrm{C}>\mathrm{CuO}$ - 1026 C decamp,
$\mathrm{B}_{12} \mathrm{O}_{3}$ melt.
CaCO_{3} decamp
(a) $880^{\circ} \mathrm{C}$
all below initial calcination 71
9/3 from Chandra :
$\mathrm{Bi}_{2.15} \mathrm{Sr}_{1.6} \mathrm{CU}_{1} \mathrm{O}_{x}$ procedure Son calcenation-all Pt. $\begin{aligned} & 752 \mathrm{C} \text { for } 6 \mathrm{~h} \\ & 790 \mathrm{C} \text { overate }(16 \mathrm{~h})\end{aligned} \mathrm{GRD}^{\leftarrow-}$.
790 C verite (16 h)
825 C 16 h Not converted
890 C

$$
\text { D }<855 \text { 20h }
$$

Shaker, suspended in iso, maxd $\{$ dried as per 2212 prewiously. COCO stant both tomorerew atte consultation of R. Figat. Marrl says try $800 C$ to stant in Pt.
No-transtered to $H(Q)$ leoved BiSrCACu cuucuble $\{$ fured for 6 h ovenater
$137.8 ?$
89.15 ture (89.12) 9.03 rxw .
$48.72 / 49 . ~ e x p e c t e d ~$
135.86 Post $68 / 49=$
$\frac{135.86}{-\Delta 2.01} \quad(/ 4.19$ expected) 48% Reneted (46.71)
$135.51 \quad(46.34)$

$$
133.28
$$

28
Coloration II (post grand -4,)

$$
\begin{aligned}
& \begin{array}{r}
135.51 \\
89.15
\end{array} \\
& 46.34
\end{aligned}-\Delta 0.37 / 46.71 \quad \text { (} 0.8 \% \text { loss) }
$$

133.66
89.15

44.10 let stand oveniterwice Run x-RAy in möinenc.

Cont $\mathrm{pg} 30 \Longrightarrow$
Calcuation IF Sorcacu

$$
433.28
$$

50.58

$$
\begin{array}{r}
90.49 \\
\hline 42.79
\end{array}
$$

$$
=\frac{9.32}{41.20} \therefore 47.2 / 42.896 \%
$$

 132.90

a/i3 Run abovitas. Restart. Cal I @ 800c then x-Ray,

$$
\begin{aligned}
& 140.92 \\
& \frac{90.48}{50.43} / 50.52 \quad 0.03 \% \text { los } \\
& 16.42(0.56)=9.1952 \\
& \begin{array}{l}
1.12(0.56)=9.1952 \quad(-\Delta 7.225) \\
7.03(0.702)=4.935 \quad \frac{(-4.2095)}{-9.32}
\end{array}
\end{aligned}
$$

30 velar time 9/21

Cold So Pack 22.87 g rears 8.92 owed
1.95 remaining 8.92

$$
\text { VACATION } \Rightarrow 9 / 26,252423,22 / 88
$$

After drying (\sim days) , hey surd

$$
\begin{aligned}
& 138.9 .4 \\
& -89.5(14) \\
& \hline 49.79 \mathrm{~g} \text { Recovered } / 50.5 \quad 0.71 / 50.5 \quad 1.4 \% \text { (bumping, et.) }
\end{aligned}
$$

VACATION $\quad 9 / 28,29,30 / 88$
POST I

PRC II

$$
\begin{array}{r}
131.07 \\
882.17 \\
\hline
\end{array}
$$

$$
\begin{array}{r}
129.66 \\
\frac{089.16}{40.00}
\end{array}
$$

$$
40.52
$$

$$
9.79 \mathrm{~g} \operatorname{los} 4
$$

The above understood
/14
 will 1 await x-pay tomorrow morning
set-up et mill. Dick ste buddy Setup yet mull). Dick sill busy ox, x-Ray.
Defrinittly not converted! x-RAY RUNS.
10/4
Calcination II - 850C 20 h
 poo belly "vent",
$10 \% \quad 38.93$ newry
Cal III 875 C
16 h "Sintered. Not rear hand but has
"metallic" luster. St, melting. Fringe cal x X hay shows solace small additional peaks, but predominantly mixure. ABove test to see if 900 C cal sated 126.92
86.66 tare
40.26 890C seems to be temp $(+5 C)$
id y Choudra says, ms oc may be onset. Final cal. temp suggested (23) 865 C
$10 / 6$
925C 16h: x-Ray shows
$10 / 7$
appears as usual. some Gill sinter ing. loosing reaching pattern

966 C isth
Saith to 810 whew 812 west wild.
One overshoot to $1006 C \mathrm{C}$ for $\angle 1$ minute.
$>$ Part if stang lo stu ct,
 ster. A ope' for of te hest.

$1.17 \quad 9.095$
0.278
$0.262-4.465$
$69 . \%$
START sintering（a）4：00 pl Rope temp setting 835．Should give pellet sateen wing temp of 855.

$4.30 \quad 839$ was Ts Ts 859 Reduced overshoot
10／5

$$
\begin{aligned}
& 836 \\
& 4: 50 \text { 的 tala © } 856 \\
& \begin{array}{lllll}
1.14 & 1.15^{88} & 8.30^{\text {kin }} & \text { 16h sinter clock } \\
0.287 & 8.291 & (3.92)
\end{array}
\end{aligned}
$$

PR as I saw．was 859．Mus keep below 850 （er at），C．

$$
0.94 \quad 1.12 \quad \sim 0.21
$$

$0.21 \quad 4.48$
pellet looks goof（＠） 852 offer 28 h covers te）Kep suturing
$10 / 10{ }_{0} 1.23 \quad \sim 0.23$
0.27
3.3
51% doesudimaker sere e
NOTE：T．SHARM sAys people have seen such effects singe do parkour
 ＂2212＂
Analysis results pg． 33

Sintering conditions: $850-851^{\circ} \mathrm{C}$ in An g $/ \mathrm{J}_{2}$: will weed to preheat furnace z achueve SHORT DURATON SNERCNE
 TaRS.
$\begin{array}{lllllllllll}1.29 & 1.093 & 0.311 & 0.292 & 4.42 & 68.5 \% & \text { Un L } 3,750 & \text { ISO } 27,500\end{array}$

Start Ta sinter count (855-852)
$\begin{array}{lllllllll}1 / 2 & \text { Post } & 10.33 & 851 \\ h & 1.27 & 1.142 & 0.326 & 0.33 & 3.85 & 60 \% & & \end{array}$
Pere
$\begin{array}{lllllll}\text { h. } & 1.19 & 1.095 & 0.288 & 0.27 & 4.41 & 68.4\end{array}$

139_{3}
IBM Technical Notebook
102 g reserflar sallet of pieced "pori" isprissod to 27500

~2h@972C 2申
$1.21 \mathrm{~g} \quad 1.045 \quad 0.233 \quad 00.2 \quad 6.05$ th s 8.75 (pate 880 c)
$6.05 / 7.20=84 \%$
NO RE DATA
Post polishing data recheck
$1.04 \sim 1.066 \quad 0.200 \quad 0.172 \quad 605$ who

after maxing \{ drying: 63.15/63.37 $=\sim 0.3 \%$ loss

$$
\begin{aligned}
& \text { ore CHI Post } 16 \text { h } 875 \mathrm{C} \\
& \text { pe call } 19.62(1) \\
& 134.56(7) \\
& 27.29(0.5603)^{x}=16.41 \\
& \text { take } \frac{86.46(7)}{63.15} \\
& =\frac{86.46(7)}{48.10} \\
& 7.05(0.7019)^{x}=4.95 \\
& 27.03(1)=\frac{27.03}{48.39} \text { total }
\end{aligned}
$$

CO_{2} conic: $48.1 / 48.39$ looks complete
Precal $\frac{\pi}{134.47}(47.84) / 48.1=0.5 \%$ gang $\operatorname{losh}\left(t_{0} \operatorname{temp}(966\right.$ (1) 4:00 p.m. $10-19-88)$)

$$
\frac{86.63}{47.84}
$$

This Page is:

Sonfidential-Restricted Registered IBM Confidential ${ }^{\circ}$ - Register with local Recorder

Date and sign e entry. Have every possibly important entry witnessed. Submit an Invention Disclosure of anything possibly new and inventive.

Note: 810 optimise c) process parameters

$$
P_{b}=4 \quad t_{i}=15 \quad t_{0}=5 \quad A P=2.0
$$

Bu Synthesis
Series

de body : $0.483^{\prime \prime} / 1.228 \mathrm{~mm}$ I.D.
(a) 8,500 pis purdr press too freigleto go in is g. left after afew attempts @ pressing $\omega /$ resultant crumbling.
Next time: $\sim 3,600 \mathrm{psi} \Rightarrow 16,000$ may weed $\frac{f_{0}}{} \Rightarrow$ amin PSD ait available presently.
Pred data not tares:
POST: 875 C for 3 h (perk-5mu-@886C) Rape) temp find d $(948$
1.36^{+}(pellet camera $\Rightarrow ~ 1.4$)
$3.68 / \$.8=75.6 \Rightarrow 76$ (damage)

1. $174 \quad 0.352 \quad 0.381 \mathrm{cc} \quad 3.675$ NEED pyanometan obesity,

Sinteraop micuestarctere reveals $\sim 80-85 \%$ devise pellet coy muon $1-2 \%$ probably Cu O phase in some tuple points. Grates is nu or zen促 (f)

1000X, th sinter, OOIT, POLARIZED
The above understood
Date
and

Date and sign e. y entry. Have every possibly important entry witnessed. Submit an Invention Disclosure of anything possibly new and inventive.

$\begin{aligned} & V_{\rho} \text { - Voluan of Pouder (cc) } \\ & \mathbf{F}_{c}=\text { Volum of Sample Cell Holder (ec) } \\ & v_{n}=\text { Added volume } \end{aligned}$			
$\mathrm{P}_{1}-$ presture Reading steer adied V_{n}			
3.568	3.56 han	3.566	3.566
${ }^{\text {nua }} 1$	nus?	nun]	
$\mathrm{P}_{2} \quad \underline{19.865}$	19.720	-10.807	19.661
P_{1} 5.568	5.530	-5.535	5.514
ve	$\frac{1.522}{3505}$	1.522.	1.522
ocwsitr	7.21 lice	7.21 arcc	

Diffusion Pellet Calculations:
123 std. pellet volume: $3.25 \mathrm{~g} / 6.36 \mathrm{gjc}=0.51 \mathrm{cc}$

$$
\begin{array}{rlr}
\therefore 2201 & =0.51 \mathrm{cc} \times 7.2 \mathrm{gcc}=3.67 \mathrm{~g} \quad 3.75 \mathrm{~g} \\
0011 & =0.51 \mathrm{cc} \times 4.86 \mathrm{~g} / \mathrm{cc}=2.48 \quad \sim 2.50 \mathrm{~g}
\end{array}
$$

In preheated $\frac{R T}{T_{s}}$ (2) 31

Tet
948
950

964

Tstumple
933
974
974
$3: 31$
$3: 33$
3:35
$4: 20$
$4: 21$
backing off now to maintain temp. tile \&Q
somite
$4211-$ ク- 88 1 BM Technical Notebook
Survey 2212 sutering time versus Rel density

狍 16 h (not listed w book)
$\begin{array}{lll}\text { posT } & 0.88 & 1.15\end{array} \quad 0.216$
0.22

Redo

$11 / 3$
poon pellet 2 for 16 h diffusion sinter
Pres 4,000/30,000 sly hotly unguhem

$$
\begin{array}{llllll}
2.85 & 1.531 & 0.496 & 0.913 & \sim 3.12 & / 4.95 \\
2.81 & n 1.36 & 0.44 & 0.636 \\
0.64 & 4.4 & \downarrow & =63-\text { perfect } \\
& & & =89
\end{array}
$$

$282014,000 / 30,000$
$\begin{array}{llllll}3.78 & 1365 & 0.494 & 0.723 & 5.23 & =72.4 \%\end{array}$ (toohigh?
1y4 $0011-2$ at into 2 slices. Didn't add blade thelevess so unequal. $1 \sim .230 \mathrm{~cm}$ thick $1 \sim 0.179 \mathrm{~cm}$
\not Pose welt use for fusil press
 xstals and sagged. Obviously metastable.
previous sh swter showed vo evidence of instability,

11-10 Sintering Summary iBm Technilgal Motebogakfa> 201-2

Record weeping: $201-2$ 3 oh $875 \% \sim 75 \%$ (pyM): (Regetco pellet growth Resulting in varying local chonsities. $\begin{array}{ll}201-3 & 0.608 \text { da pele fan plesseve diffusion sinter } \\ 201-5 & \text { reged } \rightarrow 201-11\end{array}$ GII pas py-nometry grues an averaged real density for pellets 1,7,8,9 (wight 4.6 g) of 86.75 g 法 84.75 (reasonable agreement), mostly closed porosity.

201-11 Pellet gros negro (repressed from porkers pellet. Also, die RAm

* 1 wear average dir dur to slumping. (- Cow
$t w$ pellet anterior after efge usage wow away

 after flationoigg ; 15 um
$\begin{array}{cccccc}201-10 & 0.90+ & 41.057 & 0.1688 & 0.147 & 6.12 \quad 85 \\ & \text { betters (more accurate) }\end{array}$ $11^{\circ} 2.96^{(298)}$
$\begin{array}{lllll}201-11 & 1.357 & 0.412 & 0.596\end{array}$

4. 490.500 .69 .4$)$
$\begin{array}{lllll}201040 \\ 2.935 \\ 2.945 & \sim 1.3150 .365 & 0.496 & 5.94 & 82.5\end{array}$

The above understood

201-11 cot" what" larger flattened and polishes.
0011-2201 sawdutuch ~0.353-0.363 thick.
$>$ from furnace top to bottom of "weight plate" 19/32" @ 462C $\left.\begin{array}{l}\text { assuming } \\ \text { of } 0.212 / \mathbb{N}^{2} \text { s ford } \\ \text { Ram }\end{array}\right\}$ plate $\& x$-sectional pellet area of $0.212 \mathrm{Nm}^{2}$ load $\rightarrow 28 \mathrm{psi}$
Tdifusion suterwg set @ 860C for ~ 12 has.
Rel density from measurement of $201-11 \sim 83 \%$. On inspection of nterend polished suefamen yumears buevort-like occlusions prosit. Some degree of open porosity, also.
Pya. rel. den $=88 \%$ thus Δ attributive to open porosity. cot rel density from measure $\sim 89 \%$. No pye reading dore. 16 hinton © 975 J .

4:30prite 859C assome start of diffusion sinterinic.

$11-28.88$ 〈INSERT〉
Results (by microprobe) of CAgSflu Ox melt xstals
Melt composition was from gs 27-29
Composition was Nod $C_{0.86}, S_{\text {o. ir }} \omega_{1} O_{X}$ in melt, but rathe

$$
\rightarrow \mathrm{C}_{\mathrm{O}, 48} \mathrm{~S}_{\mathrm{r}, 14} \mathrm{CO}_{1} \mathrm{O}_{x} \rightarrow \leftarrow
$$

from which xstals grew of $\mathrm{C}_{A} \mathrm{Sr}_{\mathrm{C}} \mathrm{CO}_{X}$ with stoic.

$$
C_{0.81} S_{0.2} C_{1} O_{x}
$$

$$
x=2.1
$$

Atomic wat fractions were:

C_{A}	0.195
δ_{r}	0.05
C	0.242
0	0.513 (by difference)

Melt temp. was 1000 C for 16 h with cooling rietually, but
 theremal miss

Balance Bi Pairs for Row

$$
\begin{aligned}
& 22.12-38.5 \\
& 2201-12.5 \\
& 0011-33.5
\end{aligned}
$$

$2^{\text {nd }}$ Diffusion Run $2 h r$ RAmp to $866 C$ (3) 100 C plate space: $17 / 32$
 2201 ~ same 0.18
loose $\sim 0.23-0.2 \approx 0.03 /$ she $\therefore 0.18 \rightarrow 0.15 \quad 0.17 \rightarrow 0.14$ so stand oud might be $\sim 0.29 \mathrm{~cm}(80 \%$ of Ron 11)
 $3 / 32=0.23 \mathrm{~cm} \therefore \therefore .09 .23=0.06$ toe small $\Delta_{871 \mathrm{c} \text { peak }}$
RESULTS: "Bi", Pellet has speos, apparently matting. Total
 peuptery. \longrightarrow

$0.18 \mathrm{~cm}=0.07^{\prime \prime}$ slice \sim square $0.07+0.015=0.085$

0011 -2201 Mix Calculations

$$
\begin{aligned}
& B_{L_{z}} S_{r_{7}} C_{A_{1}} C_{2} O_{8} \\
& B_{L_{2}} S_{r_{2}} C_{A_{0}} C_{1} O_{6} \\
& B_{L_{0}}^{3} S_{r_{N_{0}}}^{2} C_{A_{1}} C_{1}^{\prime} O_{2}
\end{aligned}
$$

From ideal" store.

52

$$
\begin{aligned}
& 2 \text { Stoic Mixing } \\
& 0011 \quad 2201 \\
& \sim 1.43 \mathrm{~g} \quad \sim 7.53
\end{aligned}
$$

IBM Technical Notebook
 $5 \mathrm{cc} z_{0} \mathrm{O}$ balls
$2 / 3$ fall
NOTE: from bottom pg 51 CAN be seen this Additive approach will yield a theoretical molar comp $\left\{\begin{array}{l}0_{0} 1 M \text { larger in } S_{r} \\ 0.31 M \text { less iN } C_{A}\end{array}\right.$
1.e. Sheateech, Calcua poos
8.96 g added initially, 8.85 g Recovered: 1.2% loss (98.8 yeld)

Stor I Pere $2700 / 27,500$
$3.11 \quad 1.36 \quad 0.486 \quad 0.706 \quad 4.41 \sim 689$
$0.25(4)+0.75(7.2)=6.4$ vol $\%$ bases, \sim density call
R xN. (SINTER) temp to be 850C
Pellet melted, indicating lower $m p$ live ϕ exists in system slater
xstallena xstallyo). Pred onvantly 1 lath -like \varnothing wo exiger.nted growth as in $2 z 01$ rah sample.
12.5

4:20 P.M. // $4: 25$ © temp
$0011-3$ placed in pre-hrate $\int_{\text {Rapid }}$ temp set (0) 951 C ($T_{\text {simp }}=975 \mathrm{C}$) for covernite sintering due to irregular shape caused lay No pellet cru datablive, Dozing isopressing. PSI aught ~3.0.0.0-2.9
$12 / 6$ unipress $\rightarrow 6000,150-29,000$ PSI aught $\sim 310^{3.0}$
9:30 Slow cooling begin: $\Delta T_{\text {sinter }}=17 \mathrm{~h}$ @ 875 C
Post $2.86 \mathrm{~g} \sim 0.4160 \mathrm{~mm}$ thick nodus ingot have haw ~ 1.30 estimated density 0.666 cc (4) $3.1 \mathrm{~g} \sim 4.64 / 5.00 \approx 93$ (may be high) $0011-3.181 "$ thad

Slice $1 \rightarrow 0.09$ "after cleaning $/ /$ post polish $\rightarrow N / R$ Slice $2 \rightarrow \frac{0.074}{0.179}$.N
$\begin{aligned} 2201-8 \quad 1.038 \text { fin } \therefore \text { area }=\pi 0^{2} / 4 & =0.85 \mathrm{ca}^{2} \\ 0.409 & =0.525 \mathrm{~m}^{2} \quad 5.75 \mathrm{lbs} / .525 \mathrm{~m}^{2} \sim 11 \mathrm{psi}\end{aligned}$ 2201-8 (top)
(18) Pallet configuration (a) START ~ 3:55 p. M. thickness - $0.34 . \mathrm{cm}$ oort-3 RAmp $\rightarrow 434$ Setpont-800c Duell-12h 19/32@380C $12 / 1$ Result: No meltiongs, pellets bonded cay lithe. deformation.
$12 / 8$ After 24 h 825C AnNeal no evidence of lac., but bond breaks after handing at pellet interface with some" "ExoN etchury" of 0011 pellet surface leaving thin, layer of 220 (or axe prov)) behind.

52-6 IBM Technical Notebook

S_{r} @ $\mathrm{SrCl}_{3}: \mathrm{A}_{1} 172^{\circ} \quad-\quad 28,3448 \quad 28.35$
C@ CO: $\frac{4.7724}{48.991 \mathrm{~g}} \quad \frac{9.5448 \rightarrow}{97.9982 \mathrm{~g}}+9.54$
~ 0.7019 converseten factor for $\mathrm{CO}_{3} \rightarrow 0 \quad 28.3448(0.704)=19.898$
Estimate ~ 89 g "batch recovery" $\quad \frac{\begin{array}{r}97.9982 \\ 89.468 \\ 89.55\end{array} \mathrm{~cd}_{2} \text { loss }}{}$
12-7
tavern $_{\mathrm{B}_{2} \mathrm{O}_{3}} \frac{202.544}{60.68}$
$\frac{20.13}{}-60.11=10.02 \mathrm{~V}$

trace $\frac{262.68}{26.35} \Delta \mathrm{~N}$
(40) $\begin{aligned} & 200.57 \\ & \frac{2001.03}{9.54} \Delta u \\ & \frac{900.579 .54)}{} \text { wis } 9.55\end{aligned}$

12-8 97.22/ pecaroly after Skyway overate
98.02 thenetraal $=99.9 \%$ yod 0.1% mixing bes

$S t \delta .1 .1 .5 \mathrm{~h} \quad 5 \mathrm{mim} \quad \mathrm{ZrO} / \mathrm{Fso}_{\mathrm{s}}$ gild mix, screening t Drying.
$12-8-88$
Recovery $\therefore 9.84 \mathrm{~g} / 9.86 \mathrm{~g}$ theoretical $=99.8 \%>0.2 \%$ loss
cont tare $\frac{60.87}{51.04 / 5} 9.08$ trasserees
$0011-2201-5 W(3 V)-1$
Post $8500 / 29,000$
$2.31 \quad 0.117 \quad 0.704 \quad 0.690 \quad 3.35 \sim 67 \%$
Pellet lagger than usual, 1.75 g max in futvee might be consicherd. 1.1830 .715 CRACKED, measurements $A D / A$

12-9
$5 w-29000 \quad 8500 / 30,000$
$\begin{array}{lllllll}1.27 & 1.174 & 0.382 & 0.5144 & 3.07 & 61.4!\end{array}$

$$
\begin{array}{llllll}
1.24 & 1.111 & 0.36 & 0.349 & 3.55 & 71
\end{array}
$$

15 min Na significant crave
 12:15 A.M sho-coor initiated

$$
\sim 2 h
$$

The above understood
and witnessed bv

56
1BM Technical Notebook
12-8-88 2201 SyNII canc. (fimm M94)
$186.68 \xrightarrow{\text { spll }} \rightarrow 186.65 \rightarrow 192.24 \mathrm{w} / \mathrm{tap}$
curcille tare $\frac{88.79}{97.89}$
$10: 00 \mathrm{~A} . \mathrm{M} \rightarrow 575 \mathrm{C}$ holf 1 h
$11: 00 \rightarrow 800 \mathrm{C}$
12-9/11:00 Am
cool, eegurard to <100 mest
182.23
$\frac{88.95}{93.28}$ (aught atter sintered pade pocty Remerod)
93.44 if 88.79 used
184.02
89.95 after granding
$\frac{82.07}{92}$ to temp. (866C) © $1: 00$ p.m.
$-\Delta 1.21$ w iventhon 1.3%

1:00-5:00 pin 866C, shut down for wealend (xney kesonemt scin eve)
$12=12-8$
oft temp 8668
(0) 10:00 A.M. $7: 00$ A.M. $12 / 13 / 88$

Parvent melting, "classie" Eutectic lamittare muid large 2201 latheri.

The above understood

mixiog jar tare 202.75

$$
\begin{gathered}
\left.B_{12}\right)_{3} \frac{2(2.86}{\tan } \frac{202.75}{60.11} \\
\frac{291.20(19)}{262.85} \\
\frac{28.34(5)}{300.75} \\
\frac{291.20}{9.55}
\end{gathered}
$$

$$
\begin{aligned}
& x_{2}=60.11 \quad \operatorname{Sor} 0.8 \quad S_{r}=1.72 \\
& \begin{aligned}
& 28.35 \\
& \frac{9.55}{98.01} \\
& \frac{8.5}{89.51} 0_{2} \text { loss }
\end{aligned}
\end{aligned}
$$

Pre cal I

$$
\text { cwalbt } 185.84
$$

$$
\begin{aligned}
& \text { tare } \frac{87.99}{97.85} \quad 97.85 / 98.01 \quad 0.2 \% \text { mux loss }
\end{aligned}
$$

12-2in Poot 750C 16 h calcunation
cruciblet 181.15 wo RxN w/Pt.; lime green cate/bottom, uniform throut excapt for top $1 / 2$ edges (grey)
post gead $\begin{array}{ll}93.17 & 93.17-97.85=-4.68 / 8.5=55 . \% ~ \mathrm{CO}_{2} \text { lost } \\ 92.70 & \text { post gRI }\end{array}$

$$
\begin{gathered}
\text { cracible }+180.70 \\
\begin{array}{c}
87.98 \\
(92.72)
\end{array}
\end{gathered}
$$

12-24-88 Post 7900 20 h calunation
178.10 Material looks reeygec, smaces, inidationg Amilar ste encture

 and wiven core structuce. (see belum) -an ppoce

The above understood

to page 60 and witnessed bv
$12-14-8$
IBM Technical Notebook
$Y_{1} \mathrm{BA}_{2} \mathrm{C}_{3} \mathrm{O}_{x}$ Implantation Experiment
PRE-f.len on STRide $3,3500 / 30,000$
3.07 $0.485 \quad 0.799$ $3.84 \quad 160.4 \%$
(4) 4 lime masker' $\frac{11}{2}$ to long axis of triangular $S x_{1} \mathrm{O}_{3}$ Implant implant orientation - NoTE: MARK ON ONDER SIDE of pellet
\therefore film side opposite
$3.02 \quad 1.271 \quad 0.3 \% \quad 0.503 \quad 6.02 \quad 94-95$
$\begin{array}{lllllll}3.05 & 1.498 & 0.476 & 0.784 & 3.89 & \approx 61\end{array}$

 S
 Cutting Said 3 implant: measures $0.5^{\prime \prime}$ on saw ($0.025-0.505$ tangents) $\frac{1.22254}{254}=0.48$

12-21-88 Cakiwation IIT: 2201-B3
X-RAY SHows distincter Not single ϕ, even though matipia looks O.K." total 177.04 aux $\frac{87.98}{89.06} \cdot 88.2$
$12-22-88$

$$
\begin{aligned}
& \frac{-8298}{+\frac{88.2}{0.22 g}}
\end{aligned}
$$

$175.7-(-\Delta 1.34)$ slight sticking $($ R XN $)$ w/ cue bottom

$$
\frac{87.98}{87.72}-89.51(\text { tho. })=1.79 \mathrm{~g} \text { greater than theoretical loss }
$$

could be grinding loss 2%
Re col 174.93 total
$85 \% \frac{87.93}{87 .}$ tare (ate aificleourng)
0.72 g graving loss (consistent on previous losses) t x-ayslide
POST
$12-20.86 \quad 174.83$

$$
\begin{array}{r}
87.93 \\
86.90
\end{array}-50.10 \quad 100 \% \frac{\text { RYA }}{1} \text { rowsinte weight }
$$

not popercowrocting bet net surpresira.

entry witnessed. Submit an ind
anything possibly new and inventive.
disclosure of important Disclosure of

This Page
Unclassi
\square IBM Internal Use Only
\square IBM Confidential
\square IBM Confidential-Restricted -Registered IBM Confidential--Register with local Recorder

Summary various exoN pellets:
5 wt \% 2201 is 0011 for $16 h$ (a) 850 C . SEM
5 wt\% 2201 in 0011 for 2h@975C sem

0011 (1) 975 C 17h
2201 @ $875 \mathrm{C} 1 \mathrm{~h} \cdot \mathrm{sem}$ Sn
2212@853C $5 \mathrm{~min} \operatorname{sen}$ STD.

IBM Technical Notebook
12-29-88 Dave's Composition's

\#	B_{w}	C	\ddots	$B a$	G
$(0.16 p)$	(0.33)	(0.50)	0.17	0.33	0.50
0.15	0.33	0.52	0.8639	1.9038	$3-$
0.17	0.35	0.48	1.0625	2.1875	$3-$
0.19	0.33	0.48	1.1875	2.0625	$3-$
0.19	0.31	0.50	1.14	1.86	$3-$

Calculated Compositions (calculations next page)

$1 / 3 / 89$
Calculations fore wits summarized on page $6: 2$

$$
\begin{aligned}
& \text { 2) } y_{0.15} B_{00.33} W_{0.52} \\
& \left.y_{0}-0.15(225: 8082) / 2=16.9356 \mathrm{~g} \quad y_{2}\right)_{3} \\
& B_{a}=0.33(197.3494)=65.1253 \mathrm{~g} \quad B_{a} C_{0} \\
& C D=0.52(29.5394)=41.3605 \mathrm{~g} C_{0}
\end{aligned}
$$

-3) y ${ }_{0.17} \mathrm{Ba}_{0.35} C_{0.48}$

$$
\begin{aligned}
& Y=0.17(225.8082) / 2=19.1937 \mathrm{y} \mathrm{Y}_{2} \mathrm{~J}_{3} \\
& \bar{B}_{a}=0.35(\mathrm{C}) \\
& C=09.0723 \mathrm{~g} \mathrm{~g} \mathrm{BaCO} \\
& C=38.1789 \mathrm{~g} \mathrm{COO}
\end{aligned}
$$

4) $y_{0.19} B_{0} 0.33 C_{0.48}$

$$
y=21.4518 \quad B_{a}=65.1253 \quad C=38.1789
$$

5) $Y_{0.19} \mathrm{Ba}_{0.31} C_{0.50}$

$$
y=21.4518 \quad B_{a}=61.1783 \quad C_{0}=39.9697
$$

1) Y $Y_{0.17} \mathrm{Ba} \mathrm{a}_{0.33} \mathrm{C}_{0.50}$

$$
\begin{array}{lll}
19.1937 & 65.1253 & 39.7697
\end{array}
$$

$$
\rightarrow 99.6 \% \text { rework total }-\Delta=0.05
$$

1-9.89 10.95 g otter $2^{n \delta}$ th $950 \mathrm{C} \dot{j}_{2}$ calcination

$$
6.5777\left(\begin{array}{c}
\left(\frac{153.3394}{197.3510}\right) \\
0.777
\end{array}=5.11-\Delta 1.47 \frac{12.43}{1.47}\right.
$$

(11 D (Ave) post 1 h grind $=1.86 \mu \mathrm{~m} \quad 3000 / 30,000$ $\begin{array}{lllllll}\text { PI } & 1.68 & 1.136 & 0.408 & 0.4135 & 4.06 & 63.8 \%\end{array}$
16 In $^{\text {IN }} \mathrm{O}_{2} @ \sim 3: 00$ p.m. $1 / 10 / 89$, to temp @ 950 C projected $41.3005: 00 \cdot 9.00$
$\begin{array}{lllllll}1.64 & 1.011 & 0.354 & 0.284 & 5.775 & 90.8 & \text { (91) }\end{array}$

$$
\begin{aligned}
& y_{2} \partial_{3}-1.92
\end{aligned}
$$

$$
\begin{aligned}
& { }^{6.9665} \begin{array}{l}
6.9985 \\
-0.3888
\end{array} 6 \\
& 6.5777=12.48
\end{aligned}
$$

$1 / 4 / 88$
IBM Technical Notebook
4) 8,2 fred
O_{2}

$1 / 10 / 888$ Second gatacinaign sphere after grading. No evichnce of lis formation. Peek looks gobo abfereny.
10.99 g after $2^{n \delta}$ calcination;
10.76 post grind
$\left.\begin{array}{lll}6.58 \\ (.227\end{array}\right)=5.11-8.1 .47 \begin{array}{r}12.55 \\ 1.47\end{array}$
1/17

P1 Pro 2500/30,000 to temp (c) $\sim 5: 00$ pm

1.60	1.14	0.399	0.4073	3.93	$\frac{62 \%}{1.58}$
$1.055 v 0.365$	0.319	4.95	77.8%		

Green ϕ peaks comenty up in x-2sty.
5) $Y_{0.09} \mathrm{Ba}_{0.31} C_{0.50}$
(.997)
$12.34 /(3)$ collected often max /l $12.34 / 12.37 \cdots-\Delta 0.24 \%$

$$
6.2411-4.8493=t .392
$$

tape $\frac{\begin{array}{l}63.50 \\ 51.17\end{array} \frac{\begin{array}{l}62.20 \\ 12.33\end{array}}{\begin{array}{l}51.17 \\ 11.03\end{array}-81.3 \% / 1.39}=93.5 \%}{}$
11.00 post gean $\begin{aligned} & 62.17 \\ & \frac{51.18}{10.99}\end{aligned}$ post ck. II 62.1) $\begin{array}{r}17.63 \\ \frac{-.80}{10.75}\end{array}$

Pot ger 10.46

$\begin{array}{llllll}\text { Post } 1.56 & 1.440 & 0.244 & 0.40 & 4.00 & 62.9 \\ & 1.266 & 0.210 & 0.260^{7} & 6.00 & (94.91)\end{array}$
Good dersificontion, wo apparent ria, Cu istonits present.

P1B3 2500/30000.

1.94	1.09	0.391	0.365	5.315	73.8%
1.94	1.06	$15 m m i n$	8.350	8.313	6.2

$2 \omega t \%$ 201 in 0011 $\quad 1 / 3 / 80$

$$
\begin{gathered}
\begin{array}{c}
9.49 \\
0.19 \\
9.58 \\
\text { some baling June } \\
9.05 \mathrm{~g} \\
\\
\hline 8.68 \mathrm{~g} \text { fuad } \\
0.37 \mathrm{~g} \text { loss }
\end{array}
\end{gathered}
$$

some beating during $0.5 \mathrm{hmix}: 9.05 \mathrm{~g}$

\qquad
2)

$$
\begin{aligned}
& \frac{U_{0.15} B_{A 0.33} \omega_{0.52}+}{y_{2} 0_{3}-1.6936} \\
& \text { b. title torn: } 74.55
\end{aligned}
$$

$\sqrt{i 7}$ / st calcination
tare $\begin{aligned} & 66.53 \\ & 54.16\end{aligned} \quad(12.37$ measure) from mixing)

1/18 рका $\begin{aligned} & 66.53 \\ & 65.5\end{aligned}$
$-\Delta \frac{65.15(05)}{1.38(48)}$ tare $5 \% .20$ Recovery $\frac{65.05}{\frac{54.2}{10.85}}$ itatal RWN.
$z^{n \delta}$ CAL (isl as above)
$1 / 19$ POST

$$
65.02
$$

$\frac{54.2}{10.82}$ to constant 10.29 Recovery
Nobs: LaRge liqu stare's (cremation) during 1 $15 / 2$ "ic cal warlike
 PREP1 3300/30,000 75C@5:16\% tamp © $7: 45$, 16 h $\rightarrow 164.45$ AM

1.60	1.414	0.258	0.405	3.95	62.1%
1.57	1.227	0.216	0.255	6.16	96.9

ar i) D_{2}
4) O_{2}
2) O_{2}
3) ${ }_{2}$ iso PSD's
.

This Page is: $\square]$ Unclassified \square IBM Internal Use Only \square IBM Confidential
entry witnessed entry. Have every possibly important entry witnessed omit an Invention Disclosure of anything possibly new and inventive.

70

$$
\begin{aligned}
& \begin{array}{ll}
\mathrm{Sr} 0 & =103.6194 \rightarrow \mathrm{Sr}_{3} \quad 147.63 \quad 1.4247 \\
\mathrm{CO} 0 & =79.5394
\end{array}
\end{aligned}
$$

The above understood
$147 / 89$

slice 2-1.28 mm - 1280 um
sham 3- $0.68 \quad 680 \mu \mathrm{~m}$
slice ii, prep: mo rated side 1 meornenesin 27.64 cum: $\frac{300 \mu}{980 / 2}=490-1340 \quad \frac{26.30-(3)}{11.34-1.29}$

720 un before starting second side

72
3)

Some bumping, but very good min wo oh ald ba time. R.35 post mix 12.72 expected REDO (Bumping too critical)

$$
\begin{aligned}
& 63.82 \\
& \frac{51.19}{19050}
\end{aligned}
$$

Ot grind: $11.21 \rightarrow 11.1462 .35$

$$
\begin{aligned}
& \text { (11.1 7expected) } \\
& 62.24 \text { Post cal II }
\end{aligned}
$$

$$
\begin{aligned}
& 62.25 \\
& \frac{51.20}{11.05}
\end{aligned}
$$

Very litter liao formation compared to \#2. Apparently need axis Bar and Cu Cor langer Via..
0.2 g loss due to Si certain from tube (pre-gunos) 10.8

$$
\begin{aligned}
& \text { fou }_{\text {IBM Technical Notebook }} \mathrm{Pa}_{0.35} C_{0.48}
\end{aligned}
$$

$1 / 27$
10.97 collated: whee top layer ow pouter. Dry Slake-cake racy agglimenated/kuille and dos voc rashly puds outionen bushed. Nod to day guard is order to proovci. decent path, . 10.25 recovered of bu day guises
P1 3500/29000

1.62	1.425	0.266	0.424	3.82	$60-\%$
1.52	1.321	0.245	0.336	4.52	71%

Pere guard \{ post grad x-cays show charge of some packs in two x-pays, however sintering calcination of pellet may
 ado.
Post: s some stamping.

 ave 222.5

1.04	1.138	0.256	0.260	4	62.3.
等.01	1.26	.22	0.187	5.34	$8 y$

 1155 900 SP 944

25 y y to med $11: 30$ e +550 math at or 95 c the vexation ere

 Date and sic $\quad \because$ ry entry. Have every possibly important entry witness submit an Invention Disclosure of anything possibly new and inventive.

IBM Technical Notebook

$\begin{array}{rlrl}\text { Post } 975 \mathrm{C} & 1 \mathrm{~h} \\ 3.41 \\ 1.402 & 0448 \quad 0.69 \quad 4.94 \quad 7777 & \rightarrow 78 \% & 4.2 \text { too low }\end{array}$ PII mill $D=2.34$ um $($ slow)

$3.40 \quad 1.285 \quad 0.4560 .59 \quad 5.76 \quad 90.6$ JNEED R/GGIIT HIGHER 〉
Tomorrow \rightarrow will mill un
\#

$$
g^{\ell g} A\left\{\begin{array}{l}
24 \text { NITA: } 20 \mathrm{~g} \\
16 \text { MITT: } 20.5
\end{array}\right.
$$

P4 (3.41) $1.462540 \quad 0.91 / 375 \quad 59 \ldots$

$\begin{array}{llllllll}\text { P6 (3.55) } & 1.463 & 0.58 & 0.85 & 4.17 & 65.6\end{array}$ 3.53 l.36 0.674 564 (82.4 Neut

P7 (3352) 1462$) 0.5040 .85 \quad 4.165) \quad 63.5$
3.59 :356 0.6620668 .36 (8405 hong
$\begin{array}{llllllllll} & 18 & 3.56) & 1.665 & 0.507 & 0.85 & 4.19 & 65.9\end{array}$

$$
\begin{array}{lllllll}
5873 & 1.352 & 0.193 & 0.65 & 5.73 & 90.2
\end{array}
$$

* laminates on 1 sick, vol severe (must re repplletres poled)

PG $4000 / 30000$
$3.57 \quad 1.462 \quad 0.57 \quad 0.87 \quad 411 \quad 64.5$
$3.56 \quad 1.354 \quad 0.463 \quad 0.666 \quad 5.35 \quad 840=$
PLO fines $4 / 3$ as dove
$1.53: 1.436 \quad 0.254 \quad 0.41, \quad 372 \quad 58.5 \quad$ Nat expected
1.54 1.254 0.207, $0256 \quad 6.02,94.7 \quad$ da snit hectipos

Pellet carting $N E K$ (see pg for plow overview)
Pellet $3=14$ dedicated to vertical $\&$ horiz. slicing
Pellets $6 \frac{1}{2} 7 \quad \downarrow$
Pellets $6\{7$
from tangent san at es ge: 1 mm shoes are $0.055^{\prime \prime} \mathrm{c} /$ blade

Houyontal: $2 \begin{array}{llll}1 & 1.0 & 0.5 \text { shies midsection pop } \\ & 1.5 & \text { top. }\end{array}$
High Density
verricial: 5 slices (Leet lost to chapping) lend phased 1.2 mw n 3 poxdof. The ct
horiz: $\sum_{1} 2_{1}$ and sad section bottom (top chyped)

2898 88
bxygenacion Siagran y-sheme
Top Viea

spermens $4 .(\mathrm{Hid})$

$2 / 14$ in and to 600 C (ब) $20 \mathrm{c} / \mathrm{Min} ; 10 \mathrm{c} / \mathrm{min}$ bo 800 c 15.uin soak and. stant eamp to 600 C (c) 0.17 hain ($10 \% / \mathrm{h}$)

To 600 C (ac 1:30 p.M. $2 / 15 / \mathrm{B2}$ in dey, CO efree O_{2}.
Rllat(1) $\frac{1}{2} c$
$11 / 40.6800,10 \%$ to $600.2 \delta_{y}$ (4ah), grochl.

3) 1 save nenaude fu fryay dee (dssulea))

2i) 1 itraa slice orggevated
Pellet cal $0 \frac{1}{5} \mathrm{c}$

12 dacss 和 TEM
1 spac

spune foe (1) x-ereg thice
(3) Coz culte

Example CQLe: wt frac doew.

$A 2$
Adaunistratve Noresstch Size for reasonable buLk handuive

$$
\begin{aligned}
& y_{2} \mathrm{O}_{3} 17.51 / .999=17.52(7) \approx 17.53 \\
& \mathrm{BaCO}_{3} \quad 65.12(5) / 9999=15.12(.5) \approx 65.13-549.78 \\
& \mathrm{CuO} \quad 39.77 / .999=39.80(9) \approx \frac{39.81}{122.47}
\end{aligned}
$$

\qquad $\frac{\tan 228.65}{65.13}$ ($-A 0.01 ?$

Qeftar $108.71 / 110=98.8 \%-\Delta 1.2 \%$
groI

$$
\begin{aligned}
& 197.383(.2) \\
& \frac{88.64}{108.69}
\end{aligned}
$$

C4-7 TRANSFORM TO STOIC bASIS

$$
y_{2}\left(O_{3}\right) \quad B_{u}\left(\partial_{3}\right) \quad C(0)
$$

$$
\begin{array}{llll}
\left.1 / 20_{3}\right) & B_{a}\left(0_{3}\right) & 4() & 0.48 \\
0.17 & 0.31 & 0.478
\end{array}
$$

Covect for finab bath ado
:O $\mathrm{Y}_{2} \mathrm{O}_{3}$ es geor as pecered
BaCO_{3} \& Barum ruch by 0,02 at $\%$
CO ls copper rect by 0.02 at $\%$

A3
Post Cal II : C 60hs © 950 C in O_{2}

$$
\begin{aligned}
& \frac{195.52}{88.64}-106.88-108.69=1281 / 2.25=80.5 \% \text { of Remanter } \\
& \frac{12.28}{14.09 / 14.53 H_{0 c c}}=97 \% \text { loss }
\end{aligned}
$$

Murimal lia formations.
99.57 g yield (due to cont mmenaton)
\{furthon crstameration upon rescomerion to fuhe for cal III rocuces
Peaks (8) $30,2,29.4,28.52 \theta$ dusturbung. May be $\mathrm{Ba}_{\mathrm{a}} C_{3}$, hat

$$
n \lambda=2 \delta \sin \theta \Rightarrow \delta=\frac{\lambda}{2} \sin \theta \quad 100=3.72
$$

419 sondengaromgtane

From Plechaty: Y. $96 \mathrm{Ba}_{2.16} \mathrm{U}_{3} \quad\left(y_{32} \mathrm{Ba}_{2}, 2 \omega_{1}\right) \mathrm{O}_{2,2}$ In Refersence to variational study: $0.016 \quad \begin{aligned} & \pm 0.01 \\ & \\ & \pm 0.005\end{aligned}$

 2 g pellets sharld aive en of material for 4.4 mm the en satered body allownig a slice to be cot ey on interor featercor surface.
7.5 g \#1 stock 1.92 usec) Sor pastet (.17.33-5)
$7.6 \mathrm{~g} \# 2$ stock $190 \mathrm{~b} \quad(.15 .33 .52)$
85 g 3 toch $-12.35 .48)$.

$$
9 \quad \# 4
$$

$$
\text { \#1 } P_{3} 360,1(2), 000
$$

$$
\begin{array}{ccccc}
\text { P3 } & 1.1445 & 0.479 & 0.489 & 3.93 \times 1 . \\
1.92 & 61.8 \\
1.90 & 1.0 & 0.4 & 0.314 & 6.05 \\
\hline
\end{array}
$$

$$
\begin{array}{lllll}
\# 2 & P 3 \\
1.91 & 1.126 & 0.490 & 0.488 & 3.91 \\
\hline 1.88(2) & 0.98 & 0.412 & 0.311 & 6.045 \\
\hline & & 61.5 \\
\hline & & & & \\
\hline 3 P 2 & 1.133 & 0.503 & 0.507 & 3.85 \\
\hline 1.95 & 0.998 & 0.43 & 0.336 & 5.51 \\
\hline
\end{array}
$$

$$
-8.11 .85
$$

Administrative Notes 2
11-5
Pet 3 slicing \{ oxyognation co -600 Cor 66 hs orr Ve
0.394 wreles 0.157 iw for conter ant .08 .2 mm

者 P4 Pre 63.5%

pott | 1.85 | 1.025 | 0.406 | 0.335 | 5.52 | 87 |
| :--- | :--- | :--- | :--- | :--- | :--- |

228 Property Pellet Sumemasiy (to date)

 OUT/genatior run
Ot $10: 00$ A.M, 3/2 $40 \mathrm{~h} \mathrm{O}_{2}$

$$
\begin{aligned}
5 \mathrm{cc} \times \frac{6.36 g}{c c} g x & =31.8 g \\
\frac{\pi(2.54)^{2}}{4} x & =5 c c \\
5.07 x & =5 \mathrm{~cm} \\
x & =5 \mathrm{~cm}^{2} / 5.07 \mathrm{~cm}^{2}
\end{aligned}
$$

$x \approx 1 \mathrm{~cm}$ oe $1 / 2$ whed -1 wich with shriwkege
\#1-C3 $\%$ Cu 28.1
wt \% holes 36.0

Hole Conerutartion Conversion formuia:

$$
\begin{aligned}
& \therefore \text { adf } C_{0 \text { rabluie }}(2)=2.25=\text { averoge ralavice } C \\
& 2.25\left(C_{\text {wual }}\right)=2.25(3)=6.75 \text { total } C_{\text {val }}
\end{aligned}
$$

Take thal chargo $\}$ durck by two for O^{2-}

To estimate palfte weght for pelle pecessing:
A. take de dai $\{$ appare hioght desierd 1. colulate rhumu in ec. $\left(1.2 \cdot \frac{(122 c c i)^{2}}{4} 035 \times \pi \times \pi\right)=0.41 \mathrm{c}$
B. Assme some reasonoble 'greain dusisty (witras) possed plltt) $0.6-0.8(60-80 \%)$ sjoal formetide $>0.70 \%$ suall ave. pat. Sias. (1e. 3 mm). a dusity thenitial

$$
\text { seef } 0.41 \mathrm{cc} / 0.8) \times 9.0^{\circ} \mathrm{g} \mathrm{gc}=3 \mathrm{~g} \text {.f pubz. }
$$

I perse) @ batuen $16,000\{20,000$ psi.
Low side for pue notilal :-
$\frac{x}{\left(\int_{\text {uide }}\right)^{2}}=$ desined pasure chere $x=1{ }^{1}$ scal porsume
$x \approx 4000$ for 0.48^{n} Jia. Sie.

\qquad
administralve Noles Notes to Kristy concerning RELCET Forming precalculations
\qquad
\qquad To estimate pallf curght foe pellat peessing:
A take die dia $\{$ appanc. hioght dessered

1. colulate rhum in ac: $\left(10 \cdot \frac{(122 e \cos)^{2}}{4} 0.35 \mathrm{~m} x \pi\right)=0.4 / \mathrm{cc}$
B. Assime some reasonoble 'greew dustry (wireo possed pllta) 0.6-0.8 (60-80\%) cosol formetid $>0.70 \mathrm{~m} /$ suell ave. pal. Sias. (ie. 3 mm).
a dusity thentia
Sosfo.41cc $/ 0.8$) $9.0_{\mathrm{g} / \mathrm{cc}}^{\circ}=3 \mathrm{~g}$ of pulz.
I prossed @ baturew $16,000\{20,000$ psi.
low side for pue notal :-
$\frac{x}{(\text { (riade })^{2}}=$ desiod parsure che $x=1^{\prime \prime}$ scoli poisune \qquad
\qquad
$x \approx \$ 9000$ for $0.48^{\prime \prime}$ Sia. Sie.
at \% holes 36.0

Hole Conientantion Conversion formvia:

$$
\therefore \text { add Curalevie }(2)=2.25 \text { Eaveroge valevice } C
$$

$$
2.25\left(C_{\text {votal }}\right)=2.25(3)=6.75 \text { total Cural }
$$

Thke that charges $\left\{\right.$ durche by two for 8^{2-}

$$
\begin{aligned}
& \text { Take tetal charges }\left\{\text { durck by two tor } O^{2}\right. \\
& 13.75 / 2=6.88 \mathrm{O}_{\text {ATom }} \Rightarrow \mathrm{BA}_{2} \mathrm{C}_{3}^{2.25} \mathrm{O}_{6.88}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Date: wi \% Cu (talal): } 28.7 \\
& \text { wi \% holes : 36.- }
\end{aligned}
$$

Administrative Notes
Notes to Kristy concerning PELLET Forming precalculations
\qquad
\qquad
\qquad To estimate pallft weght Sou pellet pecessing:
A. take die Dia $\{$ appura. hieght dosered 1. calulate rhumu is ce. $\left(1 . e \frac{(122 e c a)^{2}}{4} 035 \times \pi\right)=0.41 \mathrm{c}$
B. Assime some reasonovele 'grewn dususty (whed posser pallt) $0.6-0.8(60-80 \%)$ sual. For metide $>0.70 \mathrm{~m}$ suall ace. pat. Jias. (1e. 3 mm).

I pesse) @ between 16,000 $\{20,000$ psi.
low side for pure notal :-
$\frac{x}{(\operatorname{riade})^{2}}=$ desioodposure ahe $x=1{ }^{\prime \prime}$ scal portave
$x \approx 4000$ for 0.48° Sia. Sie.

Administrative Notes K, KROM

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

5 5 5 (2)
admintstative Nore Analyfical Results for C3 HD/LD STUDY - Holes

\qquad

512189
Adminstratiy Noles Recalculation Phe HD, LD values oy $28.7 \% C_{0}$
$H D$ holes $33.5 \therefore \frac{33.5-287}{28.7}=0.167$

$$
\begin{aligned}
z+0.167=2.167(3)= & +6.50 \\
& \frac{72-}{13.50 / 2}=6.75 \Rightarrow y \mathrm{Ba}_{2} \mathrm{c}_{3}^{2117} \mathrm{O}_{6.75}
\end{aligned}
$$

$\begin{aligned} & L D \frac{34.2-28.7}{28.7}=0.192 \quad 2.192(3)=6.58 \\ &+7 \\ & 13.58 / 2=6.79\end{aligned}$

$$
\therefore y^{2} \mathrm{Ba}_{2} \mathrm{Cu}_{3}^{2192} \mathrm{O}_{677}
$$

with orignal sual Cu values
Wh $\frac{335-275}{22.5}=0.22 \quad 2.22(3)=\frac{6.66+7}{2}=13.66 / 2=6.83$
(1) $\frac{34.2-27.0}{27}=0.27 \quad 2.27(3)=6.81+7=13.81 / 2=6.90(5)$
a/ ave $27.5+27=22.25$
$L D \frac{34.2-2725}{22.25}=0.25(5) \quad 2.255(3)=6.765=13765 / 2=6.88$ HD $\frac{33.5-27.25}{22.25}=0.23 \quad 2.23(3)=6.697 f 6.885^{6}$

FACSIMILE

DATE: \qquad $12116 / 98^{\circ}$ no. of Pages to follow: 24 To:
NAME: \qquad Examiner dy. Kopec
ADDRESS: \qquad USPTO- thorp 1105 703-308-1088
PHONE NO. \qquad
\qquad 703-305-3599
FAX NO. \qquad
from: Pencil Movies
рноме no. \qquad 703-945-3217
LOCATION: \qquad IBM yorktown
contact t:

$$
914-945-3243
$$

CLASSIFICATION:
\qquad IBM CONFIDENTIAL
\qquad PERSONAL \qquad IBM INTERNAL USE ONLY - UN CLASSIFIED
\qquad
Tue and lire for B2cose dated 12115748
THIS MESSAGE IS INTENDED ONLY FOR THE USE OF THE INDIVIDUAL OR ENTITY TO WHICH IT IS ADDRESSED. AND MAY CONTAIN INFORMATION THAT IS PRIVILEGED, CONFIDENTIAL AND EXEMPT FROM DISCLOSURE UNDER APPLICABLE LAW. IF THE READER OF THIS MESSAGE IS NOT THE INTENDED RECIPIENT. OR THE EMPLOYEE OR AGENT DISSEMINATION, DISTRIBUTION OR COPYING OF THIS COMMUNICATION IS STRICTLY PROHIBITED. IF YOU HAVE DISSEMINATION, DISTRIBUTION OR COPYING OF THIS COMMUNICATION IS STRICTLY PROHIBITED. IF YOU HAVE
RECEIVED THIS COMMUNICATION IN ERROR, PLEASE NOTIFY US IMMEDIATELY BY TELEPHONE AND RETURN THE RECEIVED HIS COMMUNICATION IN ERROR, PLEASE MOTIF US IMMEDIATELY BY TEL

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: J. Bednorz et al.
Serial No. 08/303,561
Filed: September 9, 1994

Date: December 16, 1998
Group Art Unit: 1105
Examiner: M. Kopec

For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, AND METHODS FOR THEIR USE AND PREPARATION

The Commissioner of Patents and Trademarks
Washington, D.C. 20231

CERTIFICATION OF TRANSMISSION PURSUANT TO 37 CFR 1.8

I hereby certify that this paper is being facsimile transmitted under Rule CFR 1.6(d) to the U.S. Patent and Trademark Office on the date shown above.

IBM CORPORATION
Intellectual Property Law Dept.
P.O. Box 218

Yorktown Heights, New York 10598
(914) 945-3217

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: J. Bednorz et al.
Serial No. 08/303,561
Filed: September 9, 1994

Date: December 15, 1998
Group Art Unit: 1105
Examiner: M. Kopec

For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, AND METHODS FOR THEIR USE AND PREPARATION

The Commissioner of Patents and Trademarks
Washington, D.C. 20231

AMENDMENT AFTER FINAL REJECTION

Sir:
In response to the Office Action dated June 25, 1998, please consider the following:

REMARKS

In the referenced final Office Action, the Examiner refers to three affidavits (of Mitzi,
Tsuei and Dinger) submitted by applicants to overcome the rejection under 35.USC 112 for a lack of enablement. The Examiner's comments are at (paragraph (d)(iv) page 7, 5 lines from the bottom to page 8,4 lines from the bottom. The Examiner states:
(d)(iv)(1) "Those affidavits do not set forth particular facts to support the conclusions that all superconductors based on the applicants' work behave in the same way and that one skilled in the art can make these superconductors without undue experimentation."
(d)(iv)(2) "Those affidavits do not overcome the non-enablement
rejection."
(d)(iv)(3) "Those affidavits are not deemed to shed light on the state of the art and enablement at the time the invention was made."

Moreover, in applicant's response dated May 14, 1998, applicants refer to Poole et al. which states at page 59 thereof "[c]opper oxide superconductors with a parity sufficient to exhibit zero resistivity or to demonstrate levitation (Early) are not difficult to snythesize. We believe that this is at least partially responsible for the explosive worldwide growth in these materials" (see applicant's response for the entire text that is quoted and Attachment A thereof for copies of relevant pages from Pool et al.)

In response the Examiner states:
(1) Initially, however, it should be noted that the Poole article was published after the priority date presently claimed. As such, it does not provide evidence of the state of the art at the time the presently claimed invention was made.
(2) Moreover, the present claims are directed to processes of using metal oxide superconductors, not processes of making them. Even if the Poole article provided direct evidence of the state of the art at the time the invention was made, which it apparently does not, that evidence still does not pertain to the issue at hand, namely, the process of using metal oxide superconductors to conduct electricity under superconducting condition.

Applicants respectfully disagree with the Examiner. In further support of applicants position that all their claims are fully enabled, applicant's submit the amended affidavit of Mitzi, Tsuei and Dinger which provides a list of books and articles published prior to applicants filing date showing the general principles of ceramic science used by applicants and which are used as stated by Poole et al. to make the high Tc
superconductors taught and claimed by applicants which "are not difficult to synthesize."

IBM CORPORATION
Intellectual Property Law Dept.
P.O. Box 218

Yorktown Heights, New York 10598
(914) 945-3217

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of

J. Bednorz et al. : Date: December 15, 1998

Serial No. 08/303,561
Group Art Unit: 1105
Filed: September 9, 1994
Examiner: M. Kopec

For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, AND METHODS FOR THEIR USE AND PREPARATION

AFFIDAVIT UNDER 37 C.F.R. 1.132

Commissioner of Patents and Trademarks
Washington, D. C. 20231

Sir:
I, Chang C. Tsuei, being duly sworn, do hereby depose and state:

That I received a B. S. degree in Mechanical Engineering from National Taiwan University (1960) and M. S. and PhD. degrees, in Material Science $(1963,1966)$ respectively from California Institute of Technology.

That I have worked as a research staff member and manager in the physics of superconducting, amorphous and structured materials at the Thomas Watson Research Center of the International Business Machines Corporation in Yorktown Heights, New York from 1973 to the present. (See attached Exhibit A for other professional employment history.)

That I have worked in the fabrication of and characterization of high temperature superconductor and related materials from 1973 to the present.

That I have reviewed the above-identified patent application and acknowledge that it represents the work of Bednorz and Muller, which is generally recognized as the first discovery of YO987-074BY
superconductivity above $26^{\circ} \mathrm{K}$ and that subsequent developments in this field have been based on this work.

That all the high temperature superconductors which have been developed based on the work of Bednorz and Muller behave in a similar manner, conduct current in a similar manner and have similar magnetic properties.

That once a person of skill in the art knows of a specific transition metal oxide composition which is superconducting above $26^{\circ} \mathrm{K}$, such a person of skill in the art, using the techniques described in the above-identified patent application, which includes all knows principles of ceramic fabrication known at the time the application was filed, can make the transition metal oxide compositions encomposed by the claims in the above identified application, without undue experimentation or without requiring ingenuity beyond that expected of a person of skill in the art. This is why the work of Bednorz and Muller was reproduced so quickly after their discovery and why so much additional work was done in this field within a short period of their discovery.

The general principles of ceramic science referred to by Bednorz and Mueller in their patent application can be found in many books and articles published before their discovery. An exemplary list of books describing the general principles of ceramic fabrication are:

1) Introduction to Ceramics, Kingery et al., Second Edition, John Wiley \& Sons, 1976, in particular pages 5-20, 269-319, 381-447 and 448-513, a copy of which is with the Affidavit of Thomas Shaw submitted December 15, 1998.
2) Polar Dielectrics and Their Applications, Burfoot et al., University of California Press, 1979, in particular pages 13-33, a copy of which is with the Affidavit of Thomas Shaw submitted December 15, 1998.
3) Ceramic Processing Before Firing, Onoda et al., John Wiley \& Sons, 1978, the entire book, a copy of which is with the Affidavit of Thomas Shaw submitted December 15, 1998.
4) Structure, Properties and Preparation of Perovskite-Type Compounds, F.S. Glasso, Pergamon Press, 1969, in particular pages 159-186, a copy of which is with the Affidavit of Thomas Shaw submitted December 15, 1998.

An exemplary list of articles applying their general principles of ceramic fabrication to the types of materials described in applicants' specification are (these references are cited on applicant's 1449 form submitted August 5, 1987 and in PTO Form 892 in Paper \# 20, Examiner's action dated August 8, 1990):

1) Oxygen Defect $\mathrm{K}_{2} \mathrm{NiF}_{4}$ - Type Oxides: The Compounds $\mathrm{La}_{2-\mathrm{x}} \mathrm{Sr}_{\mathrm{x}} \mathrm{CuO}_{4 \times 2 / 2+*}$, Nguyen et al., Journal of Solid State Chemistry 39, 120-127 (1981).
2) The Oxygen Defect Perovskite $\mathrm{BaLa}_{4} \mathrm{Cu}_{5}-0_{134}$, A Metallic Conductor, C. Michel et al., Mat. Res. Bull., Vol. 20, pp. 667-671, 1985.
3) Oxygen intercalation in mixed valence copper oxides related to the perovskite, C. Michel et al., Revue de Chemie minerale, p. 407, 1984.
4) Thermal Behaviour of Compositions in the Systems $x \mathrm{BaTiO}_{3}+(1-x) \mathrm{Ba}\left(\mathrm{Ln}_{0.5} \mathrm{~B}_{0.5}\right)$ 0_{3},V.S. Chincholkar et al. Therm. Anal. 6th, Vol. 2., p. 251-6, 1980.

By: \qquad
Chang C. Tsuei

Sworn to before me this
 day of \qquad December 1998

SANDRA M. EMMA
Notary Public. State of New York
No. 01P04935290
Qualified in West chester County.
Commission Expires July 5 , yoU O

CHANG C. TSUEI

Education

California Institute of Technology, M.S. (1963), Ph.D. (1966)
National Taiwan University, B S. (1960)

Professional Employment

1993 - present - Research Staff Member
1983-1993 - Manager, Physics of Structured Materials
1979-1983 - Manager, Physics of Amorphous Materials
1974-1975 - Acting Manager, Superconductivity
1973-1979 - Research Staff Member

Harvard University: 1980 (Summer)
Visiting Scholar in Applied Physics

Stanford University: 1982 (Sept.) - 1983 (April)
Visiting Scholar in Applied Physics

California Institute of Technology
1972-1973 - Senior Research Associate in Applied Physics
1969-1972 - Senior Research Fellow in Materials Science
1966-1969 - Research Fellow in Materials Science

Exhibit A

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of
J. Bednorz et al.

Date: December 15, 1998
Serial No. 08/303,561
Group Art Unit: 1105
Filed: September 9, 1994
Examiner: M. Kopec
For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, AND METHODS FOR THEIR USE AND PREPARATION

AFFIDAVIT UNDER 37 C.F.R. 1.132

Commissioner of Patents and Trademarks
Washington, D. C. 20231

Sir:

I, David B. Mitzi, being duly sworn, do hereby depose and state:

That I received a B. S. E. degree in Electrical Engineering/Engineering Physics (1985) from Princeton University and a PhD. degree, in Applied Physics (1990) from Stanford University, California.

That I have worked as a research staff member in Solid State Chemistry at the Thomas Watson Research Center of the International Business Machines Corporation in Yorktown Heights, NY from 1990 to the present.

That I have worked in the fabrication of and characterization of high temperature superconductor and related materials from 1990 to the present.

That I have reviewed the above-identified patent application and that I have reviewed the above-identified patent application and acknowledge that it represents the work of Bednorz and

Muller, which is generally recognized as the first discovery of superconductivity above $26^{\circ} \mathrm{K}$ and that subsequent developments in this field have been based on this work.

That all the high temperature superconductors which have been developed based on the work of Bednorz and Muller behave in a similar manner, conduct current in a similar manner and have similar magnetic properties.

That once a person of skill in the art knows of a specific transition metal oxide composition which is superconducting above $26^{\circ} \mathrm{K}$, such a person of skill in the art, using the techniques described in the above-identified patent application, which includes all knows principles of ceramic fabrication known at the time the application was filed, can make the transition metal oxide compositions encomposed by the claims in the above identified application, without undue experimentation or without requiring ingenuity beyond that expected of a person of skill in the art. This is why the work of Bednorz and Muller was reproduced so quickly after their discovery and why so much additional work was done in this field within a short period of their discovery.

The general principles of ceramic science referred to by Bednorz and Mueller in their patent application can be found in many books and articles published before their discovery. An exemplary list of books describing the general principles of ceramic fabrication are:

1) Introduction to Ceramics, Kingery et al., Second Edition, John Wiley \& Sons, 1976, in particular pages 5-20, 269-319, 381-447 and 448-513, a copy of which is with the Affidavit of Thomas Shaw submitted December 15, 1998.
2) Polar Dielectrics and Their Applications, Burfoot et al., University of California Press, 1979, in particular pages 13-33, a copy of which is with the Affidavit of Thomas Shaw submitted December 15, 1998.
3) Ceramic Processing Before Firing, Onoda et al., John Wiley \& Sons, 1978, the entire book, a copy of which is with the Affidavit of Thomas Shaw submitted December 15, 1998.
4) Structure, Properties and Preparation of Perovskite-Type Compounds, F.S. Glasso, Pergamon Press, 1969, in particular pages 159-186, a copy of which is with the Affidavit of Thomas Shaw submitted December 15, 1998.

An exemplary list of articles applying their general principles of ceramic fabrication to the types of materials described in applicants' specification are (these references are cited on applicant's 1449 form submitted August 5, 1987 and in PTO Form 892 in Paper \# 20, Examiner's action dated August 8, 1990):

1) Oxygen Defect $\mathrm{K}_{2} \mathrm{NiF}_{4}$ - Type Oxides: The Compounds $\mathrm{La}_{2-\mathrm{x}} \mathrm{Sr}_{\mathrm{x}} \mathrm{CuO}_{4 \times 2+2+*}$, Nguyen et al., Journal of Solid State Chemistry 39, 120-127 (1981). $g o n$
2) The Oxygen Defect Perovskite $\mathrm{BaLa}_{4} \mathrm{Cu}_{5} \emptyset_{13.4}$, A Metallic Conductor, C. Michel et al., Mat. Res. Bull., Vol. 20, pp. 667-671, 1985.
3) Oxygen intercalation in mixed valence copper oxides related to the perovskite, C. Michel et al., Revue de Chemie minerale, p. 407, 1984.
4) Thermal Behaviour of Compositions in the Systems $x \mathrm{BaTiO}_{3}+(1-\mathrm{x}) \mathrm{Ba}\left(\operatorname{Ln}_{0.5} \mathbf{B}_{0.5}\right) 0_{3}$, V.S. Chincholkar et al. Therm. Anal. 6th, Vol. 2., p. 251-6, 1980.

By:

David B. Mitzi

In re Patent Application of J. Bednorz et al.
 Date: December 15, 1998
 Serial No. 08/303,561
 Group Art Unit: 1105
 Filed: September 9, 1994
 Examiner: M. Kopec
 For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, AND METHODS FOR THEIR USE AND PREPARATION

AFFIDAVIT UNDER 37 C.F.R. 1.132

Commissioner of Patents and Trademarks
Washington, D. C. 20231

Sir:

I, Timothy Dinger, being duly sworn, do hereby depose and state:

That I received a B. S. degree in Ceramic Engineering (1981) from New York State College of Ceramics, Alfred University, an M. S. degree (1983) and a PhD. degree (1986), both in Material Science from the University of California at Berkley.

That I have worked as a research staff member in Material Science at the Thomas Watson Research Center of the International Business Machines Corporation in Yorktown Heights, NY from 1986 to the present.

That I have worked in the fabrication of and characterization of high temperature superconductor materials from 1987 to 1991.

That I have reviewed the above-identified patent application and acknowledge that it represents the work of Bednorz and Muller, which is generally recognized as the first discovery of
superconductivity above $26^{\circ} \mathrm{K}$ and that subsequent developments in this field have been based on this work.

That all the high temperature superconductors which have been developed based on the work of Bednorz and Muller behave in a similar way, conduct current in a similar manner and have similar magnetic properties.

That once a person of skill in the art knows of a specific transition metal oxide composition which is superconducting above $26^{\circ} \mathrm{K}$, such a person of skill in the art, using the techniques described in the above-identified patent application, which includes all knows principles of ceramic fabrication known at the time the application was filed, can make the transition metal oxide compositions encomposed by the claims in the above identified application, without undue experimentation or without requiring ingenuity beyond that expected of a person of skill in the art. This is why the work of Bednorz and Muller was reproduced so quickly after their discovery and why so much additional work was done in this field within a short period of their discovery.

The general principles of ceramic science referred to by Bednorz and Mueller in their patent application can be found in many books and articles published before their discovery. An exemplary list of books describing the general principles of ceramic fabrication are:

1) Introduction to Ceramics, Kingery et al., Second Edition, John Wiley \& Sons, 1976, in particular pages 5-20, 269-319, 381-447 and 448-513, a copy of which is with the Affidavit of Thomas Shaw submitted December 15, 1998
2) Polar Dielectrics and Their Applications, Burfoot et al., University of California Press, 1979, in particular pages 13-33, a copy of which is with the Affidavit of Thomas Shaw submitted December 15, 1998.
3) Ceramic Processing Before Firing, Onoda et al., John Wiley \& Sons, 1978, the entire book, a copy of which is with the Affidavit of Thomas Shaw submitted December 15, 1998.
4) Structure, Properties and Preparation of Perovskite-Type Compounds, F.S. Glasso, Pergamon Press, 1969, in particular pages 159-186, a copy of which is with the Affidavit of Thomas Shaw submitted December 15, 1998.

An exemplary list of articles applying their general principles of ceramic fabrication to the types of materials described in applicants' specification are (these references are cited on applicant's 1449 form submitted August 5, 1987 and in PTO Form 892 in Paper \# 20, Examiner's action dated August 8, 1990):

1) Oxygen Defect $\mathrm{K}_{2} \mathrm{NiF}_{4}-$ Type Oxides: The Compounds $\mathrm{La}_{2-\mathrm{x}} \mathrm{Sr}_{\mathrm{x}} \mathrm{CuO}_{4 \times \times 2+*}$, Nguyen et al., Journal of Solid State Chemistry 39, 120-127 (1981).
2) The Oxygen Defect Perovskite $\mathrm{BaLa}_{4} \mathrm{Cu}_{5}-0_{13.4}$, A Metallic Conductor, C. Michel et al., Mat. Res. Bull., Vol. 20, pp. 667-671, 1985.
3) Oxygen intercalation in mixed valence copper oxides related to the perovskite, C. Michel et al., Revue de Chemie minerale, p. 407, 1984.
4) Thermal Behaviour of Compositions in the Systems $x \mathrm{BaTiO}_{3}+(1-\mathrm{x}) \mathrm{Ba}\left(\mathrm{Ln}_{0.5} \mathrm{~B}_{0.5}\right) 0_{3}$, V.S. Chincholkar et al. Therm. Anal. 6th, Vol. 2., p. 251-6, 1980.

By:

Sworn to before me this $160^{\text {ted }}$ day of Decomher 1998

Nctary Public
SANDRA M. EMMA
Notary Public, State of New York
No. O1PO4935290
Qualified in Westchester Coynty
Commission Expires July 5. 2U(y

*

DATE	TIME	TOFFROM	MODE	MINSEC	FGS	CMD	STATIS
12/15	15:41	53599	EC--5	01'18'	ㄷ104		OK

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: J. Bednorz et al.
Serial No. 08/303,561
Filed: September 9, 1994

Date: December 15, 1998
Group Art Unit: 1105
Examiner: M. Kopec

For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, AND METHODS FOR THEIR USE AND PREPARATION

The Commissioner of Patents and Trademarks Washington, D.C. 20231

CERTIFICATE OF FACSIMILE TRANSMISSION

I hereby certify that this paper is being facsimile transmitted under 37 CFR 1.61 (d) to the U.S. Patent and Trademark Office on March 23, 1998 to telephone number 703-305-3599.

Reg. No. 32,053

AMENDMENT AFTER FINAL REJECTION UNDER 37 CFR 1.116

Attached is an affidavit under 37 CFR 1.132 of Dr. James W. Leonard, IBM research librarian. Dr. Leonard did a search of articles referencing applicants articel J. G.

Bednorz and K. A. Muller, Zeitschrift fur Physik B- Condensed Matter, 64, pp. 189-193 (Sept. 1986) which is incorporated by reference in the specification at page 6, lines $8-10$. As stated at page 6 this article is the basis for applicants invention. More than 5800 articles have referenced applicants' article. This is evidence that applicants' teaching in the present application has motivated persons of skill in the art to work in
the field of high T_{c} superconductivity and that applicants teaching has fully enabled the invention of their claims. All these articles citing applicants' article acknowledge that their work is based on applicants' teaching. Thusapplicants respectfully request the withdrawal ot the rejection of applicants' claims under 35 USC 112 as lacking enablement.

In view of the changes to the claims and the remarks herein, the Examiner is respectfully requested to reconsider the above-identified application. If the Examiner wishes to discuss the application further, or if additional information would be required, the undersigned will cooperate fully to assist in the prosecution of this application.

Please charge any fee necessary to enter this paper to deposit account 09-0468.

If the above-identified Examiner's Action is a final Action, and if the above-identified application will be abandoned without further action by applicants, applicants file a Notice of Appeal to the Board of Appeals and Interferences appealing the final rejection of the claims in the above-identified Examiner's Action. Please charge deposit account 09-0468 any fee necessary to enter such Notice of Appeal.

Reg. No. 32,053

IBM Corporation

Intellectual Property Law Dept.
P.O. Box 218

Yorktown Heights, N.Y. 10598
(914) 945-3217

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: J. Bednorz et al.
Serial No. 08/303,561
Filed: September 9, 1994

Date: December 15, 1998
Group Art Unit: 1105

For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, AND METHODS FOR THEIR USE AND PREPARATION

The Commissioner of Patents and Trademarks
Washington, D.C. 20231

AFFIDAVIT UNDER 37 CFR 1.132

Sir:

I, James W. Leonard, being duly sworn, do hereby depose and state:

I received a A.B. degree in Physics from the University of California at Santa Barbara (1962), and a M.S. and PhD. degree in Physics (1968) from the University of Oregon, Eugene, and an M.L.S. in Library Science from the University of Western Ontario (1972), London.

I have worked as a science librarian in the Thomas J. Watson Research Center from 1978 to the present. On December 2, 1998, I did a citation search in the SciSearch database on the Dialog on line system of the article J. G. Bednorz and K. A. Muller, Zeitschrift fur Physik B- Condensed Matter, 64, pp. 189-193 (Sept. 1986). The result YO987-074BY
of that search is below. There are a total of 5689 articles which refer to 1986 article of Bednorz and Muller: 1 in 1986, 839 in 1987, 1163 in 1988, 793 in 1989, 594 in 1989 and the remainder in the years from 1990 to the present.

SEARCH RESULTS

```
SYSTEM:OS - DIALOG OneSearch
    File 434:SciSearch(R) Cited Ref Sci 1974-1989/Dec
            (c) }1998\mathrm{ Inst for Sci Info
    File 34:SciSearch(R) Cited Ref Sci 1990-1998/Nov W4
            (c) }1998\mathrm{ Inst for Sci Info
Set Items Description
S1 5689 CR=BEDNORZ JG, 1986, V64, P189,?
S2 1 S1 AND PY=1986
S3 839 S1 AND PY=1987
S4
            1163 S1 AND PY=1988
            793 S1 AND PY=1989
            594 S1 AND PY=1990
```


86/5I/ZI

86/51/6 cevond wa maver	
	46,

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: J. Bednorz et al.
Serial No. 08/303,561
Filed: September 9, 1994

Date: December 15, 1998
Group Art Unit: 1105
Examiner: M. Kopec

For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, AND METHODS FOR THEIR USE AND PREPARATION

The Commissioner of Patents and Trademarks
Washington, D.C. 20231

AFFIDAVIT UNDER 37 CFR 1.132

Sir:

I, Thomas M. Shaw, being duly sworn, do hereby depose and state:

I received a B.S. degree in Metallurgy from the University of LIverpool, Liverpool, England and a M.S. and PhD. degree in Materials Science (1981) from the University of California, Berkeley.

I have worked as a postdoctoral researcher in the Material Science Department of Cornell University from 1981-1982. I worked at Rockwell International Science Center in Thousand Oaks, California from 1982-1984 as a ceramic scientist. I have worked as a research staff member in Ceramics Science at the Thomas J. Watson Research

Center of the International Business Machines Corporation in Yorktown Heights, N.Y. from 1984 to the present.

I have worked in the fabrication of and characterization of ceramic materials of various types, including superconductors and related materials from 1984 to the present.

Attached is a resume of my publications. I have reviewed the above-identified patent application and acknowledge that it represents the work of Bednorz and Mueller, which is generally recognized as the first discovery of superconductivity above $26^{\circ} \mathrm{K}$ and that subsequent developments in this field have been based on this work.

That all the high temperature superconductors which have been developed based on the work of Bednorz and Mueller behave in a similar manner, conduct current in a similar manner and have similar magnetic properties.

That once a person of skill in the art knows of a specific transition metal oxide composition which is superconducting above $26^{\circ} \mathrm{K}$, such a person of skill in the art, using the techniques described in the above-identified patent application, which includes all known principles of ceramic fabrication known at the time the application was filed, can make the transition metal oxide compositions encompassed by the claims in the above-identified application, without undue experimentation or without requiring ingenuity beyond that expected of a person of skill in the art. This is why the
work of Bednorz and Mueller was reproduced so quickly after their discovery and why so much additional work was done in this field within a short period of their discovery.

The general principles of ceramic science referred to by Bednorz and Mueller in their patent application can be found in many books and articles published before their discovery. An exemplary list of books describing the general principles of ceramic fabrication are:

1) Introduction to Ceramics, Kingery et al., Second Edition, John Wiley \& Sons, 1976, in particular pages 5-20, 269-319, 381-447 and 448-513, a copy of which is attached herewith.
2) Polar Dielectrics and Their Applications, Burfoot et al., University of California Press, 1979, in particular pages 13-33, a copy of which is attached herewith.
3) Ceramic Processing Before Firing, Onoda et al., John Wiley \& Sons, 1978, the entire book, a copy of which is attached herewith.
4) Structure, Properties and Preparation of Perovskite-Type Compounds, F.S. Glasso, Pergamon Press, 1969, in particular pages 159-186, a copy of which is attached herewith.

An exemplary list of articles applying their general principles of ceramic fabrication to the types of materials described in applicants' specification are (these references are cited on applicant's 1449 form submitted August 5, 1987 and in PTO Form 892 in Paper \# 20, Examiner's action dated August 8, 1990):

1) Oxygen Defect $\mathrm{K}_{2} \mathrm{NiF}_{4}$ - Type Oxides: The Compounds $\mathrm{La}_{2-x} \mathrm{Sr}_{x} \mathrm{CuO}_{4-x / 2+\delta}$, Nguyen et al., Journal of Solid State Chemistry 39, 120-127 (1981).
2) The Oxygen Defect Perovskite BaLa $\mathrm{Cu}_{5}-\mathrm{O}_{13.4}$, A Metallic Conductor, C. Michel et al., Mat. Res. Bull., Vol. 20, pp. 667-671, 1985.
3) Oxygen intercalation in mixed valence copper oxides related to the perovskite, C. Michel et al., Revue de Chemie minerale, p. 407, 1984.
4) Thermal Behaviour of Compositions in the Systems $\times \mathrm{BaTiO}_{3}+(1-x) \mathrm{Ba}\left(\mathrm{Ln}_{0.5} \mathrm{~B}_{0.5}\right) \mathrm{O}_{3}$. V.S. Chincholkar et al. Therm. Anal. 6th, Vol. 2., p. 251-6, 1980.

Sworn to before me this
 day of \qquad Seaware 1998

SANDRA M. EMMA
Notary Public. State of New York No. O1PO4935290
Qualified in Westchester County,
Commission Expires July 5. $2(1010$

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: J. Bednorz et al.
Serial No. 08/303,561
Filed: September 9, 1994

Date: December 15, 1998
Group Art Unit: 1105
Examiner: M. Kopec

For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, AND METHODS FOR THEIR USE AND PREPARATION

The Commissioner of Patents and Trademarks
Washington, D.C. 20231

AMENDMENT AFTER FINAL REJECTION

Sir:
In response to the Office Action dated June 25, 1998, please consider the following:

REMARKS

In the referenced final Office Action, the Examiner refers to three affidavits (of Mitzi, Tsuei and Dinger) submitted by applicants to overcome the rejection under 35 USC 112 for a lack of enablement. The Examiner's comments are at (paragraph (d)(iv) page 7,5 lines from the bottom to page 8,4 lines from the bottom. The Examiner states:
(d)(iv)(1) "Those affidavits do not set forth particular facts to support the conclusions that all superconductors based on the applicants' work behave in the same way and that one skilled in the art can make these superconductors without undue experimentation."
(d)(iv)(2) "Those affidavits do not overcome the non-enablement rejection."
(d)(iv)(3) "Those affidavits are not deemed to shed light on the state of the art and enablement at the time the invention was made."

Moreover, in applicant's response dated May 14, 1998, applicants refer to Poole et al. which states at page 59 thereof "[c]opper oxide superconductors with a parity sufficient to exhibit zero resistivity or to demonstrate levitation (Early) are not difficult to snythesize. We believe that this is at least partially responsible for the explosive worldwide growth in these materials" (see applicant's response for the entire text that is quoted and Attachment A thereof for copies of relevant pages from Pool et al.)

In response the Examiner states:
(1) Initially, however, it should be noted that the Poole article was published after the priority date presently claimed. As such, it does not provide evidence of the state of the art at the time the presently claimed invention was made.
(2) Moreover, the present claims are directed to processes of using metal oxide superconductors, not processes of making them. Even if the Poole article provided direct evidence of the state of the art at the time the invention was made, which it apparently does not, that evidence still does not pertain to the issue at hand, namely, the process of using metal oxide superconductors to conduct electricity under superconducting condition.

Applicants respectfully disagree with the Examiner. In further support of applicants position that all their claims are fully enabled, applicant's submit the attached affidavit of Thomas M. Shaw, an expert in ceramic science who agrees with the affidavit of Mitzi, Tsuei and Dinger and provides a list of books and articles published prior to applicants filing date showing the general principles of ceramic science used by applicants and
which are used as stated by Poole et al. to make the high Tc superconductors taught and claimed by applicants which "are not difficult to synthesize."

IBM CORPORATION
Intellectual Property Law Dept.
P.O. Box 218

Yorktown Heights, New York 10598
(914) 945-3217

PUBLICATIONS T.M.SHAW

1., D.R.Clarke and T.M.Shaw, D.P.Thompson, "Direct Observation of the Polytype Periodicities in the Be-Si-O-N System.", J. Mat. Sci. 13 pages 217-219 (1978)
2. T.M. Shaw, "Transmission Electron Microscopy Analysis of Complex Nitrogen Ceramics", Proceedings of the 9th International Congress on Electron Microscopy, Toronto. Ed J.M. Sturgess (Microscopical Society of Canada, 1978). Vol. 1 Page 258.
3. D.R. Clarke and T.M. Shaw, "polytypism in Magnesium Sialon", in Processing of Crystalline Ceramics (Materials Science Research Vol. 11), Edited by H. Palmour III, R.F. Davis and T.M. Hare., Plenum press 1978.
4. T.M. Shaw and G. Thomas, "Transmission Electron Microscopy: Direct Observation of Crystal structure in Refractory ceramics",Science 202, pages 625-626 (1978)
5. O.L. Krivanek, T.M. Shaw and G. Thomas, "Imaging of Thin Intergranular Phases by High resolution Electron Microscopy", J. Appl. Phys. 50, pages 4223-4227 (1979).
6. O.L. Krivanek T.M. Shaw and G. Thomas,"'The Microstructure and Distribution of Impurities in Hot-Pressed and Sintered Silicon Nitrides" J. Amer. Ceram. Soc. 62, pages 585-590 (1979)
7. T.M. Shaw O.L. Krivanek and G. Thomas, "Glass Free Grain Boundaries in $\mathrm{Be}-\mathrm{Si}-\mathrm{N} \mathrm{Ce}-$ ramics", J. Amer. Ceram. Soc. 62, pages 305-306 (1979).
8. T.M. Shaw and G. Thomas,"An Electron Microscopy Study of Crystallography and Phase relationships in the $\mathrm{Be}-\mathrm{Si}-\mathrm{N}$ system", J. Solid State Chem. 33, pages 63-82 (1980).
9. T.M. Shaw and G. Thomas "The crystallization Behavior of a Mg-Si-O-N Glass " in Progress in Nitrogen ceramics, Proceedings of the NATO Advanced Study Institute, Ed F.L.Riley, Martinius Nijhoff (1983).
10. T.M. Shaw and C.B. Carter, "Faceting in Twin Boundaries in Spinel", Scripta Met. 16, pages 1431-1435 (1983).
11. P.E.D. Morgan and T.M. Shaw, "Magnetoplumbite Related Barium Aluminates", Mat. Res Bull. 18, pages 539-542 (1983).
12. P.E.D.Morgan, T.M.Shaw and E.A.Pugar "Ceramics For High Waste Loaded Commercial Radwaste disposal"In Advances in Ceramics, Vol 8, Nuclear Waste Management. Ed G.G.Wicks and W.A.Ross. Published Amer. Ceram. Soc. 1984.
13. P.E.D.Morgan, A.B.Harker, J.F.Flintoff, T.M.Shaw, and D.R.Clarke "Developments in SRP "composite" Defense Ceramic Radwaste Forms"In Advances in Ceramics, Vol 8, Nuclear Waste Management. Ed G.G.Wicks and W.A.Ross. Published Amer. Ceram. Soc. 1984.
14. T.M.Shaw, G.Thomas and R.E.Loehman "The formation and microstructure of $\mathrm{Mg}-\mathrm{Si}-\mathrm{O}-\mathrm{N}$ Glasses" J. Amer. Ceram. Soc. Nov 1984.
15. T.M.Shaw, J.W.Steeds and D.R.Clarke "Fault Structures in CVD silicon nitride" Proceedings of M.R.S. Symposia on the Electron Microscopy of Materials. North Holland 1984.

16. T.M.Shaw and B.Pethica "The Preparation and Sintering of Homogeneous Silicon Nitride Green Compacts" J. Amer. Ceram. Soc. Vol. 69 P. 27 (1986).
17. T.M.Shaw "Liquid Phase Redistribution During Liquid Phase Sintering" J. Amer. Ceram. Soc. Vol. 69 P. 88 (1986)
18. T.M.Shaw "Movement of a drying front in a porous material" Proceedings of the M.R.S Better Ceramics through Chemistry symposium, published Elsevier 1986.
19. C.B. Carter, Z. Elgat and T.M. Shaw "First-Order Twin Boundaries parallel to the common (111) Plane in spinel. Phil. Mag. Vol 55. P. 1 (1987)
20. C.B. Carter, Z. Elgat and T.M. Shaw "Lateral Twin Boundaries in Spinel. Phil. Mag Vol. 55 P. 21 (1987).
21. T.M. Shaw "Drying as an Immiscible Displacement Process with Fluid Counterflow" Phys. Rev. Lett. Vol. 59, P. 1671-1674, (1987).
22. W.J. Gallagher, R.L. Sandstrom, T.R. Dinger, T.M. Shaw and D.A. Chance, "Identification and Preparation of Single Phase 90K Oxide Superconductor and Structural Determination by Lattice Imaging", Solid State Communications Vol. 63 P. 147 (1987).
23. R. Beyers, G. Lim, E.M. Engler, R.J. Savoy, T.M. Shaw, T.R. Dinger, W.J. Gallagher and R.L. Sandstrom "Crystallography and Microstructure of :f.Y sub 1 Ba sub 2 Cu sub 3 O sub $9-x: e f .$, A Perovskite-Based Superconducting Oxide" Appl. Phys. Lett Vol. 50 p. 1918 (1987).
24. R. Beyers, G. Lim, E.M. Engler, V.Y. Lee, M.L. Ramirez, R.J. Savoy, R.D. Jacowitz, T.M. Shaw, S. La Placa, R. Boehme , C.C. Tsuei, S.I. Park, M.W. Shafer, W.I. Gallagher "On the Relationship Between Processing, Structure, and Superconductivity in:f.Y sub 1 Ba sub 2 Cu sub 3 O sub 9-x:ef.'. Appl. Phys. Lett. 51, p 614-616 (1987)
25. R. Beyers, G. Lim, E.M. Engler, V.Y. Lee, M.L. Ramirez, R.J. Savoy, R.D. Jacowitz, T.M. Shaw, F.G. Frase, E.G.Linger, D.R. Clarke, S. La Placa, R. Boehme, C.C. Tsuei, S.I. Park, M.W. Shafer, W.J. Gallagher and G.V. Chandrashekhar. "On the Relationship Between Processing, Structure, and Superconductivity in :f.Y sub 1 Ba sub 2 Cu sub 3 O sub 9 -x:ef.. Proceedings of the M.R.S symposium on Superconductivity. published Elsevier 1987.
26. T.M. Shaw "Drying Behavior in Porous Materials". Extended abstracts of the M.R.S symposium on Fractal aspects of materials published MRS 1987.
27. R. F. Cook, T.M. Shaw and P.R. Duncombe "Fracture Properties of Polycrystaline :f.Y sub 1 Ba sub 2 Cu sub 3 O sub 9 -x:ef.". In Ceramic superconductors Ed. D.R. Clarke and D.W. Johonson, Published American Ceramis Society (1987).
28. T.R. McGuire, T.R. Dinger, P.J.P. Freitas, W.J. Gallagher, T.S. Plaskett, R.L. Sandstrom and T.M. Shaw, "Magnetic Properties of Y-Ba-Cu-O Superconductors" Phys. Rev B Vol.36, P. 4032 (1987).
29. T.R. McGuire, F. Holtzberg, D.L. Kaiser, T.M. Shaw and S. Shinde. "Magnetic Properties of Y-Ba-Cu-O Superconductors" Proceedings of the 3M Conference. To be published J. Appl. Phys. vol 62 march (1988).
30. W. Krakow and T.M. Shaw "An Evaluation of High Resolution Electron Microscopy as a Method For Studying Y-Ba-Cu-O Superconductors", To be published J. Electron Microscopy Technique (1987).
31. W. Krakow and T.M. Shaw,"High Resolution Electron Microscopy and Electron Diffraction of :f.Y sub 1 Ba sub 2 Cu sub 3 O sub 7 -x:ef.". Proceedings of the MRS Fall Symposium on Superconductivity published Elsevier 1987.
32. T.M. Shaw, S.A. Shivashankar, S.J. La Placa, J.J. Cuomo, T.R. McGuire R.A. Roy, K.H. Kelleher and D.S. Yee "Incommensurate structure in the Bi-Sr-Ca-Cu-O 80K Superconductor" Phys. Rev. B 37(16), 9856 (1988).
33. T.R. McGuire, S.A. Shivashankar, S.J. La Placa, G.V. Chandrasheka, R.F. Boehme, T.M. Shaw, D.S. Yee, M.W. Shafer, and J.J. Cuomo "Superconductivity in $\mathrm{Bi}-\mathrm{Sr}-\mathrm{Ca}-\mathrm{Cu}-\mathrm{O}^{\prime \prime} \mathrm{J}$. Appl. Phys. Vol 641988.
34. A.C. Nunes, S.J. Pickart, L. Crow and Goyette (University of Rhode Island) T.R. McGuire, S. Shinde and T.M. Shaw (IBM) "Neutron depolarization by a High Tc Superconductor" To be published J. Appl. Phys. Vol 641988.
35. R. Beyers and T.M. Shaw "The Structure of 123 and its Derivatives", Solid State Phys. Vol. 42 P.135-212 1989.
36. T.M. Shaw S. Shinde, D. Dimos, R.F. Cook, P.R. Duncombe, and C. Kroll" "The Effect of Grain Size on Microstructure and Stress Relaxation in Polycrystalline 123", J. Mat. Res. Vol. 4 P.248-256, 1989.
37. D.R. Clarke, T.M. Shaw and D. Dimos "Issues in the Processing of Cuperate Ceramic Superconductors" J. Amer. Ceram. Soc 72, 1103 (1989).
38. G. Burns, M. K. Crawford, F. H. Dacol, E. M. McCarron III, and T. M. Shaw, Phonons in :f.CaCuO sub 2 ,ef. Phys. Rev. B 40, 6717 (1989).
39. T.M. Shaw, D. Dimos, P.E. Batson, A.G. Schrott, D.R. Clarke and P.R. Duncombe, "Carbon Retention in :f.' $\mathrm{Y}^{\prime}<\mathrm{Ba}^{\prime}$ sub $2><' \mathrm{Cu}^{\prime}$ sub $3>{ }^{\prime} \mathrm{O}^{\prime}$ sub <7-delta > 'ef. and its Effect on the Superconducting Transition," J. Mat. Res. 5(6), 1176 (1990).
40. S.L. Shinde and T.M. Shaw, "Considerations for Improved Polycrystalline Cuprate Superconductors," Page 579 in Superconductivity and Ceramic Superconductors, Eds. K.M Nair and E.A. Giess, 13, Ceramics Trans., Published Amer. Ceram. Soc.
41. J.F. Bringley, B.A. Scott, S.J. La Placa, R.F. Boehme, T.M. Shaw, M.W. McElfresh and S.S. Trail, "Synthesis of :f.'LaCuO' sub < 3-delta> :ef. a new Defect Perovskite with Variable Copper Valence from +2 to +3 ." Nature, 347, 263-265 (1990).
42. B.S. Berry, W.C. Pritchet and T.M. Shaw, "Anelastic Measurements of Atomic Mobility in the Superconductor :f.' $\mathrm{Y}^{\prime}<\mathrm{Ba}^{\prime}$ sub $2><' \mathrm{Cu}$ sub $3>$ 'O'sub <7-delta > ':ef.," Defect and Diffusion Forum 1990.
43. M.K. Crawford, G. Burns, E.M. McCarron, G.V. Chandrashekhar, W.E. Farneth, and T.M. Shaw, "Infrared and Raman Spectroscopy of Phonons in :f.(Nd/Pr) sub 2 CuO sub 4:ef. :f.(Ca
sub 0.86 Sr sub 0.14) CaO sub $2:$ ef.," Materials Research Society Proceedings, 169, 1013 (1990).
44. P.E. Batson, T.M. Shaw, D.Dimos and P.R. Duncombe "Participation of Carbon in the Electronic-Structure of YBa2Cu3O7-Delta" Physical Review B-Condensed Matter 1991, Vol 43, Iss 7, pp 6236-6238
45. T.K. Worthington, E. Olsson, C.S. Nichols, T.M. Shaw and D.R. Clarke "Observation of a Vortex-Glass Phase in Polycrystalline YBa2Cu307-X in a Magnetic-Field" Physical Review B-Condensed Matter Vol 43, Iss 13, pp 538-543, (1991).
46. T.M. Shaw and P.R. Duncombe, "Forces Between Aluminum Oxide Grains in a Silicate Melt and their Effect on Grain Boundary Wetting," J. Amer. Ceram. Soc, 74, P.2495, (1991).
47. "Synthesis and Processing of Ceramics: Scientific Issues," MRS Proceedings Vol. 249, Editors W.E. Rhine, T.M. Shaw R.J Gottschall and Y. Chen. Published (1992).
48. M. D\&ae.umling, L.E.Levine and T.M.Shaw, ":ef.T sub c:ef., :f.H sub c2:ef., and Oxygen Ordering in Quenched Oxygen Deficient YBa\&sub2.Cu\&sub3.f. O sub <7-dlt > :ef. "Advances in Cryogenic Engineering (Materials), Published (1992).
49. T. Frey, C.C. Chi, C.C.Tsuei, T.M. Shaw and G. Trafas, "RHEED-controlled Unit-Cell by Unit-Cell Layer-Growth of High-Tc Cuperate Films with Laser Ablation Technique,"MRS Proceedings, Vol. 275 P. 61, (1992).
50. C.C.Tsuei, T. Frey, C.C. Chi, T.M. Shaw, D.T. Shaw and M.K. Wu, "The Making of High-Tc Layered Superconductors," Proceedings of the Buffalo conference on Superconductivity and its Applications (1992).
51. M.Y. Chern, A. Gupta, B.W. Hussey and T.M. Shaw, "RHEED Intensity Monitored Homoepitaxial Growth of :f.'SrTiO' sub 3:ef. Buffer Layer by Pulsed Laser Deposition," J. Vac. Sci. Technol. A. 11, 637 (1993).
52. M. Daumling, P.R. Duncombe, K.H. Kelleher, R.A. Figat and T.M. Shaw, "upper CriticalField of Gold-Doped YBa\&sub2.Cu\&sub3.f.O sub < 7 -dlt> :ef.," Phys. Rev. B 47, P. 6177, (1993).
53. T.M. Shaw "A Model for the Effect of Powder Packing on the Driving Force For Liquid Phase Sintering," J. Amer. Ceram. Soc 76, P.664, (1993).
54. D.R. Clarke T.M. Shaw, A.P. Philipse and R.G. Horn "On a possible Electrical Double layer Contribution to the Equilibrium Thickness of Intergranular Glass Phases in Polycrystalline Ceramics" to be published, Journal of the American Ceramics Society (1993).
55. T. Frey, C.C. Chi, C.C.Tsuei, T.M. Shaw and F. Bozso "THe Effect of Atomic Oxygen on the Initial Growth Mode in Thin Epitaxial Cuprate Films", Phys. Rev. B.49, P. 3483,(1994).
56. A.Gupta, B.W. Hussey, T.M. Shaw, R.F. Saraf, J.F. Bringley and B.A. Scott, "Growth of Thin Films Of the Defect Perovskite :f. ${ }^{\prime} \mathrm{LaCuO}^{\prime}$ sub <3-delta> :ef. by Pulsed Laser Ablation",Solid State Commu.,108, P.202, (1994).
57. A.D. Kent, T.M. Shaw and S. von Molnar, "Growth of High Aspect Ratio Nanometer Scale Magnets Using Chemical Vapor Deposition and Scanning Tunneling Microscope Techniques," Science, 262, P. 1249 (1993).
58. A. Gupta, B. W. Hussey, T. M. Shaw, A. M. Guloy, M. Y. Chern, R. F. Saraf, and B. A. Scott, "Layer-by-Layer Growth of Thin Films of the Infinite-Layer Compounds: \&sco. and \&cco.", J. Solid State Chem. 112, P. 113, (1994).
59. T.M. Shaw, A. Gupta, B.W. Hussey, P.E. Batson, B.A. Scott and R.B. Laibowitz," Atomic Scale Oxide Superlattices Grown by RHEED Controlled Pulsed Laser Deposition," , J. Mat. Res.,9,P.2566, (1994).
60. A. Gupta, T.M. Shaw, M.Y. Chern, B.W. Hussey, A.M. Guloy and B.A. Scott, "Reflection High-Energy Electron Diffraction Monitored Growth of Infinite-Layer \&cco./\&sco. Thin Film Heteostructures" To be published Phys. Rev. B.
61. J. Drennan, D. R. Clarke, R.H.J. Hannink and T.M. Shaw, "Effect of Oxygen Partial Pressure on the Microstructure of $\mathrm{Mg}_{-} \mathrm{PSZ}$ with Strontia and Silica Additions", J. Amer. Ceram. Soc. 77, P.2001, (1994).
62. A.Grill, W. Kane, D. Beach, R. Laibowitz and T.M. Shaw., "Preparation of Strontium Titanate Films by MOCVD", To be published J. Integrated ferroelectrics (1994).
63. D.B. Beach, R.B. Laibowitz, T.M. Shaw, A. Grill, and W.F. Kane, "Thickness Dependent Dielectric Properties of Sol Gel prepared Lead-Lanthanum TiTanate Films. To Be published, Journal of Integrated Ferroelectrics.
64. J.R. Kirtley, P. Chaudhari, M.B. Ketchen, N. Khare, S.Y. Lin and T.M. Shaw, "Scannning SQUID TEST of the Symmetry of the High-Tc Superconducting Order Parameter" To be published..... (1994)
65. C.C. Tsuei, J.R. Kirtley, C.C. Chi, L.S. Yu-Jahnes, A. Gupta, T.M. Shaw, J.Z. Sun and M.B. Ketchen, Pairing Symmetry and Flux Quantization in a Tri-Crytal Superconducting Ring of YBa\&sub2.Cu\&sub3.f.O sub < 7 -dlt > :ef.", To be published.... (1994).

FACSIMILE

оат: Pec 14, 1998 NO. OF PAGES TO FOLLOW: \qquad
To: Exam: Examiner m. Kopec
ADDRESS: \qquad USD TO- thous 1105 phone no. $703-308-1088$

FAX NO. \qquad 203-305-3599

FROM:
NAME: \qquad
pHone no. $914-945-3217$
location: IBm-yrulctolen
CONTACT \#: \qquad 914
IBM CONFIDENTIAL
IBM INTERNAL USE ONLY
\qquad PERSONAL \qquad UNCLASSIFIED
message:: Missing pages 1,3,4 and 5 from the
Amendment dated Rec 10,1998 , Seridel $\# 08 / 303,561$ are been μ-faffed to you, at your nl quest. AND MAY CONTAIN INFORMATION THAT IS PRIVILEGED, CONFIDENTIAL AND EXEMPT FROM DISCLOSURE UNDER APPLICABLE LAW. IF THE READER OF THIS MESSAGE IS NOT THE INTENDED RECIPIENT, OR THE EMPLOYEE OR AGENT RESPONSIBLE FOR DELIVERING THE MESSAGE TO THE INTENDED RECIPIENT, YOU ARE HEREBY NOTIFIED THAT ANY DISSEMINATION, DISTRIBUTION OR COPYING OF THIS COMMUNICATION IS STRICTLY PROHIBITED. IF YOU HAVE RECEIVED THIS COMMUNICATION IN ERROR, PLEASE NOTIFY US IMMEDIATELY BY TELEPHONE AND RETURN THE ORIGINAL MESSAGE TO US AT THE ADDRESS ABOVE VIA THE USS. POSTAL SERVICE.

	DATE	TIME	TO/FROM	MODE	MIN/SEC	PGS	CMD\#	STATIS
04	12/14	10:43	917033053599	EC--S	$01{ }^{\prime} 42^{\prime \prime}$	205		OK

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: J. Bednorz et al.
Date: December 10, 1998
Serial No. 08/303,561
Group Art Unit: 1105
Filed: September 9, 1994
Examiner: M. Kopec
For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, AND METHODS FOR THEIR USE AND PREPARATION

CERTIFICATE OF FACSIMILE TRANSMISSION

I hereby certify that this paper is being facsimile transmitted under Rule CFR 1.61(d) to the U.S. Patent and Trademark Office on the date shown above To telephone number $703-305,3600.5433$

The Commissioner of Patents and Trademarks
Washington, D.C. 20231

Amendment After Final Rejection

In response to the final rejection dated June 25, 1998 please consider the following:
120. (Amended) A method comprising the steps of:
forming a composition including a transition metal, oxygen and [any] an element selected from the group consisting of at least one Group II A element and at least one element selected from the group consisting of a rare earth element and a Group III B element, where said composition is a mixed transitional metal oxide formed from said transition metal and said oxygen, said mixed transition metal oxide having a non-stoichiometric amount of oxygen therein and exhibiting a superconducting state at a temperature greater than $26^{\circ} \mathrm{K}$;
maintaining said composition in said superconducting state at a temperature greater than $26^{\circ} \mathrm{K}$; and
passing an electrical current through said composition while said composition is in said superconducting state.
123. (Amended) A superconductive method for conducting an electric current
essentially without resistive losses, comprising:
(a) providing a superconductor element made of a superconductive composition, the superconductive composition consisting
essentially of a transition metal-oxide compound having a layer-type perovskite-like crystal structure, the transition metal-oxide compound including at least one element selected from the group consisting of a Group II A element and at least one element selected from the group consisting of a rare earth element and a Group III B element, the composition having a superconductive/resistive transition defining a superconductive/resistive-transition temperature range between an upper limit defined by a transition-onset temperature $[\mathrm{T}] \mathrm{I}_{\mathbf{c}}$ and a lower limit defined by an effectively-zero-bulk-resistivity intercept temperature $T_{p=0}$, the transition-onset temperature T_{c} being greater than $26^{\circ} \mathrm{K}$;
(b) maintaining the superconductor element at a temperature below the effectively-zero-bulk-resistivity intercept temperature $T_{p=0}$ of the superconductive composition; and
(c) causing an electric current to flow in the superconductor element.
129. (Amended) A method comprising providing a composition having a transition temperature greater than $26^{\circ} \mathrm{K}$, the composition including a rare earth or alkaline earth element, a transition metal element capable of exhibiting multivalent states and oxygen, including at least one phase that exhibits superconductivity at temperature in excess of $26^{\circ} \mathrm{K}$, maintaining said composition at said temperature to exhibit said superconductivity and passing an electrical superconducting current through said composition [while] with said phase exhibiting said superconductivity.
130. (Amended). A method comprising providing a superconducting transition metal oxide having a superconductive onset temperature greater than $26^{\circ} \mathrm{K}$, maintaining said superconducting transition metal oxide [being] at a temperature less than
said superconducting onset temperature and flowing a superconducting current therein.

Filing: Amendment After Final Rejection (Hand-carried from WIPE)

in re apffrcabl of 1700 Bednorz et al.
For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION..-
Serial No. D8/303,561; Docket No. :Y0987-074BY Atty.: DPM
Received in the U.S. Patent \& Trademark Of ice: \qquad
No. of pages of specification \qquad : No. of peaces of claims
No. of sheets of drawers: \qquad
Deolaration is ettmoked to specification.
QI fees are charged to our Account No. 09-046B

 (1am

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: J. Bednorz et al.
Date: December 11, 1998
Serial No. 08/303,561
Filed: September 9, 1994
Group Art Unit: 1105
Examiner: M. Kopec
For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, AND METHODS FOR THEIR USE AND PREPARATION

The Commissioner of Patents and Trademarks
Washington, D.C. 20231

Amendment After Final Rejection

In response to the final rejection dated June 25,1998 please consider the following:

REMARKS

Reconsideration is respectfully requested in view of any changes to the claims and the remarks herein. Please contact the undersigned to conduct a telephone interview in accordance with MPEP 713.01 to resolve any remaining requirements and/or issues prior to sending another Office Action. Relevant portions of MPEP 713.01 are included on the signature page of this amendment.

In view of the changes to the claims and the remarks herein, the Examiner is respectfully requested to reconsider the above-identified application. If the Examiner wishes to discuss the application further, or if additional information
would be required, the undersigned will cooperate fully to assist in the prosecution of this application.

Claims $86-87,96-108,112,113,115,117,118,122$ and 123 rejected under 35 U.S.C. 112 , second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which applicant regards as the invention.

The Examiner states that "with respect to claims $86-87$ and $96-108$, the terms 'layer-type', 'perovskite-like' are unclear because the 'type' or 'like' terms are deemed to be indefinite. Terms such as 'like', 'similar' and 'type' are indefinite." Applicants respectfully disagree.

Attachment A is the result of a Lexis search done by the undersigned attorney. This search shows the term "rare earth like" or "rare earth and the like" used in 68 US patents. The section of the 68 patents where these terms appear are printed using the "KWICK" function of Lexis. Attachment B is the result of a Lexis search done by the undersigned attorney. This search shows the term "rare earth like" used in the claims of 4 issued US patents. The sections of the claims of the 4 patents where this term appears in the claims are printed using the "KWICK" function of Lexis. Consequently, the term "rare earth like" is a term used in the art, understood by a person of skill in the art and recognized as a definite term by the USPTO for use in US patent claims.

The term "perovskite-like" or "perovskite-type" is commonly used in the art. Attachment C is the result of a Lexis search done by the undersigned attorney. This search shows that the terms "perovskite like" and "supercond!" (the "!" represents any combination of letters) are used in 107 US patents. The sections of the 107 patents where these terms appear are printed using the "KWICK" function of Lexis. Attachment D is the result of a Lexis search done by the
undersigned attorney. This search shows the terms "perovskite like" or "perovskite type" used in the claims of two issued US patents. The sections of the claims of the 2 patents where this term appears in the claims are printed using the "KWICK" function of Lexis. Attachment E is a copy of the first page of Chapter 2 of the book "Perovskites and High T_{c} Superconductors" by F. S. Galasso, Gordon and Breach Scientific Publishers, 1990. Chapter 2 is entitled "Structure of Perovskite-type Compounds". Attachment F is a copy of page 78 of the book by C. Poole, Jr. et al.. Page 78 is the beginning of the section entitled "D. Perovskite-type Superconducting Structures". The first paragraph of the section states "[i]n their first report on high-temperature superconductors Bednorz and Muller [(the applicants)] referred to their samples as 'metallic, oxygen deficient...perovskite like mixed valent copper compounds.' Subsequent work has confirmed that the new superconductors do indeed have these characteristics. In this section we will comment on their perovskite-like aspects" (added). Attachment G is a copy of pages 72 to 86 from Poole et al. In Chapter VI on "Crystallographic Structures" Poole et al. states at page 73 "[m]uch has been said about the oxide superconductor compounds being perovskite types, so we will begin with a description of the perovskite structure." (emphasis added) Poole further states at page 74 in Section 4 entitled "Tetragonal Form" that "[a]t room temperature barium titanate is tetragonal ... which is close to cubic." Poole further states at page 74 in Section 3 entitled "Orthorhombic Form" that "[w]hen barium titanate is cooled below $5^{\circ} \mathrm{C}$ it undergoes a transition with a further lowering of the symmetry to the orthorhombic space group." Consequently, the terms "perovskite like" or "perovskite type" are terms used in the art and recognized as a definite by the USPTO for use in US patent claims. (It is noted that this passage also shows that the terminology "mixed valent copper compounds" is used and understood in the art.

In view of the changes to the claims and the remarks herein, the Examiner is respectfully requested to reconsider the above-identified application. If the Examiner wishes to discuss the application further, or if additional information would be required, the undersigned will cooperate fully to assist in the prosecution of this application.

Please charge any fee necessary to enter this paper to deposit account 09-0468.

If the above-identified Examiner's Action is a final Action, and if the above-identified application will be abandoned without further action by applicants, applicants file a Notice of Appeal to the Board of Appeals and Interferences appealing the final rejection of the claims in the above-identified Examiner's Action. Please charge deposit account 09-0468 any fee necessary to enter such Notice of Appeal.

In the event that this amendment does not result in allowance of all such claims, the undersigned attorney respectfully requests a telephone interview at the Examiner's earliest convenience.

MPEP 713.01 states in part as follows:

Where the response to a first complete action includes a request for an interview or a telephone consultation to be initiated by the examiner, ... the examiner, as soon as he or she has considered the effect of the response, should grant such request if it appears that the interview or consultation would result in expediting the case to a final action.

IBM CORPORATION
Intellectual Property Law Dept.
P.O. Box 218

Yorktown Heights, New York 10598

Attachment A

```
Received: from mailhub.wi jn.ibm.com (9.2.250.97) by yktv watson.ibm.com
    (IBM VM SMTP V2R4) with TCP; Sat, 22 Nov 97 17:30:52 ES'1
    Received: from igw2.watson.ibm.com (igw2.watson.ibm.com [9.2.250.12]) by mailhub
    Received: from prod.lexis~nexis.com (prod.lexis-nexis.com [138.12.4.30]) by igw2
    Received: by prod.lexis-nexis.com id AA03685
        (InterLock SMTP Gateway 3.0 for dmorris@watson.ibm.com);
    Sat, 22 Nov 1997 17:30:53 -0500
    Message-Id: <199711222230.AA03685@prod.lexis-nexis.com>
    Received: by prod.lexis-nexis.com (Internal Mail Agent-1);
        Sat, 22 Nov 1997 17:30:53-0500
    Date: Sat, 22 Nov 97 17:30:52 EST
    From: lexis-nexis@prod.lexis-nexis.com (LEXIS(R)/NEXIS(R) Print Delivery)
    To: dmorris@watson.ibm.com
    Subject: LEXIS(R)/NEXIS(R) Print Request Job 97027, 1 of 1
```

 MORRIS, DAN
 IBM CORPORATION
 YORKTOWN PATENT OPERATIONS
 T. J. WATSON RESEARCH CENTER
 P.O. BOX 218
 YORKTOWN HEIGHTS, NEW YORK 10598-0218
 MAIL-IT REQUESTED: NOVEMBER 22, 1997
 100G6J
 CLIENT: 8774
 LIBRARY: LEXPAT
 FILE: UTIL
 YOUR SEARCH REQUEST AT THE TIME THIS MAIL-IT WAS REQUESTED:
RARE-EARTH-LIKE
NUMBER OF PATENTS FOUND WITH YOUR REQUEST THROUGH:
LEVEL 1... 68

LEVEL 1 PRINTED

```
DISPLAY FORMAT: KWIC
```

SEND TO: MORRIS, DAN
IBM CORPORATION
YORKTOWN PATENT OPERATIONS
T. J. WATSON RESEARCH CENTER
P.O. BOX 218
YORKTOWN HEIGHTS NEW YORK 10598-0218

LEVEL 1 - 1 OF 68 PATENTS
5,670,078
$<2>$ GET 1st BRAWING SHEET OF 7
Sep. 23, 1997
Magnetic and nonmagnetic particles and fluid, methods of
making and methods of using the same

INVENTOR: Ziolo, Ronald F., Webster, New York
DETDESC:
... described in U.S. Pat. No. $4,474,886$ to Ziolo. Examples of the precursor ions which may be used includes those derivable from transition metal ions, such as iron, cobalt, nickel, manganese, vanadium, chromium, rare earths and the like. In the case of a non-magnetic colloid, this may include ions of, for example, sulfur, selenium, gold, barium, cadmium, copper, silver, manganese, molybdenum, zirconium, gallium, arsenic, indium, tin, ...
... ions which can be incorporated into the resin beads to form both

$$
5,663,319
$$

Sep. 2, 1997
Probe compositions for chromosome identification and methods
INVENTOR: Bittner, Michael L., Naperville, Illinois
Morrison, Larry E., DuPage County, Illinois
Legator, Mona S., Chicago, Illinois
SUM:
... capable of reacting, and a fluorophore group may have already reacted, with a linking group. A fluorescent compound may include an organic chelator which binds a luminescent inorganic ion such as a rare earth like terbium, europium, ruthenium, or the like.

The term "linking compound" or "linking group" as used herein generally refers to a hydrocarbonaceous moiety. A linking compound is capable of reacting, and a linking group may have ...

```
LEVEL 1 - 3 OF 68 PATENTS
\(5,601,934\)
\(<=2>\) GET list DRAWING SHEET OF 1
```

Feb. 11, 1997
Memory disk sheet stock and method
INVENTOR: Bartges, Charles W., Belmont, Pennsylvania
Batman, Stephen E., Penn Hills, Pennsylvania
Hyland, Jr., Robert W., Oakmont, Pennsylvania
Jensen, Craig L., Pittsburgh, Pennsylvania
Farcy, Gary P., Plum, Pennsylvania
Vinnedge, K. Dean, Bettendorf, Iowa
Skeen, Troy C., Bettendorf, Iowa
DETDESC:
... automatically grouped with this same series of elements even though it often performs the same function as scandium, or other "true" rare earths in an alloy composition. It is believed that minor amounts of still other rare earths, like erbium, thulium, lutetium; ytterbium, or another rare earth "act-alike", like hafnium, may be substituted for, or possibly even combined with scandium (or with each other) in varying quantities to achieve the ...

LEVEL 1 - 4 OF 68 PATENTS

$$
\begin{gathered}
5,593,951 \\
<=2>\text { GET 1st DRAWING SHEET OF } 4 \\
\text { Jan. } 14,1997
\end{gathered}
$$

Epitaxy of high T[C]superconductors on silicon
INVENTOR: Himpsel, Franz J., Mt. Kisco, New York
SUM:
... as well as to understand the basic mechanisms for superconductivity in this class of materials.

Bednorz and Mueller fist showed superconducting behaving. in mixed copper-oxides, typically including rare earth and/or rare earth-like elements and alkaline earth elements, for example La, Ba, Sr, . . . , and having a perovskite-like structure.

Materials including the so called "1-2-3" phase in the $\mathrm{Y}-\mathrm{Ba}-\mathrm{Cu}-\mathrm{O} \ldots$

DETDESC:

... EMBODIMENTS

A technique is provided for depositing high Tic]superconducting copper-oxide based materials epitaxially on Si (001). Typically, these classes of superconducting materials include a rare earth or rare earth-like element and/or an alkaline earth element. Representative formulas for such materials are the following:
(A[1- chi]B chi)2Cu omicron [4- epsilon]
and
A1B2Cu30[7- epsilon]
where A is a trivalent element (egg., ...
... in the art that the present invention applies to epitaxial structures including silicon (001) surfaces and any copper oxide superconductor thereon. Thus, the teaching of this invention can include copper-oxide based compositions having any combinations of rare earth or rare earth-like elements and/or alkaline earth elements as well as copper oxide superconductors which do not contain rare earth elements. Further, it will be apparent to those of skill in the art that the $\mathrm{Si}(001)$ surface is ...

LEVEL 1 - 5 OF 68 PATENTS

$$
5,573,574
$$

Nov. 12, 1996
Electrorefined aluminium with a low content of uranium, thorium and rare earths

INVENTOR: Leroy, Michel, St. Egreve, France
SUM:
... applications specifies a minimum Al content of above 99.9995\%, (and even sometimes above 99.9997%) and a $U+T h$ content of less than 1 ppb , and even sometimes less than 0.3 or 0.1 ppb .

Rare earths, some of which, like samarium, have a significant alpha radioactivity, are also undesirable. By way of example, 10 ppb of natural samarium emits as many alpha particles as 0.1 ppb of uranium 238 . The high purity ...

LEVEL 1 - 6 OF 68 PATENTS

$$
\begin{gathered}
5,569,759 \\
<=2>\text { GET 1st DRAWING SHEET OF } 25 \\
\text { Oct. } 29,1996
\end{gathered}
$$

Water soluble texaphyrin metal complex preparation
INVENTOR: Sessler, Jonathan L., Austin, Texas
Hemmi, Gregory W., Austin, Texas
Mody, Tarak D., Austin, Texas
DETDESC:
... C), 10.24 ($\mathrm{s}, 2 \mathrm{~h}, \mathrm{ArH}$), $12.23(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{N})$; UV / A.s: lambda (max] $420.0,477.5,730.0$; FAB MS M $<+>811$.

Other lanthanide and rare earth-like metal complexes may be synthesized including the $\mathrm{Gd}<+3>, \mathrm{Lu}<+3>, \mathrm{La}<+3>, \mathrm{In}_{\mathrm{n}}<+3>$, and $\mathrm{Dy}\langle+3>$ complexes.

EXAMPLE 4
Synthesis of B2T2 TXP, see FIGS. 7A and ...
LEVEL 1 - 7 OF 68 PATENTS
5,567,564
<=2> GET 1st DRAWING SHEET OF 7
Oct. 22, 1996
Liquid development composition having a colorant comprising a stable dispersion of magnetic particles in an aqueous medium

INVENTOR: Ziolo, Ronald F., Webster, New York
DETDESC:
... described in U.S. Pat. No. $4,474,886$ to Ziolo. Examples of the precursor ions which may be used includes those derivable from transition metal ions, such as iron, cobalt, nickel, manganese, vanadium, chromium, rare earths and the like. In the case of a non-magnetic colloid, this may include ions of, for example, sulfur, selenium, gold, barium, cadmium, copper, silver, manganese, molybdenum, zirconium, gallium, arsenic, indium, tin, ...
... ions which can be incorporated into the resin beads to form both single-domain and multidomain magnetic particles include: those derivable from transition metal ions, such as iron, cobalt, nickel, manganese, vanadium, chromium, rare earths and the like. These ions generally exist in the form of chlorides of the metal involved such as ferrous chloride, ferric chloride, copper chloride, nickel chloride, and the like. The corresponding iodides, bromides and fluorides may also be suitable. ...

Level 1 - 8 OF 68 PATENTS

$$
5,554,428
$$

Sep. 10, 1996
Memory disk sheet stock and method
INVENTOR: Bartges, Charles W., Delmont, Pennsylvania
Hay land, Jr., Robert W., Oakmont, Pennsylvania
Jensen, Craig J., Pittsburgh, Pennsylvania
Baumann, Steven F., Penn Hills, Pennsylvania (Rule 47 Application)
SUM :
... automatically grouped with this same series of elements even though it often performs the same function as scandium, or other "true" rare earths in an alloy composition. It is believed that minor amounts of still other rare earths, like erbium, thulium, lutetium, ytterbium, or another rare earth "act-alike", like hafnium, may be substituted for, or possibly even combined with scandium (or with each other) in varying quantities to achieve the ...

LEVEL 1 - 9 OF 68 PATENTS

$$
5,504,205
$$

<=2> GET 1st DRAWING SHEET OF 25
Apr. 2, 1996

INVENTOR: Sessler, Jonathan L., Austin, Texas
Hemmi, Gregory W., Austin, Texas
Mode, Tara D., Austin, Texas
DETDESC:
$\ldots 2 \mathrm{H}, \mathrm{CH}=\mathrm{C}), 10.24$ ($\mathrm{s}, 2 \mathrm{H}, \mathrm{ArH}$), 12.23 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{N}$); UV/vis: lambda max $420.0,477.5,730.0$; FAB MS M< + > 811.

Other lanthanide and rare earth -like metal complexes may be synthesized including the $\mathrm{Gd}<+3>$, $\mathrm{Lu}<+3>, \mathrm{La}<+3>, \operatorname{In}<+3>$ and $\mathrm{Dy}\langle+3>$ complexes.
EXAMPLE 4
Synthesis of B2T2 TXP, see FIG. 7.

LEVEL 1 - 10 OF 68 PATENTS
5,491,224
Feb. 13, 1996
Direct label transaminated DNA probe compositions for chromosome identification and methods for their manufacture

INVENTOR: Bittner, Michael L., 1768 Brookdale Rd., Naperville, Illinois 60563 Morrison, Larry E., 21 W. 559 Kensington Rd., Glen Ellyn, Illinois 60137 Legator, Mona S., 6540 N. Francisco, Chicago, Illinois 60645

DETDESC:
... capable of reacting, and a fluorophore group may have already reacted, with a linking group. A fluorescent compound may include an organic chelator which binds a luminescent inorganic ion such as a rare earth like terbium, europium, ruthenium, or the like.

The term "linking compound" or "linking group" as used herein generally refers to a hydrocarbonaceous moiety. A linking compound is capable of reacting, and a linking group may have ...

$$
\begin{aligned}
& \text { LEVEL } 1-11 \text { OF } 68 \text { PATENTS } \\
& 5,475,104 \\
& <=2>\text { GET 1st DRAWING SHEET OF } 26
\end{aligned}
$$

Dec. 12, 1995
Water soluble texaphyrin metal complexes for enhancing relaxivity

INVENTOR: Sessler, Jonathan L., Austin, Texas
Hemmi, Gregory W., Austin, Texas
Mode, Tarak D., Austin, Texas
DETDESC:
... $2 \mathrm{H}, \mathrm{CH}=\mathrm{C}$), $10.24(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH}), 12.23(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{N})$; UV/vis lambda max $420.0,477.5,730.0$; FAB MS $\mathrm{M}<+>811$.

Other lanthanide and rare earth-like metal complexes may be synthesized including the $\mathrm{Gd}<+3>, \mathrm{Lu}<+3>, \mathrm{La}<+3>, \mathrm{In}<+3>$ and $\mathrm{Dy}\langle+3>$ complexes.
EXAMPLE 4
Synthesis of B2T2 TXP, see FIGS. 7A and ...
LEVEL 1 - 12 OF 68 PATENTS

$$
5,457,183
$$

Oct. 10, 1995
Hydroxylated texaphyrins
INVENTOR: Sessler, Jonathan L., Austin, Texas
Mody, Tara D., Sunnyvale, California
Semi, Gregory W., Sunnyvale, California
Kral, Vladimir, Na Kozaaoa, Czechoslovakia
DETDESC:
... $2 \mathrm{H}, \mathrm{CH}=\mathrm{C}), 10.24(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH}), 12.23(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{N})$; UV/vis: lambda max $420.0,477.5,730.0$; FAB MS M< + > 811.

Other lanthanide and rare earth-like metal complexes may be synthesized in a similar manner including the La< $+3>$, $\mathrm{Nd}<+3>, \mathrm{Sm}<+3>$, $\mathrm{Eu}<+3>$, $\mathrm{Gd}<+$ 3>, Dy $<+3>$ and $\mathrm{Tm}<+3>$ complexes.

PAGE
LEVEL 1 - 13 OF 68 PATENTS

$$
5,451,576
$$

$\ll 2>$ GET 1st DRAWING SHEET OF 26
Sep. 19, 1995
Tumor imaging and treatment by water soluble texaphyrin metal complexes

INVENTOR: Sessler, Jonathan L., Austin, Texas
Hemmi, Gregory W., Austin, Texas
Mody, Tarak D., Austin, Texas
DETDESC:
... $2 \mathrm{H}, \mathrm{CH}=\mathrm{C}$), $10.24(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH}), 12.23$ ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{N})$; UV/vis: lambda max $420.0,477.5,730.0$; FAB MS $\mathrm{M}<+>811$.

Other lanthanide and rare earth-like metal complexes may be synthesized including the $\mathrm{Gd}<+3>$, Lu $<+3>$, La $<+3>$, In $<+3>$ and $\mathrm{Dy}<+3>$ complexes. EXAMPLE 4

Synthesis of B2T2 TXP, see FIGS. 7A and ...
LEVEL 1 - 14 OF 68 PATENTS

$$
5,447,906
$$

Sep. 5, 1995
Thin film high TC oxide superconductors and vapor deposition methods for making the same

INVENTOR: Chaudhari, Praveen, Briarcliff Manor, New York
Gambino, Richard J., Yorktown Heights, New York
Koch, Roger H., Amawalk, New York
Lacey, James A., Mahopac, New York
Laibowitz, Robert B., Peekskill, New York
Viggiano, Joseph M., Wappingers Falls, New York

ABET :

... films are produced by vapor deposition processes using pure metal sources for the metals in the superconducting compositions, where the metals include multi-valent nonmagnetic transition metals, rare earth elements and/or rare earth-like elements and alkaline earth elements. The substrate is exposed to oxygen during vapor deposition, and, after formation of the film, there is at least one annealing step in an oxygen ambient and slow cooling over several
hours to room temp ure. The substrates chosen ar

- critical as long as they are not adversf reactive with the superconduct oxide film. Transition metals include $\mathrm{Cu}, \mathrm{Ni}, \mathrm{Ti}$ and V , while the rare earth-like elements include Y , Sc and La. The alkaline earth elements include Ca, Ba and Sr .

SUM:
... material in the last decade, wherein the critical transition temperature $T \mathrm{c}$ at which the material becomes superconducting was increased substantially.

Bednorz and Mueller described copper oxide material including a rare earth element, or rare earth-like element, where the rare earth element could be substituted for by an alkaline earth element such as Ca, Ba or Sr .

The work of Bednorz and Mueller has led to intensive investigation in many laboratories in ...
... 400 K . and methods for making these films, where the films exhibit perovskite-like structure.

It is another object of this invention to provide transition metal oxide superconductive films including a rare earth element, or rare earth-like element, where the films exhibit superconductivity at temperatures greater than $400 \mathrm{~K} .$, and methods for making these films.

It is another object of the present invention to provide films having the nominal composition ABO 3 - y or ABO y ...
\ldots provide superconductive oxide films having the nominal composition $A B 2$ Cu30 9 - y, and methods for making these films, where the films are superconducting at temperatures in excess of 400 K . and A is a rare earth or rare earth-like element, B is an alkaline earth element, and y is sufficient to satisfy valence demands of the composition.

Pat. No. 5447906, *
It is another object of the present invention to provide smooth, continuous copper oxide superconducting films having a perovskite-like...
... films being smooth and continuous and exhibiting substantial compositional uniformity. In particular, the films are comprised of transition metal oxides containing a superconducting phase, and typically include a rare earth element or rare earth-like element. These rare earth-like elements include Y, Sc and La. Additionally, the rare earth or rare earth-like elements can be substituted for by an alkaline earth element selected from the group consisting of Ca, Ba, and Sr . The transition metals are multi-valent, non-magnetic elements selected from the group consisting of ...

DETDESC:
... especially a T c in excess of liquid nitrogen temperatures. These films are characterized by the presence of a transition metal oxide and typically by the presence of a rare earth element and/or a rare earth-like element which can be substituted for by an alkaline earth. The transition metal element is a multi-relent nonmagnetic element while the alkaline earth element is selected from the group consisting of Ca, Ba, and Sr . The rare earth-like elements include Y, $S c$, and La. The nonmagnetic transition metal is selected from the group consisting of $\mathrm{Cu}, \mathrm{Ni}, \mathrm{Ti}$, and V . Of these, Cu is the most favorable, yielding film properties which are unique and unexpected.

In the further ...
LEVEL 1 - 15 OF 68 PATENTS
5,439,570
<=2> GET 1st DRAWING SHEET OF 26
Aug. 8, 1995
Water soluble texaphyrin metal complexes for singlet oxygen

INVENTOR: Sessler, Jonathan L., Austin, Texas
Hemmi, Gregory W., Austin, Texas
Mody, Tarak D., Austin, Texas
DETDESC:
$\ldots 2 \mathrm{H}, \mathrm{CH}=\mathrm{C}), 10.24(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH}), 12.23(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{N})$; UV/vis: lambda max $420.0,477.5,730.0$; FAB MS M< $+>811$.

Other lanthanide and rare earth-like metal complexes may be synthesized including the $\mathrm{Gd}<+3>, \mathrm{Lu}<+3>, \mathrm{La}<+3>, \mathrm{In}<+3>$ and $\mathrm{Dy}<+3>$ complexes.
EXAMPLE 4
Synthesis of B2T2 TXP, see FIGS. 7A and ...
LEVEL 1 - 16 OF 68 PATENTS

$$
5,432,171
$$

$<=2>$ GET 1st DRAWING SHEET OF 26
Jul. 11, 1995
Water soluble texaphyrin metal complexes for viral deactivation

INVENTOR: Sessler, Jonathan L., Austin, Texas
Hemmi, Gregory W., Austin, Texas
Mody, Tarak D., Austin, Texas
DETDESC:
... $2 \mathrm{H}, \mathrm{CH}=\mathrm{C}), 10.24(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH}), 12.23(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{N})$; UV/vis: lambda max 420.0 , 477.5, 730.0 ; FAB MS $M<+>811$.

Other lanthanide and rare earth-like metal complexes may be synthesized including the $\mathrm{Gd}<+3>, \mathrm{Lu}<+3>, \mathrm{La}<+3>, \operatorname{In}<+3>$ and $\mathrm{Dy}<+3>$ complexes. EXAMPLE 4

Synthesis of B2T2 TXP, see FIGS. 7A and ... LEVEL 1 - 17 OF 68 PATENTS

$$
5,362,582
$$

Nov. 8, 1994

Battery separator

INVENTOR: Chang, Victor S., Ellicott City, Maryland
Hartwig, Richard C., Laurel, Maryland
Lundquist, Joseph T., Gilroy, California
Parham, Marc E., Bedford, Massachusetts
Kung, James K., Lexington, Massachusetts
Avtges, James A., Belmont, Massachusetts
Laccetti, Anthony J., North Andover, Massachusetts
SUM :
... say the particulate filler must be inert with respect to such end use battery environment. Therefore, alkali insoluble particulate such as zirconia and titanium dioxide (preferred), oxides, hydroxides and carbonates of calcium, magnesium, iron, rare earth and the like should be used only in sheet products which ultimately are formed into battery separators for alkaline batteries. Similarly, acid insoluble particulates such as silica (a precipitated silica is preferred), and the like should be ...

LEVEL $1-18$ OF 68 PATENTS

Oct. 25, 1994
Magnetic materials with single-domain and multidomain crystallites and a method of preparation

INVENTOR: Ziolo, Ronald F., Webster, New York
DETDESC:
... Ions which can be incorporated into the resin beads to form both single-domain and multidomain magnetic particles include: those derivable from transition metal ions, such as iron, cobalt, nickel, manganese, vanadium, chromium, rare earths and the like. These ions generally exist in the form of chlorides of the metal involved such as ferrous chloride, ferric chloride, copper chloride, nickel chloride, and the like. The corresponding iodides, bromides and fluorides may also be suitable. ...

PAGE
LEVEL 1-19 OF 68 PATENTS
5,322,756
$<=2>$ GET 1st DRAWING SHEET OF 3
Jun. 21, 1994
Magnetic fluids and method of preparation
INVENTOR: Ziolo, Ronald F., Webster, New York
DETDESC:
... several different ions including ferrous or ferric ions. Examples of the precursor ions which may be used includes those derivable from transition metal ions, such as iron, cobalt, nickel, manganese, vanadium, chromium, rare earths and the like. These ions generally exist in the form of chlorides of the metal involved, such as ferrous chloride, ferric chloride, copper chloride, nickel chloride, and the like. The corresponding iodides, bromides and fluorides may also be suitable. ...

LEVEL 1 - 20 OF 68 PATENTS

$$
5,304,966
$$

$<=2>$ GET 1st DRAWING SHEET OF 4
Apr. 19, 1994
Method of adjusting a frequency response in a three-conductor type filter device

INVENTOR: Hino, Seigo, Nagoya, Japan
Ito, Kenji, Nagoya, Japan
SUM :
... each other. Each of the dielectric substrates 1 and 2 may be of dielectric ceramic material having a high dielectric constant and a lower dielectric loss such as $\mathrm{BaO}-\mathrm{TiO}, \mathrm{BaO}-\mathrm{TiO} 2$-rare earth or the like. The lower dielectric substrate 1 is provided with an external ground conducting layer 3 on the peripheral portion and bottom surface thereof. Similarly, the upper dielectric substrate 2 is provided with an external ground conducting layer 4 on the ...

DETDESC:
... assembling of the filter. Each of the dielectric substrates 21 and 22 may be of dielectric ceramic material having a high dielectric constant and a lower
dielectric loss such as
-TiO2, BaO-TiO2-rare earth or
like. The lower dielectric substrate 21 is provided with an external grounc conductor layer 23 on the peripheral portion and outer surface thereof. Similarly, the upper dielectric substrate 22 is provided with an external ground conductor layer 24 on the ...

Level 1 - 21 OF 68 Patents
5,296,458
<=2> GET 1st DRAWING SHEET OF 4
Mar. 22, 1994
Epitaxy of high T c superconducting films on (001) silicon surface

INVENTOR: Himpsel, Franz J., Mt. Kisco, New York
SUM:
... as well as to understand the basic mechanisms for superconductivity in this class of materials.

Bednorz and Mueller first showed superconducting behavior in mixed copper-oxides, typically including rare earth and/or rare earth-like elements and alkaline earth elements, for example La, Ba, Sr, . . . , and having a perovskite-like structure. Materials including the so called "1-2-3" phase in the $\mathrm{Y}-\mathrm{Ba}-\mathrm{Cu}-\mathrm{O} . .$.

DETDESC:

... EMBODIMENTS

A technique is provided for depositing high T c superconducting copper-oxide based materials epitaxially on Si (001). Typically, these classes of superconducting materials include a rare earth or rare earth-like element and/or an alkaline earth element. Representative formulas for such materials are the following:
(A 1 - x B x)2Cu04 - epsilon and A1B2Cu30 7 - epsilon
where A is a trivalent element (e.g., La, Y, and ...
... in the art that the present invention applies to epitaxial structures including silicon (001) surfaces and any copper oxide superconductor thereon. Thus, the teaching of this invention can include copper-oxide based compositions having any combinations of rare earth or rare earth-like elements and/or alkaline earth elements as well as copper oxide superconductors which do not contain rare earth elements. Further, it will be apparent to those of skill in the art that the Si (001) surface is ...

LEVEL 1 - 22 Of 68 Patents
5,291,162
<=2> GET 1st DRAWING SHEET OF 7
Mar. 1, 1994
Method of adjusting frequency response in a microwave strip-line filter device

INVENTOR: Ito, Kenji, Nagoya, Japan
Shimizu, Hiroyuki, Nagoya, Japan
Oguchi, Hotaka, Nagoya, Japan
SUM:
... type which comprises a pair of dielectric substrates la and 1 b made of dielectric ceramic material having a high dielectric constant and a lower dielectric loss such as $\mathrm{BaO}-\mathrm{TiO}$ or BaO-TiO2-rare earth or the like, the
dielectric substrates
Id 1 lb being stacked to each ot The dielectric substrates $1 a$ and $1 b$ are provided with external ground cormucting layers $2 a$ and $2 b$ on the peripheral portion and bottom surface thereof, respectively. On the upper ...

DETDESC:
... assembling of the filter. Each of the dielectric substrates 11 and 12 may be of dielectric ceramic material having a high dielectric constant and a lower
 dielectric substrate 11 is provided with an external ground conducting layer 13 on the peripheral portion and outer surface thereof. Similarly, the upper dielectric substrate 12 is provided with an external ground conducting layer 14 on the ...
... a pair of piezoelectric substrates 11 and 12 each of which may be of dielectric ceramic material having a high dielectric constant and a lower dielectric loss such as BaO-TiO2, Ba0-TiO2-rare earth or the like. The dielectric substrates 11 and 12 are provided with external ground conducting layers 13 and 14 on the peripheral portions and outer surfaces thereof, respectively. These ground conducting layers 13 and 14 may be formed by ... LEVEL 1 - 23 OF 68 PATENTS

$$
\begin{gathered}
5,278,140 \\
<=2>\text { GET 1st DRAWING SHEET OF } 5
\end{gathered}
$$

$$
\text { Jan. 11, } 1994
$$

Method for forming grain boundary junction devices using high T c superconductors

INVENTOR: Chaudhari, Praveen, Briarcliff Manor, New York
Chi, Cheng-Chung J., Yorktown Heights, New York
Dimos, Duane B., Montclair, New Jersey
Mannhart, Jochen D., Metzingen, New York, Federal Republic of Germany Tsuei, Chang C., Chappaqua, New York

SUM :
... as well as to understand the basic mechanisms for superconductivity in this class of materials.

Bednorz and Mueller first showed superconducting behavior in mixed copper-oxides, typically including rare earth and/or rare earth-like elements and alkaline earth elements, for example La, Ba, Sr, . . ; and having a perovskite-like structure. Materials including the so called "1-2-3" phase in the $\mathrm{Y}-\mathrm{Ba}-\mathrm{Cu}-0 \ldots$
... excess of about 300 K are generally known as "high T c superconductors", and will be referred to in that manner throughout the specification. This designation is meant to include both the materials having rare earth or rare earth-like elements in their crystalline structure, as well as the more recently reported materials which do not contain rare earth or rare earth-like elements. Generally, all these materials are copper oxide based superconductors having Cu-0 planes that appear to be primarily responsible for carrying the supercurrents, where the copper oxide planes are separate or in groups separated by the ...

$$
\begin{gathered}
\text { LEVEL } 1-24 \text { OF } 68 \text { PATENTS } \\
5,252,720 \\
<=2>\text { GET 1st DRAWING SHEET OF } 25
\end{gathered}
$$

Oct. 12, 1993
Metal complexes of water soluble texaphyrins
INVENTOR: Sessler, Jonathan L., Austin, Texas

Hemmi, Gregory W., Aust Texas
Mody, Tarak D., Austin, Iexas
DETDESC:
$\ldots 2 \mathrm{H}, \mathrm{CH}=\mathrm{C}$), 10.24 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{ArH}$), 12.23 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{N}$) ; UV/vis: lambda max $420.0,477.5,730.0$ FAB MS M $<+>811$.

Other lanthanide and rare earth-like metal complexes may be synthesized including the $\mathrm{Gd}<+3>, \mathrm{Lu}<+3>, \mathrm{La}<+3>, \mathrm{In}<+3>$ and $\mathrm{Dy}<+3>$ complexes.
EXAMPLE 4
Synthesis of B2T2 TXP, see FIG. 7

LEVEL 1 - 25 OF 68 PATENTS

$$
5,235,298
$$

<=2> GET 1st DRAWING SHEET OF 2
Aug. 10, 1993
Temperature compensated stripline filter for microwaves
INVENTOR: Banno, Hisao, Nagoya, Japan
Nishiki, Masahiro, Nagoya, Japan
SUM:
... 4,785,271 and Japanese Patent Prepublication No. 62-263702.
With the microwave stripline filter of the abovementioned type, generally, each dielectric ceramic substrate is made of ceramic material such as $\mathrm{BaO}-\mathrm{TiO}$, BaO-TiO2-rare earth or the like.

However, there is disadvantage that the commonly used ceramic material has a resonant frequency which is decreased as the temperature is risen because the temperature coefficient of the resonant frequency is of a negative characteristic.

It is therefore an object of the present invention to provide a stripline... LEVEL 1 - 26 OF 68 PATENTS

5,188,809
<=2> GET 1st DRAWING SHEET OF 4
Feb. 23, 1993
Method for separating coke from a feed mixture containing zirconium and radioactive materials by flotation process

INVENTOR: Crocker, William A., Salem, Oregon
Haygarth, John C., Corvallis, Oregon
Riesen, Jon A., Albany, Oregon
Peterson, John R., Salem, Oregon
DETDESC:
... radium removal.
b) Sodium sulfate or any other source of soluble sulfate is then added in excess of the concentration of the barium pius radium ion equivalents and any other cations which might combine with the sulfate ions, i.e. calcium, rare earths, or the like. If the solution is cold, it should be heated and a digestion allowed to take place which can range from a fairly short time up to hours or days. The preferred digestion period would be a few hours with ... LEVEL 1-27 OF 68 PATENTS

$<=2>$ GET 1st DRAWING SHEET OF 5

Nov. 10, 1992
Grain boundary junction devices using high Tc superconductors

INVENTOR: Chaudhari, Proven, Briarcliff Manor, New York Chi, Cheng-Chung J., Yorktown Heights, New York Dimos, Duane B., Upper Montclair, New Jersey Mannhart, Jochen D., Metzingen, New York, Federal Republic of Germany Tsuei, Chang C., Chappaqua, New York

SUM:
... as well as to understand the basic mechanisms for superconductivity in this class of materials.

Bednorz and Mueller first showed superconducting behavior in mixed copper-oxides, typically including rare earth and/or rare earth-like elements and alkaline earth elements, for example La, Ba, Sr, . . ., and having a perovskite-like structure. Materials including the so called "1-2-3" phase in the $\mathrm{Y}-\mathrm{Ba}-\mathrm{Cu}-\mathrm{O} .$.
... excess of about 300 K . are generally known as "high T c superconductors", and will be referred to in that manner throughout the specification. This designation is meant to include both the materials having rare earth or rare earth-like elements in their crystalline structure, as well as the more recently reported materials which do not contain rare earth or rare earth-like elements. Generally, all these materials are copper oxide based superconductors having Cu-O planes that appear to be primarily responsible for carrying the supercurrents, where the copper oxide planes are separate or in groups separated by the ...
... [*4] copper oxide material having a superconducting onset temperature greater than 77 K .
[*5] 5. The device of claim 4, where said superconducting material includes an atom selected from the group consisting of rare earth atoms and rare earth-like atoms.
[*6] 6. The device of claim 4, where said superconducting material includes an alkaline earth atoms.
[*7] 7. The device of claim 4, where said superconducting material includes bismuth.
[$\% 8$] 8. The device of claim 1, where ...
LEVEL 1 - 28 OF 68 PATENTS

$$
5,160,482
$$

<=2> GET 1st DRAWING SHEET OF 8
Nov. 3, 1992
Zirconium-hafnium separation and purification process

[^26]
DETDESC:

... system or solution.
b) Sodium sulfate or any other source of soluble sulfate is then added in excess of the concentration of the barium plus radium ion equivalents and any other cations which might combine with the sulfate ions, i.e. calcium, rare earths, or the like. If the solution is cold, it should be heated and a digestion allowed to take place which can range from a fairly short time up to hours or days. The preferred digestion period would be a few hours with ...

LEVEL 1 - 29 OF 68 PATENTS

$$
5,112,795
$$

May 12, 1992
Supported silver catalyst, and processes for making and using same

INVENTOR: Minahan, David M., Cross Lanes, West Virginia
Thorsteinson, Erlind M., Charleston, West Virginia
Liu, Albert C., Charleston, West Virginia
SUM :
... metal promoter employed is not critical and may include the one or more alkali metals; one or more alkaline earth metals; or one or more other promoters, such as thallium, gold, tin, antimony, rare earths and the like. The catalysts produced are said to be equally as efficient as catalysts produced by coincidental methods of preparation.

Supported, silver-containing, alkylene oxide catalysts often include one or more metal-...

LEVEL 1 - 30 OF 68 PATENTS

$$
5,084,684
$$

<=2> GET 1st DRAWING SHEET OF 5
Jan. 28, 1992
Method of adjusting a frequency response in a three-conductor type filter device

INVENTOR: Shimizu, Hiroyuki, Nagoya, Japan
Ito, Kenji, Nagoya, Japan
Wakita, Naomasa, Nagoya, Japan
SUM :
... each other. Each of the dielectric substrates 1 and 2 may be of dielectric ceramic material having a high dielectric constant and a lower dielectric loss such as $\mathrm{BaO}-\mathrm{TiO}, \mathrm{BaO}-\mathrm{TiO}-\mathrm{rare}$ earth or the like. The lower dielectric substrate 1 is provided with an external ground conducting layer 3 on the peripheral portion and bottom surface thereof. Similarly, the upper dielectric substrate 2 is provided with an external ground conducting layer 4 on the ...

DETDESC:
... assembling of the filter. Each of the dielectric substrates 11 and 12 may be of dielectric ceramic material having a high dielectric constant and a lower dielectric loss such as Ba0-TiO2, BaO-TiO2-rare earth or the like. The lower dielectric substrate 11 is provided with a ground conducting layer 13 on the lower or outer surface thereof. Similarly, the upper dielectric substrate 12 is provided with a ground conducting layer 14 on the upper or ...

LEVEL 1 - 31 OF 68 PATENTS

$$
5,084,312
$$

GET 1st DRAWING SHEET OF
 Jan. 28, 1992
 Molten metal containment vessel with rare earth oxysulfide protective coating thereon and method of making same

INVENTOR: Krikorian, Oscar H., Danville, California
Curtis, Paul G., Tracy, California
SUM :
.. same. More particularly, this invention relates to an improved containment vessel for molten metals formed by coating at least the inside surface of a containment vessel with an oxysulfide or sulfide of a rare earth or rare earth-like element.

Molten metals such as uranium, plutonium, aluminum, and calcium are usually contained in vessels or crucibles made from graphite or a refractory metal such as, for example, niobium, tantalum, molybdenum, or tungsten. ...
... in which wetting of the vessel's surfaces by molten metal is inhibited by coating the surfaces of at least the inner walls of the containment vessel with one or more compounds comprising an oxysulfide of a rare earth or a rare earth-like element to inhibit such wetting and or adherence by the molten metal.

It is a further object of this invention to provide a method for making an improved molten metal containment vessel in which wetting of the surfaces by ...

DETDESC:
... rare earth oxysulfide or sulfide compound include the lanthanide elements La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu; as well as the rare earth-like elements $S c$ and Y; and actinides such as $T h$ and U. The term "rare earth" and "rare earth elements", as used herein, are therefore intended to define any of the above listed elements.

The rare earth oxysulfide and sulfide coatings of the ...
LEVEL 1 - 32 OF 68 PATENTS

$$
\begin{gathered}
5,075,653 \\
\text { Dec. } 24,1991
\end{gathered}
$$

Method of adjusting a frequency response in a three-conductor type filter device

INVENTOR: Ito, Kenji, Nagoya, Japan
Shimizu, Hiroyuki, Nagoya, Japan
SUM :
... each other. Each of the dielectric substrates 1 and 2 may be of dielectric ceramic material having a high dielectric constant and a lower dielectric loss such as BaO-TiO2, BaO-TiO2-rare earth or the like. The lower dielectric substrate 1 is provided with an external ground conducting layer 3 on the peripheral portion and bottom surface thereof. Similarly, the upper dielectric substrate 2 is provided with an external ground conducting layer 4 on the ...

DETDESC:
... assembling of the filter. Each of the dielectric substrates 11 and 12 may be of dielectric ceramic material having a high dielectric constant and a lower dielectric loss such as BaO-Ti02, Ba0-Ti02-rare earth or the like. The lower dielectric substrate 11 is provided with an external ground conducting layer 13 on the peripheral portion and outer surface thereof. Similarly, the upper dielectric substrate 12 is provided with an external ground conducting layer 14 on the ...

LEVEL 1 - 33 OF 68 PATENTS

INVENTOR: Ito, Kenji, Nagoya, Japan
Shimizu, Hiroyuki, Nagoya, Japan
Wakita, Naomasa, Nagoya, Japan
SUM :
... each other. Each of the dielectric substrates 1 and 2 may be of dielectric ceramic material having a high dielectric constant and a lower dielectric loss such as BaO-TiO2, BaO-TiO2-rare earth or the like. The lower dielectric substrate I is provided with an external ground conducting layer 3 on the peripheral portion and bottom surface thereof. Similarly, the upper dielectric substrate 2 is provided with an external ground conducting layer 4 on the ...

DETDESC:

... assembling of the filter. Each of the dielectric substrates 11 and 12 may be of dielectric ceramic material having a high dielectric constant and a lower dielectric loss such as Ba0-TiO2, BaO-TiO2-rare earth or the like. The lower dielectric substrate 11 is provided with an external ground conducting layer 13 on the peripheral portion and outer surface thereof. Similarly, the upper dielectric substrate 12 is provided with an external ground conducting layer 14 on the ...

LEVEL 1 - 34 OF 68 PATENTS 5,045,289
$<=2>$ GET 1st DRAWING SHEET OF 4
Sep. 3, 1991
Formation of rare earth carbonates using supercritical carbon dioxide

INVENTOR: Fernando, Quintus, Tucson, Arizona
Yanagihara, Naohisa, Zacopan, New Mexico, Mexico
Dyke, James T., Santa Fe, New Mexico
Vemulapalli, Krishna, Tuscon, Arizona
SUM:
... invention. This technique finds use in facilitating the extraction of these materials from rare earth containing mineral ores by providing a scheme for separating these particular rare earths from other rare earth and rare earth-like materials which do not react to form carbonates.

2. Description of the Prior Art

The rare earths, also known as the lanthanides or as lanthanons, and meaning here those elements having atomic numbers 57 to 71 , are substances finding utility ...

DETDESC:
... synthesis of rare earth carbonates from certain select rare earths in the trivalent (+3) state as normally found in, for example, rare earth oxides or hydroxides, from other rare earths or rare earth-like materials. Rare earth-like materials are those compounds associated with, normally present in, or formed during the processing of, the various source ores from which the lanthanides are derived. These materials, while not true rare earths are analogous to the lanthanides in structure and behavior and are therefore of concern during processing and separation. Included among these rare earth-like
materials are compound med from the actinides，（elen of atomic numbers 89 to 103，such as thorium），titanium，yttrium，and zircon．．a．In general，these elements，which form the rare earth－like compounds，are present in their +4 oxidation state；examples include Th 02 and $\mathrm{ZrO2}$ ．The process of the invention has utility in the quantitative precipitation of the particular reactive lanthanides in the +3 oxidation state and in the separation of these ．．．
．．．about 400 C ．High yields of 95% or better are obtained in approximately one hour．These particular rare earth oxides or hydroxides can thus be readily separated from the oxides or hydroxides of rare earth or rare earth－like elements such as praseodymium（ Pr ），terbium（ Tb ），erbium（ Er ），ytterbium（ Yb ）， zirconium（ Zr ），cerium（Ce），and thorium（Th）because these latter rare earth and rare earth－like oxides（or hydroxides）do not form carbonates under the above conditions despite the fact that some are in the trivalent state．It is believed that the oxides of these elements are particularly complex and as such do not readily react under the conditions of the invention．

This ．．．
Pat．No．5045289，＊
．．．through appropriate valves and the reaction solution is then filtered． The solids which remain are then washed with deionized water and dried in air． These solids comprise both the rare earth materials which have reacted to form carbonates and also those rare earth and／or rare earth－like materials which did not react，or did not react significantly，and have thus remained in their oxide or hydroxide form．

The solid precipitate obtained above is next treated with a dilute acid such as HC1 in a concentration of between 0.1 and 3.0 M ．Preferrably 0.5 M HCl is used at ambient temperature and pressure．This acid treatment solubilizes the rare earth carbonates，leaving the unreacted rare earth and rare earth－like oxides and／or hydroxides behind in their solid form．The resultant solution is filtered and the carbonate fraction can be further broken down into individual rare earth carbonates by techniques such as ion exchange or ．．．
．．．La203（49．72\％），Nd203（20．02\％），Tb407（5．08\％），Yb203（5．10\％）and Th02（20．07\％），a high degree of separation of La and Nd was obtained－namely， between 94.3% and 99.8% ．Notably，the other rare earth or rare earth－like oxides in this mixture are among those which do not react to form carbonates with supercritical carbon dioxide or by the process of the invention．

The following example will illustrate and describe without limiting the invention．The example illustrates the carbonation process of the invention using essentially pure rare earth oxides．
EXAMPLE
Synthesis of Lanthanide Carbonates
The oxides of the following rare earths and rare earth－like materials，La203， Ce02，Pr6011，Nd203，Sm203，Eu203，Gd203，Tb407，Dy203，Ho203，Er203，Yb203 and Zr02，were obtained from Alfa Division；Danvers，MA，and were 99.9% pure．The carbon dioxide used in this ．．．

LEVEL 1 － 35 OF 68 PATENTS
4，977，937
＜＝2＞GET 1st DRAWING SHEET OF 4
Dec．18， 1990
Multiple angle jointer and planer knives
INVENTOR：Hessenthaler，George D．， 585 W． 3900 South，$⿰ ⿰ 三 丨 ⿰ 丨 三 ⿻ ⿻ 一 𠃋 十 一, ~ M u r r a y, ~ U t a h ~ 84123 ~$

DETDESC：

．．．gibe or locking bars，not shown，are tightened，the blade magnets 53 are selected to attract even minimally magnetic material，such as carbide．To provide such magnetic attraction the selected magnets should be very strong，
such as rare earth, or
magnets.
Like the jointer jig 40, a planer jig 60, shown in FIGS. 9 and 10 also utilizes magnets for maintaining blade positioning in a cylindrical cutterhead 61

LEVEL 1 - 36 OF 68 PATENTS
4,962,086
$<=2>$ GET 1st DRAWING SHEET OF 2
Oct. 9, 1990
High T c superconductor - gallate crystal structures
INVENTOR: Gallagher, William J., Ardsley, New York
Giess, Edward A., Purdys, New York
Gupta, Aranava, Valley Cottage, New York
Laibowitz, Robert B., Peekskill, New York
0'Sullivan, Eugene J., Peekskill, New York
Sandstrom, Robert L., Chappaqua, New York
ABST:
High T c oxide superconductive films can be formed on gallate layers, where the gallate layers include a rare earth element or a rare earth-like element. Combinations of rare earth elements and rare earth-like elements can also be utilized. The superconductive films can be epitaxially deposited on these gallate layers to form single crystals or, in the minimum, highly oriented superconductive layers. Any high T c superconductive...

SUM:
... materials having Cu-0 planes therein which are responsible for carrying supercurrents in these materials. Epitaxial films of these high $T \mathrm{c}$ superconductors can be deposited on gallate substrates, where the substrates are rare earth gallates or rare earth-like gallates. These superconductor-substrate combinations are particularly suited for analog and digital signal processing devices including matched filters, correlators, Fourier transformers, spectrum analyzers, samplers, A / D converters, etc.
... high T c superconductors.
The high T c superconductors used with these gallate substrates are preferably those which include $\mathrm{Cu}-0$ and $\mathrm{Cu}-0$ like current carrying planes and can include rare earth and rare earth-like elements, as well as combinations of these elements. Also included are the non-rare earth high T c superconductors such as those having $\mathrm{Bi}-\mathrm{Sr}-\mathrm{Ca}-\mathrm{Cu}-0$ compositions and $\mathrm{Tl}-\mathrm{Ba}-\mathrm{Ca}-\mathrm{Cu}-\ldots$
... less than that when copper containing oxide superconductors are used. Lattice matching of the superconductor atomic spacing to the Ga-0 plane is especially good with the copper oxide superconductors which form unique combinations with these gallates.

These rare earth and rare earth-like gallate substrates can be prepared in high quality crystal form and provide excellent lattice matches to the Cu-0 based superconducting perovskites. This is important in device applications since for ...

DRWDESC:
BRIEF DESCRIPTION OF THE DRAWINGS
Pat. No. 4962086, *
FIG. 1 illustrates a high T c superconducting film epitaxially deposited on a rare earth or rare earth-like gallate substrate.

FIG. 2 illustrates a structure including a high T c superconducting strip
line surrounded by a e lattice-matched insulator, high ...

DETDESC:
... 10 has been deposited on the crystal substrate 12. A cooling means, if needed, is not shown but is well known in the art.

Substrate 12 is a gallate substrate comprised of a rare earth or rare earth-like element, gallium, and oxygen. Examples include LaGaO3 and NdGa03. A mixed gallate can also be used, such as one prepared from La-Y solid solutions. This technique is used to provide different lattice ...
... for use in the substrate include elements 58-71 of the periodic table, and in particular, $\mathrm{Ce}, \mathrm{Pr}, \mathrm{Nd}, \mathrm{Sm}, \mathrm{Eu}, \mathrm{Gd}, \mathrm{Tb}, \mathrm{Dy}, \mathrm{Ho}, \mathrm{Er}, \mathrm{Tm}, \mathrm{Yb}$, and Lu . The rare earth-like elements suitable for use in the gallate substrates include Y, La, Bi and Sc . As noted, combinations of these rare earth and rare earth-like elements can also be used.

For the copper oxide superconductors the rare earth elements Tb, Dy, Ho, Er, Tm, Yb, and Lu may not provide atomic spacings that give lattice ...
... one which in preferred form is characterized by $\mathrm{Cu}-0$ planes that are primarily responsible for carrying the supercurrents in these materials. They generally have a perovskite-related structure and can include rare earth and/or rare earth-like elements. These materials often include alkaline earth elements, as for example $\mathrm{Ca}, \mathrm{Ba}, \mathrm{Sr}, \mathrm{Mg}$, . . . An example of a 920 K . superconductor is the well known YBa2Cu30 7 - x , which is the so-called "
... be difficult to stabilize the approximately 1100 K . superconducting phase of $\mathrm{Bi}-\mathrm{Sr}-\mathrm{Ca}-\mathrm{Cu}-\mathrm{O}$ superconductors. However, a favorable epitaxial substrate chosen from the class of gallates including a rare earth or rare earth-like element may aid in stabilizing this and other high T c phases. A cut along the [110] orthorhombic unit cell of GdGa03 would expose a surface with a favorable lattice match which ...
... While the unit cell of this superconducting thin film is rotated 450 with respect to the unit cell of the perovskite substrate, such rotation will not be needed for epitaxial matches of different superconductors to the rare earth and rare earth-like gallate substrates. One of skill in the art would use an orientation of the substrate such that good epitaxy and lattice matching will occur with the chosen superconducting film. In this example, the a and b axes are in the plane of the ...
... approximates a (100) cubic perovskite surface. With this as a guide, the substrate boule material is cut to provide the desired orientation.

It has been noted that the gallate substrates including a rare earth element or a rare earth-like element exhibit good hardness and tolerance to high temperatures. However, it may be preferable to process the superconducting film at temperatures less than the rhombohedral-orthorhombic transition of the substrate in order to maintain the slight orthorhombicity of the substrate.

Pat. No. 4962086, *
... Lett. 58, 2684 (1987).
In the practice of this invention, highly oriented films of high $T \mathrm{c}$ oxide superconductors have been deposited on gallate substrates. These substrates are those which include at least one rare earth element or rare earth-like element. The superconducting epitaxial films are highly oriented and can approximate single crystals.

In the further practice of this invention, these high T c oxide superconducting film-gallate substrate combinations are particularly suitable
. ... apparent to tho
© skill in the art that variat
can be made therein without departing from spirit and scope of the presen. . wention. For example, the gallate substrate materials may include combinations of rare earth elements and rare earth-like elements, and may also be doped to slightly vary lattice parameters. Further, the superconductive films deposited on these substrates, while preferably being copper oxide-based superconductors, can include rare earth elements, rare earth-like elements, and alkaline earth elements. Still further, combinations of these elements may be present and, also, rare earth elements need not be present in the superconducting film.

The best epitaxial matches occur when the ... LEVEL 1 - 37 OF 68 PATENTS

4,882,718
<=2> GET 1st DRAWING SHEET OF 3
Nov. 21, 1989
Single-head, direct overwrite magneto-optic system and method

INVENTOR: Kryder, Mark H., Pittsburgh, Pennsylvania
Shieh, Han-Ping D., Pittsburgh, Pennsylvania
DETDESC:
... domain will realign and not grow. Ferrimagnetic alloys including light rare earths such as gadolinium usually provide good mobility but generally require an approximately equal proportion of a heavy rare earth like terbium to increase coercivity to an effective operating level.

A preferred formulation (in atomic \%) tested in the laboratory is as follows:
Gd13 Tb13 Fe59 Co15 having a compensation temperature of 900 ...
LEVEL 1 - 38 OF 68 PATENTS
4,882,067
<=2> GET 1st DRAWING SHEET OF 1
Nov. 21, 1989
Process for the chemical bonding of heavy metals from sludge
in the silicate structure of clays and shales and the manufacture of building and construction materials therewith

INVENTOR: Johnson, Barrett, Sunnyvale, California
Rubenstein, Charles B., Los Gatos, California
DETDESC:
... containing heavy metals which are generally considered to be toxic to humans and animal life, including arsenic, cobalt, cadmium, chromium, lead, nickel, selenium, thallium, zinc, magnesium, copper, antimony, barium, molybdenum, rare earths and the like and incidental organic toxins. In general, the invented process comprises a batch or continuous operation for the processing of industrial waste and contaminated water. The process developed as described in this patent is not...

LEVEL 1 - 39 OF 68 PATENTS

$$
4,806,328
$$

Feb. 21, 1989
Method of manufacturing monolithic glass members
INVENTOR: Van Lierop, Joseph G., Eindhoven, Netherlands
Bogemann, Arnoldus B. M., Eindhoven, Netherlands

Felder, Willy J. B., V i, Netherlands Huizing, Albert, Eindhoven, Netherlands

SUM:
... example, to adjust the refractive index of the glass member obtained after densification of the gel at a given value and/or to control other physical properties. Examples of such compounds are alkoxy compounds of aluminium, titanium, boron, germanium, rare earths and the like, of which the alkoxy groups each generally do not comprise more than 4 carbon atoms. Nitrates, carbonates, acetates and other compounds which decompose easily while forming oxides, may optionally also be used. Fluorine ...

> LEVEL $1-40$ OF 68 PATENTS $4,775,820$ <=2> GET 1st DRAWING SHEET OF 3 Oct. 4,1988

INVENTOR: Eguchi, Ken, Yokohama, Japan
Kawada, Haruki, Kawasaki, Japan
Nishimura, Yukuo, Sagamihara, Japan
SUM :
... composed of a material of EL function dispersed in a binder.
As the material of EL function, there have been known heretofore inorganic metal materials such as ZnS containing $\mathrm{Mu}, \mathrm{Cu}, \mathrm{ReF3}$ (Re : rare earths) or the like as an activating agent, and the like.

In the case of a thin film type EL device, the structure is suitable for the following purposes, that is, a thin luminescent layer can be formed so as to ... LEVEL 1 - 41 OF 68 PATENTS

4,734,338
<=2> GET 1st DRAWING SHEET OF 3
Mar. 29, 1988
Electroluminescent device
INVENTOR: Eguchi, Ken, Yokohama, Japan
Kawada, Haruki, Kawasaki, Japan
Nishimura, Yukuo, Sagamihara, Japan
SUM:
... layer composed of a material of EL function dispersed in a binder.
As the material of EL function, there have been heretofore inorganic metal materials such as ZnS containing $\mathrm{Mn}, \mathrm{Cu}, \mathrm{ReF3}$ and (Re: rare earths) or the like as an activating agent, and the like.

In the case of a thin film type EL device, the structure is suitable for the following purposes, that is, a thin luminescent layer can be formed so as to ...

PAGE 46
LEVEL 1 - 42 OF 68 PATENTS
4,700,436
$<=2>$ GET 1st DRAWING SHEET OF 4
Oct. 20, 1987

INVENTOR: Morita, Tamao, 47-1, Arakawa 6-Chome, Arakawa-ku, Tokyo, Japan
SUM :

background of the invention

1. Field of the Invention

The present invention relates to the utilization of permanent magnets made of hard magnetic powder of ferrite, alnico, rare-earth and the like materials solidified with synthetic resin and then magnetized. More particularly, it relates to an improvement is magnetic material fastener means made of permanent magnet which is provided with magnetic plates at its magnetic poles.
2. Description of the Prior Art

```
LEVEL 1 - 43 OF 68 PATENTS
4,681,625
<=2> GET 1st DRAWING SHEET OF 11
Jul. 21, 1987
```

Methods for simultaneously desulfurizing and degassing steels

INVENTOR: Wilson, William G., 820 Harden Dr., Pittsburgh, Pennsylvania 15229
SUM:
... difficult to get into solution and also those whose recoveries from their addition have been less than the amount added to the steel such as electrolytic manganese, ferro-niobium, ferro-tungsten and the like. The metals that may be added include aluminum, calcium, barium, rare earths and the like. The recovery of elements in the steel from additions of metals and ferro-alloys is reduced in many cases in conventional steel making technology by their contact with slags high in oxides such as iron ...
... [$\div 21$] metals to be added in the tube to enhance desulfurization are those which are known to have the ability to reduce the oxygen content of the steel, but also have the ability to form sulfides which would float out of the steel into the slag which include magnesium, calcium, barium, rare earths and the like.
[*22] 22. The method as claimed in claims 1 or 5 wherein the ferro-alloys and elemental metals to be added in the tube are those necessary to obtain the desired chemical analysis of the finished steel such as ferro-...

LEVEL 1 - 44 OF 68 PATENTS

$$
4,598,914
$$

<=2> GET 1st DRAWING SHEET OF 10
Ju1. 8, 1986
Sealing and bearing means by use of ferrofluid
INVENTOR: Furumura, Kyozaburo, Ninomiya, Japan
Sugi, Hiromi, Fujisawa, Japan
Murakami, Yasuo, Fujisawa, Japan
Asai, Hiromitsu, Fujisawa, Japan
DETDESC:
... polyamide resin, fluorine resin, polyethersulfone resin, polyphenylene
sulfide resin or the
The magnetic material to be
\uparrow with the aforesaid synthetic resin material s made of barium ferrite powder strontium ferrite powder, rare earths or the like.

The mixture ratio of the synthetic resin and the aforesaid normal magnetic substance is different in case the magnet is used for bearing purposes and sealing purposes.

In case the magnet is employed as bearing, it is to have enough ... LEVEL 1 - 45 OF 68 PATENTS

$$
4,582,688
$$

$<=2>$ GET 1st DRAWING SHEET OF 1

Apr. 15, 1986
Process for recovery of mineral values
INVENTOR: Venkatesan, Valadi N., Arlington, Texas
DETDESC:
... present, molybdenum can be selectively leached from the ore utilizing a leaching solution containing sodium bicarbonate and oxygen. Thus, for example, substances such as vanadium, molybdenum, selenium, nickel, copper, uranium, the rare earths and the like may be recovered using the process of the present invention. The main criteria is that at least one of the minerals found in the ore may be solubilized without the solubilization of at least one other mineral.

Thus, the present ...
\therefore. part of the uranium is present as a refractory uranium-mineral complex. For example, other minerals found in the form of a uranium-mineral complex, include copper, nickel, thorium, scandium, the rare earths, and the like.

Uranium minerals frequently occur in the highly siliceous rocks and sedimentary deposits, generally as a mixture of the insoluble tetravalent form and the soluble hexavalent form. Uranium is also found in association with the silicates, ...

LEVEL 1 - 46 OF 68 PATENTS
$4,570,692$
<=2> GET 1st DRAWING SHEET OF 6
Feb. 18, 1986
Methods of pouring metal
INVENTOR: Wilson, William G., 820 Harden Dr., Pittsburgh, Pennsylvania 15229
DETDESC:
... teeming operation and good distribution throughout the entire ingot can be expected. When the stability of the oxides in the slags is high, even the most reactive alloys such as aluminum, titanium, zirconium, magnesium, calcium or rare earths and the like will be transferred to the steel from the slag with maximum retention of the alloying element in the metal being teemed. The addition of these alloys along with these stable oxides that will not react with these alloying elements, the elimination of the flow...

LEVEL 1 - 47 OF 68 PATENTS
$4,491,563$
Jan. 1, 1985
Process for deodorizing a paraffinic hydrocarbon feedstock
-INVENTOR: Reusser, Robe -., Bartlesville, Oklahoma Murtha, Timothy P., Bart ville, Oklahoma Todd, Elizabeth A., Bartlesville, Oklahoma

DETDESC:
.. examples are given to provide a better and more complete disclosure of this invention but should not be interpreted to limit its scope. EXAMPLE I

This example describes a typical catalyst preparation whereby NiO and a rare earth like CeO is deposited on a support. This general procedure is also described in U.S. Pat. No. $4,217,248$ column 7, line 49 to column 8 , line 41 . Two hundred grams of 13 x ...

LEVEL 1 - 48 OF 68 PATENTS

$$
4,489,042
$$

Dec. 18, 1984
Process for recovery of mineral values from subterranean formations

INVENTOR: Savins, Joseph G., Dallas, Texas
Johnson, Warren F., Dallas, Texas
DETDESC:
... formations. However, it should be clear that the invention is applicable to the solution leaching of other mineral values capable of forming soluble reaction products with leaching solutions. Thus, for example, substances such as vanadium, molybdenum, nickel, copper, the rare earths and the like are recovered using the process of the present invention.

As an illustration, the leach chemistry of a uranium ore body can be described by the following equations using hydrogen peroxide (H2O2) as oxidant:

PAGE
LEVEL 1 - 49 OF 68 PATENTS

$$
\begin{gathered}
4,486,026 \\
<=2\rangle \text { GET 1st DRAWING SHEET OF } 10
\end{gathered}
$$

Dec. 4, 1984
Sealing and bearing means by use of ferrofluid
INVENTOR: Furumura, Kyozaburo, Ninomiya, Japan
Sugi, Hiromi, Fujisawa, Japan
Murakami, Yasuo, Fujisawa, Japan
Asai, Hiromitsu, Fujisawa, Japan
DETDESC:
... polyamide resin, fluorine resin, polyethersulfone resin, polyphenylene sulfide resin or the like. The magnetic material to be mixed with the aforesaid synthetic resin material is made of barium ferrite powder, strontium ferrite powder, rare earths or the like.

The mixture ratio of the synthetic resin and the aforesaid normal magnetic substance is different in case the magnet is used for bearing purposes and sealing purposes.

In case the magnet is employed as bearing, it is to have enough ...

LEVEL 1 - 50 OF 68 PATENTS

$$
4,481,437
$$

A 24

Nov. 6, 1984
Variable flux permanent magnets electromagnetic machine
INVENTOR: Parker, Rollin J., Greenville, Michigan
DETDESC:
... cylindrical housing 12 in which is mounted, by any appropriate convenient means, a cylindrical tubular stator 14 comprising high strength permanent magnets such as ceramic, or ceramic rare earth, cobalt-rare earth, or the like [magents] magnets. Each one of a pair of end cap members 16 and 18 fastened at an end of the housing 12 by bolts or screws 20 supports respectively an end magnet ring 22 an ...

LEVEL 1-51 OF 68 PATENTS

$$
\begin{gathered}
4,455,392 \\
\text { Jun. } 19,1984
\end{gathered}
$$

Process for preparing a supported silver catalyst
INVENTOR: Warner, Glenn H., St. Albans, West Virginia
Bhasin, Madan M., Charleston, West Virginia
Lieberman, Bernard, Kew Gardens, New York
SUM:
... as lithium, sodium, potassium, rubidium and/or cesium; one or more alkaline earth metals, such as, barium, magnesium and strontium; or one or more of the other known promoters, such as thallium, gold, tin, antimony and rare earths; and the like. For purposes of convenience, the catalyst preparation process of the invention is described below in terms of a silver-first method of preparation wherein the promoter is selected from among alkali metals, it being recognized that other promoters of ...

$$
\begin{gathered}
\text { LEVEL } 1-52 \text { OF } 68 \text { PATENTS } \\
4,438,077
\end{gathered}
$$

Mar. 20, 1984
Two stage selective oxidative leach method to separately recover uranium and refractory uranium-mineral complexes

INVENTOR: Tsui, Tien-Fung, Richardson, Texas
SUM:
... least part of the uranium is present as a refractory uraniun-mineral complex. For example, other minerals found in a uranium-mineral complex include copper, nickel, thorium, scandium, the rare earths, and the like.

Uranium minerals frequently occur in the highly siliceous rocks and sedimentary deposits, generally as a mixture of the insoluble tetravalent form and the soluble hexavalent form. Uranium is also found in association with the silicates, ...

Level 1 - 53 OF 68 Patents
4,427,236
Jan. 24, 1984
In-situ uranium leaching

INVENTOR: Dotson, Billy J., Grand Prairie, Texas
DETDESC:

... be clear that the vention is applicable to the son mining of other mineral values capable of forming soluble reaction products with carbonated leaching solutions. Thus, for example, substances such as vanadium, molybdenum, nickel, copper, the rare earths and the like are recovered using the process of the present invention.

Uranium minerals frequently occur in the highly siliceous rocks and sedimentary deposits, generally as a mixture of the insoluble quadrivalent form and the soluble sexivalent form. ...

LEVEL 1 - 54 OF 68 PATENTS

$$
4,419,276
$$

Dec. 6, 1983
Silver catalyst for the manufacture of ethylene oxide and a process for preparing the catalyst

INVENTOR: Bhasin, Madan M., Charleston, West Virginia
Warner, Glenn H., St. Albans, West Virginia
SUM:
... as lithium, sodium, potassium, rubidium and/or cesium; one or more alkaline earth metals, such as, barium, magnesium and strontium; or one or more of the other known promoters, such as thallium, gold, tin, antimony and rare earths; and the like. For purposes of convenience, the catalyst preparation process of the invention is described below in terms of a silver-first method of preparation wherein the promoter is selected from among alkali metals, it being recognized that other promoters of ...

PAGE 59
LEVEL 1 - 55 OF 68 PATENTS

$$
4,405,380
$$

Sep. 20, 1983
High strength, low alloy steel with improved surface and mechanical properties

INVENTOR: Griffith, Cecil B., North Royalton, Ohio
Thomas, Jerry D., North Olmsted, Ohio
Demianczuk, Dionisyj W., Parma, Ohio
Abraham, John K., Broadview Heights, Ohio
Franklin, Joseph E., Medina, Ohio

DETDESC:

... present invention is directed to a steel with carbon in the range of 0.03 to 0.06%, the last being an upper limit which also appears crucial for attainment of so-called auto-sulfide-sfiape control and thus avoidance of the use of rare earths or the like with their consequent expense and tendency to produce unwanted non-metallic surface inclusions.

The base metal may thus consist of the defined composition, with manganese in the range of 0.2 to 0.6%, very preferably not more than 0.45%, while the ...

PAGE
LEVEL 1 - 56 OF 68 PATENTS

$$
4,376,264
$$

<=2> GET 1st DRAWING SHEET OF 6
Mar. 8, 1983
Method of checking the authenticity of papers and physically identifiable paper for use in said method

INVENTOR: Dokter, Hendr D., Ugchelen, Netherlands Hildering, Roelof, Frederikslaan, Netherlands Mackor, Adrianus, Hollandsche Reading, Netherlands

SUM :
... be some which show a suitable ESR spectrum, although to the knowledge of the present inventors this has never been investigated. However, a further requirement is that a useful ESR spectrum should be obtained at room temperature. Many compounds of rare earths and the like show a useful ESR spectrum only at low temperatures, such as the temperature of liquid nitrogen, but of course an identification of banknotes and the like is hardly of any practical value, if it cannot be carried out at normal room ...

PAGE
LEVEL 1-57 OF 68 PATENTS

$$
\begin{gathered}
4,367,163 \\
<=2>\text { GET 1st DRAWING SHEET OF } 1
\end{gathered}
$$

Jan. 4, 1983
Silica-clay complexes
INVENTOR: Pinnavaia, Thomas J., East Lansing, Michigan
Cortland, Max M., East Lansing, Michigan
Endo, Tadashi, East Lansing, Michigan

DETDESC:

... be used as a catalyst support for various catalytically active metals such as a Group VIII metal such as platinum, palladium, nickel, iron or cobalt; molybdenum; tungsten; a rare-earth and the like. Moreover, the intercalated product can be used in admixture with other common adsorbents or matrix materials such as silica, alumina, silica-alumina hydrogel and the like. The catalysts which can be prepared by ...

LEVEL 1-58 OF 68 PATENTS
$4,358,158$
$<=2>$ GET 1st DRAWING SHEET OF 1
Nov. 9, 1982
Solution mining process
INVENTOR: Showalter, William E., Seal Beach, California
DETDESC:
... invention is applicable to the solution mining of other mineral values capable of forming soluble reaction products with the dilute carbonic acid leaching solution. Thus, for example, substances such as vandium, molybdenum, nickel, copper, the rare earths and the like can be recovered using the process of the present invention.

Uranium minerals frequently occur in the highly siliceous rocks and sedimentary deposits, generally as a mixture of the insoluble quadrivalent form and the soluble ...

LEVEL 1 - 59 OF 68 PATENTS
$4,358,157$
$<=2>$ GET 1st DRAWING SHEET OF 1
Nov. 9, 1982
Solution mining process
AL

INVENTOR: Showalter, Will_um E., Seal Beach, California
DETDESC:
... invention is applicable to the solution mining of other mineral values capable of forming soluble reaction products with the dilute carbonic acid leaching solution. Thus, for example, substances such as vanadium, molybdenum, nickel, copper, the rare earths and the like can be recovered using the process of the present invention.

Uranium minerals frequently occur in the highly siliceous rocks and sedimentary deposits, generally as a mixture of the insoluble quadrivalent form and the soluble ...

LEVEL 1 - 60 OF 68 PATENTS
$4,328,079$
$<=2>$ GET 1st DRAWING SHEET OF 1
May 4, 1982
Method for pumping impurities, especially noble gases, from hydrogen or mixtures of hydrogen and its isotopes

INVENTOR: Hemmerich, Johann, Stetternich, Federal Republic of Germany

DETDESC:

... 2 is adjusted by the fluid within the chamber 13 to the temperature for the desired hydrogen partial pressure. In this variation, the cathodes are formed from hydride-forming metals and alloys, for example, rare earth and rare earth-like metals and binary and ternary alloys of them with the addition of transition metals like iron, nickel, cobalt, etc. Upon formation of the sputtered film 12, hydrogen and its isotopes form hydrides with the film by chemisorption that can ...

LEVEL 1 - 61 OF 68 PATENTS

$$
4,279,668
$$

$<=2>$ GET 1st DRAWING SHEET OF 7
Jul. 21, 1981

Directionally solidified ductile magnetic alloy

INVENTOR: Kurz, Wilfried, Lausanne, California, Switzerland Glardon, Remi, Berkeley, California

SUM :
... relates to a process for the fabrication of magnetic alloys for permanent magnets and to the magnetic bodies obtained by this process.

More particularly the invention relates to ternary magnetic alloys consisting of rare-earth or rare-earth-like elements, cobalt and at least one metal selected from the group which consists of iron, nickel, aluminum, copper, molybdenum or manganese. Preferably the latter metal phase includes 0.1 to 10% (atomic) of the total alloy as ...

LEVEL 1 - 62 OF 68 PATENTS
4,208,225
<=2> GET 1st DRAWING SHEET OF 6
Jun. 17, 1980
Directionally solidified ductile magnetic alloys
magnetically hardened by precipitation hardening
A-28
^NVENTOR: Kurz, Wilfri iausanne, Switzerland Glardon, Remi, Corseaux, uwitzerland

SUM:
... relates to a process for the fabrication of magnetic alloys for permanent magnets and to the magnetic bodies obtained by this process.

More particularly the invention relates to ternary magnetic alloys consisting of rare-earth or rare earth-like elements, cobalt and at least one metal selected from the group which consists of iron, nickel, aluminum, copper, molybdenum or manganese. BACKGROUND OF THE INVENTION

Ferromagnetic alloys of the cobalt/rare-earth type have a high energy ... LEVEL 1 - 63 OF 68 PATENTS

4,105,253
<=2> GET 1st DRAWING SHEET OF 1
Aug. 8, 1978
Process for recovery of mineral values from underground formations

INVENTOR: Showalter, William E., Seal Beach, California
DETDESC:
... be clear that the invention is applicable to the solution mining of other mineral values capable of forming soluble reaction products with carbonated leaching solutions. Thus, for example, substances such as vanadium, molybdenum, nickel, copper, the rare earths and the like are recovered using the process of the present invention.

Uranium minerals frequently occur in the highly siliceous rocks and sedimentary deposits, generally as a mixture of the insoluble quadrivalent form and the soluble sexivalent form. ...

LEVEL 1 - 64 OF 68 PATENTS
$4,050,052$
$<=2>$ GET 1st DRAWING SHEET OF 1
Sep. 20, 1977
Electrical temperature measuring resistor structure, particularly for resistance thermometers

INVENTOR: Reichelt, Walter, Hanau, Germany, Federal Republic of Sauer, Gunter, Maintal, Germany, Federàl Republic of

DETDESC:
... temperatures can be applied. This cover layer, shown in FIG. 2 schematically at 3 , may consist for example of an epoxy resin, glass, or metal oxides of the group of aluminum, beryllium, thorium, rare earths, or the like. The cover layer 3 may be applied by vapor deposition, dusting, or spraying; its primary characteristics should be to be resistant against thermal and mechanical effects. The cover layer should additionally, preferably, provide ...

LEVEL 1 - 65 OF 68 PATENTS

$$
4,014,706
$$

Mar. 29, 1977
Solid solution ceramic materials
INVENTOR: Waldron, Robert D., Scottsdale, Arizona

SUM :
... dimensions of said structure and all physical and chemical properties of the solution are continuous functions of composition. The lattice symmetry may change within said composition range by uniform distortion of the structure as the composition changes.

Rare earth-like (metallic) elements as used herein means elements of atomic numbers 21, 39, and/or 57-71.

Yttrium earth (metallic) elements as used herein means elements of atomic numbers 39 and/or 64-71.

LEVEL 1 - 66 OF 68 PATENTS
3,983,077
<=2> GET 1st DRAWING SHEET OF 2
Sep. 28, 1976
Process for making ceramic resistor materials
INVENTOR: Fuller, Peter G., Lakeville, Massachusetts
Stoeckler, Hans A., Woonsocket, Rhode Island
DETDESC:
... invention also typically include additions of silicon oxide or manganese oxide or the like and other dopants typically incorporated in such ceramic compositions include lanthanum, cerium, dysprosium, and praesodymium as well as other rare earths and the like commonly used in ceramic resistor materials of positive temperature coefficient of resistivity. Typically, the ceramic titanate materials produced by the process are provided with stoichiometric or slightly titanium-rich compositions, the compositions preferably having an ...

LEVEL 1-67 OF 68 PATENTS
3,896,616
$<=2>$ GET 1st DRAWING SHEET OF 1
Jul. 29, 1975
Process and apparatus
INVENTOR: Keith, Carl D., Summit, New Jersey
Mooney, John J., Wyckoff, New Jersey
DETDESC:
... 0.1 to 1.5%. The catalytic element may contain, with or without the platinum group metals, one or more catalytic materials which may include, for example, chromium, manganese, vanadium, copper, iron, cobalt, nickel, rare earths, and the like.

The relative sizes of the initial and subsequent catalytic elements may be such that their volume ratio, i.e. the superficial volume of the subsequent catalyst to the initial catalyst, including void spaces within the catalytic masses, is often at least about...

LEVEL 1 - 68 OF 68 PATENTS
3,791,143
<=2> GET 1st DRAWING SHEET OF 1
Feb. 12, 1974

INVENTOR: Keith, Carl D., Summit, New Jersey
Mooney, John J., Wyckoff, New Jersey
DETDESC:
... 1.5 percent. The catalytic element may contain, with or without the platinum group metals, one or more catalytic materials which may include, for example, chromium, manganese, vanadium, copper, iron, cobalt, nickel, rare earths, and the like.

The relative sizes of the initial and subsequent catalytic elements may be such that their volume ratio, i.e., the superficial volume of the subsequent catalyst to the initial catlyst, including void spaces within the catalytic masses, is often at least about ...

```
* }72\mathrm{ PAGES 1431 LINES
```

* 5:29 P.M. STARTED

JOB 97027 100G6J *
5:29 P.M. STARTED 5:30 P.M. ENDED
11/22/97

Attachment B

Received: from mailhub. son.ibm.com (9.2.250.97) by yk i.watson.ibm.com
(IBM VM SMTP V2R4) wi-n TCP; Mon, 24 Nov 97 12:52:15 En_
Received: from igw2.watson.ibm.com (igw2.watson.ibm.com [9.2.250.12]) by mailhub
Received: from prod.lexis-nexis.com (prod.lexis-nexis.com [138.12.4.30]) by igw2
Received: by prod.lexis-nexis.com id AA13241
(InterLock SMTP Gateway 3.0 for dmorris@watson.ibm.com);
Mon, 24 Nov 1997 12:52:15-0500
Message-Id: 199711241752.AA13241@prod.lexis-nexis.com
Received: by prod.lexis-nexis.com (Internal Mail Agent-1);
Mon, 24 Nov 1997 12:52:15-0500
Date: Mon, 24 Nov 97 12:52:14 EST
From: lexis-nexis@prod.lexis-nexis.com (LEXIS(R)/NEXIS(R) Print Delivery)
To: dmorris@watson.ibm.com
Subject: LEXIS(R)/NEXIS(R) Print Request Job 53156, 1 of 1
MORRIS, DAN
IBM CORPORATION
YORKTOWN PATENT OPERATIONS
T. J. WATSON RESEARCH CENTER
P.O. BOX 218

YORKTOWN HEIGHTS, NEW YORK 10598-0218
MAIL-IT REQUESTED: NOVEMBER 24, 1997
100G6J
CLIENT: 98774
LIBRARY: LEXPAT
FILE: UTIL
YOUR SEARCH REQUEST AT THE TIME THIS MAIL-IT WAS REQUESTED:
CLAIMS(RARE W/1 EARTH W/1 LIKE)
NUMBER OF PATENTS FOUND WITH YOUR REQUEST THROUGH:

$$
\text { LEVEL } 1 \ldots 4
$$

LEVEL 1 PRINTED
DISPLAY FORMAT: KWIC
SEND TO: MORRIS, DAN
IBM CORPORATION
YORKTOWN PATENT OPERATIONS
T. J. WATSON RESEARCH CENTER
P.O. BOX 218

YORKTOWN HEIGHTS NEW YORK 10598-0218

LEVEL 1 - 1 OF 4 PATENTS

$$
\begin{gathered}
5,344,815 \\
<=2>\text { GET 1st DRAWING SHEET OF } 4
\end{gathered}
$$

Sep. 6, 1994
Fabrication of high T C superconducting helical resonator coils

INVENTOR: Su, Sophia R., Weston, Massachusetts
O'Connor, Margaret, Worcester, Massachusetts
Butler, Scott, N. Oxford, Massachusetts
... [$: 13]$ oxygen for at least 2 hr .
[*14] 14. A method in accordance with claim 11 wherein said mixture further comprises at least about $3 \mathrm{w} / \mathrm{o}$ grain aligned clusters of a like rare earth barium copper oxide superconductor.
[*15] 15. A method in accordance with claim 11 wherein said rare earth
barium copper oxide sup onductor is an yttrium barium Ner oxide superconductor.
[16] 16. A ...

> LEVEL $1-2$ OF 4 PATENTS
> $5,236,091$
> $<=2>$ GET 1st DRAWING SHEET OF 5

Aug. 17, 1993
Eddy current separator and method of making a rotor
INVENTOR: Kauppila, Raymond, Marquette, Michigan
Nowak, Gregory, Girard, Pennsylvania
... as follows:
[ㄱ1] 1. A rotor for an eddy current separator comprising a rotor body having generally cylindrical, outer peripheral surfaces designed to be rotated at a design speed;
plate-like rare earth permanent magnets;
adhesive means attaching said plate-like rare earth permanent magnets to said outer peripheral surfaces of said rotor body at a bond line;
said plate-like rare earth permanent magnets being disposed in longitudinal rows extending from one end of said rotor to the other;
said plate-like rare earth permanent magnets in a particular row having a polarity on their outer end opposite the polarity of an outer end of said plate-like permanent magnets in adjacent rows;
a fiber means ...
... [$* 3]$ equal to that of carbon.
[$=4$] 4. A rotor for an eddy current separator comprising a rotor body having generally cylindrical, outer peripheral surfaces designed to be rotated at a design speed;
plate-like rare earth permanent magnets;
adhesive means attaching said plate-like rare earth permanent magnets to said outer peripheral surfaces of said rotor body at a bond line;
said plate-like rare earth pexmanent magnets being disposed in longitudinal rows extending from one end of said rotor to the other;
said plate-like rare earth permanent magnets in a particular row having a polarity on their outer end opposite the polarity of an outer end of said plate-like permanent magnets in adjacent rows;
fiber means wrapped ...
... [*7] body having a polygonal outer periphery;
said polygonal outer periphery having a plurality of circumferentially disposed adjacent flat surfaces of equal width extending longitudinally of Pat. No. 5236091, 大7
said rotor from end to end thereof;
plate-like rare earth permanent magnets having a width substantially equal to the width of sides of said polygonal outer periphery and attached to said flat
surfaces by adhesive;
said plate-like rare earth permanent magnets extending substantially continuously from end to end of said rotor;
said shell being made of an electrically non-conductive material and adapted to receive said rotor;
a heat shield being ...
LEVEL 1 - 3 OF 4 PATENTS
$5,162,298$
$<=2>$ GET 1st DRAWING SHEET OF 5
Nov. 10, 1992
Grain boundary junction devices using high $T \mathrm{c}$ superconductors

INVENTOR: Chaudhari, Praveen, Briarcliff Manor, New York
Chi, Cheng-Chung J., Yorktown Heights, New York
Dimos, Duane B., Upper Montclair, New Jersey
Mannhart, Jochen D., Metzingen, New York, Federal Republic of Germany Tsuei, Chang C., Chappaqua, New York
... [$* 4$] copper oxide material having a superconducting onset temperature greater than 77 K .
[*5] 5. The device of claim 4, where said superconducting material includes an atom selected from the group consisting of rare earth atoms and rare earth-like atoms.
[*6] 6. The device of claim 4, where said superconducting material includes an alkaline earth atoms.
[${ }^{\circ} 7$] 7. The device of claim 4, where said superconducting material includes bismuth.
[$\div 8$] 8. The device of claim 1 , where...
LEVEL 1 - 4 0F 4 PATENTS
$4,681,625$
$<=2>$ GET 1st DRAWING SHEET OF 11
Jul. 21, 1987
Methods for simultaneously desulfurizing and degassing steels

INVENTOR: Wilson, William G., 820 Harden Dr., Pittsburgh, Pennsylvania 15229
... [*21] metals to be added in the tube to enhance desulfurization are those which are known to have the ability to reduce the oxygen content of the steel, but also have the ability to form sulfides which would float out of the steel into the slag which include magnesium, calcium, barium, rare earths and the like.
[222 2 22. The method as claimed in claims 1 or 5 wherein the ferro-alloys and elemental metals to be added in the tube are those necessary to obtain the desired chemical analysis of the finished steel such as ferro-... * 5 PAGES 99 LINES $90 B 53156$ 100G6J * * 12:52 P.M. STARTED 12:52 P.M. ENDED 11/24/97 *

Attachment C

```
Received: from mailhub.wa-son.ibm.com (9.2.250.97) by ykt, .watson.ibm.com
    (IBM VM SMTP V2R4) with TCP; Sat, 22 Nov 97 17:36:58 EST
    Received: from igw2.watson.ibm.com (igw2.watson.ibm.com [9.2.250.12]) by mailhub
    Received: from prod.lexis-nexis.com (prod.lexis-nexis.com [138.12.4.30]) by igw2
    Received: by prod.lexis-nexis.com id AA03698
    (InterLock SMTP Gateway 3.0 for dmorris@watson.ibm.com);
    Sat, 22 Nov 1997 17:36:59 -0500
Message-Id: <199711222236.AA03698@prod.lexis-nexis.com>
Received: by prod.lexis-nexis.com (Internal Mail Agent-1);
    Sat, 22 Nov 1997 17:36:59-0500
Date: Sat, 22 Nov 97 17:36:58 EST
From: lexis-nexis@prod.lexis-nexis.com (LEXIS(R)/NEXIS(R) Print Delivery)
To: dmorris@watson.ibra.com
Subject: LEXIS(R)/NEXIS(R) Print Request Job 97085, 1 of 2
MORRIS, DAN
IBM CORPORATION
YORKTOWN PATENT OPERATIONS
T. J. WATSON RESEARCH CENTER
P.O. BOX 218
YORKTOWN HEIGHTS, NEW YORK 10598-0218
    MAIL-IT REQUESTED: NOVEMBER 22, 1997 100G6J
    CLIENT: 8774
LIBRARY: LEXPAT
        FILE: UTIL
YOUR SEARCH REQUEST IS:
    PEROVSKITE W/1 LIKE
    AND SUPERCOND!
YOUR FOCUS SEARCH REQUEST AT THE TIME THIS MAIL-IT WAS REQUESTED:
    PEROVSKITE W/1 LIKE
NUMBER OF PATENTS FOUND WITH YOUR FOCUS REQUEST:
    107
DISPLAY FORMAT: KWIC
SEND TO: MORRIS, DAN
    IBM CORPORATION
    YORKTOWN PATENT OPERATIONS
    T. J. WATSON RESEARCH CENTER
    P.O. BOX 218
    YORKTOWN HEIGHTS NEW YORK 10598-0218
```



```
            FOCUS - 1 OF 107 PATENTS
                        5,686,394
                <=2> GET 1st DRAWING SHEET OF 1
Nov. 11, 1997
Process for manufacturing a superconducting composite
INVENTOR: Sibata, Kenichiro, Hyogo, Japan
Sasaki, Nobuyuki, Hyogo, Japan
Yazu, Shuji, Hyogo, Japan
Jodi, Tetsuji, Hyogo, Japan
SUM:
... \(\mathrm{Ho}-\mathrm{Cu}-\mathrm{O}\) system or \(\mathrm{Ba}-\mathrm{Dy}-\mathrm{Cu}-\mathrm{O}\) system compound oxide which possess the quasi-perovskite type crystal structure including an orthorhombically distorted perovskite or a distorted oxygen-deficient perovskite or the like.
```

The abovementioned typ- superconductors can be prepare. rom a powder mixture Consisting of oxides and/or carbonates containing constituent elements of said superconductor. The powder mixture may include optionally oxides and/or carbonates of at least ...

FOCUS - 2 OF 107 PATENTS
$5,679,980$
$<=2>$ GET 1st DRAWING SHEET OF 5
Oct. 21, 1997
Conductive exotic-nitride barrier layer for high-dielectric-constant material electrodes

INVENTOR: Summerfelt, Scott R., Dallas, Texas
DETDESC:

Sep. 9, 1997
Method of forming conductive amorphous-nitride barrier layer for high-dielectric-constant material electrodes

INVENTOR: Summerfelt, Scott R., Dallas, Texas
DETDESC:
$亠$
TABLE
$\cdots \quad$ Conductive perovskite like
\therefore FOCUS -4 OF 107 PATENTS
$5,661,112$
$<=2>$ GET 1st DRAWING SHEET OF 3

Aug. 26, 1997
Superconductor
INVENTOR: Hat ta, Shinichiro, 201-1028, Higashinakafuri-2-chome, Hirakata-shi, Japan
Higashino, Hidetaka, A2-505, 117, Hitotsuyacho, Matsubara-shi, Japan
Hirochi, Kumiko, 22, Keihanhondori-1-chome, Moriguchi-shi, Japan
Adachi, Hideaki, 3-1-505, Mitsuiminamimachi, Neyagawa-shi, Japan
$\ldots[+1]$ film being a transition metal element selected from $\mathrm{Pt}, \mathrm{Au}, \mathrm{Ag}$, Pd , Ni and Ti the composition $\mathrm{A}-\mathrm{B}-\mathrm{Cu}-0$ of said oxide film being in the form of layered perovskite-like structure.
[六2] 2. A superconductor according to claim 1, wherein an additional metal film is formed on said oxide film, or the oxide films and metal films are laminated alternately to form a multilayer structure.
[+3] \ldots
FOCUS - 5 OF 107 PATENTS

$$
<2
$$

Jul. 15, 1997
Chemical vapor deposition process for fabricating layered superlattice materials

INVENTOR: Paz De Araujo, Carlos A., Colorado Springs, Colorado Watanabe, Hitoshi, Tokyo, Japan Scott, Michael C., Colorado Springs, Colorado Mihara, Takashi, Saitama, Japan

DETDESC:
... Layered superlattice materials may be summarized more generally under the formula: [See Original Patent for Chemical Structure Diagram]
where $A 1, A 2$. . . A represent A-site elements in the perovskite-1ike structure, which may be elements such as strontium, calcium, barium, bismuth, lead, and others, $S 1, S 2$. . . Sk represent super-lattice generator elements, which usually is bismuth, but can also be materials such as yttrium, scandium, lanthanum, antimony, chromium, thallium, and other elements with a valence of + 3, B1, B2 . . . BI represent B-site elements in the perovskite-like structure, which may be elements such as titanium, tantalum, hafnium, tungsten, niobium, zirconium, and other elements, and Q represents an anion, which may be elements such as oxygen, fluorine, chlorine and hybrids of these elements, such ...
$\ldots\left[{ }^{*} 14\right] \quad \mathrm{s} 2>\ldots$. $\mathrm{Sk}[\mathrm{xk}]<+\mathrm{sk}>\mathrm{B} 1[\mathrm{y} 1]<+\mathrm{b} 1>\mathrm{B} 2[\mathrm{y} 2]<+\mathrm{b} 2>$. . . . Bl[yl]< + bl> $\mathrm{Q}[\mathrm{z}]<-2>$, where A1, A2 . . . Aj represent A-site elements in a perovskite-like structure, $S 1, S 2$. . . Sk represent superlattice generator elements, B1, B2 . . . B1 represent B-site elements in said perovskite-like structure, Q represents an anion, the superscripts indicate valences of the respective elements, the subscripts indicate an average number of atoms of the element in the unit cell, and at least $w 1$ and $y 1$ are non-zero, and wherein said A- ...

FOCUS - 6 OF 107 PATENTS

$$
\begin{gathered}
5,647,904 \\
<=2>\text { GET 1st DRAWING SHEET OF } 2 \\
\text { Jul. } 15,1997
\end{gathered}
$$

Method for manufacturing superconducting ceramics in a magnetic field

INYENTOR: Yamazaki, Shunpei, Tokyo, Japan
SUM:
... 300 K . by a method in which a mixture of chemicals in a suitable composition is compacted and fired. These superconducting ceramics form a quasi-molecular atomic unit in a perovskite-like structure whose unit cell is constructed with one layer in which electrons have essentially one-dimensional motion, whereas a number of crystalline grains are arranged at randam with diverse crystalline directions, and therefore the critical current density is
... cm from conventional several millimeters. The breadth and thickness may be more flexibly controlled by skilled persons according to the invention in comparison with the prior art technique.

Superconducting materials are constructed in perovskite-like structures as illustrated in FIG. 1 in accordance with the present invention. The structure comprises copper atoms 2, an intervening copper atom 3 , oxygen atoms 5 and 6 surrounding the copper ...

FIG. 1 is a schematic diagram showing the configuration of the perovskite-like molecular sturcture in accordance with the present invention.

FIGS. 2(A) and 2(B) are top and side sectional views showing an apparatus for manufacturing superconducting ceramics in accordance with the present invention.

FOCUS - 7 OF 107 PATENTS

$$
\begin{gathered}
5,646,094 \\
<=2>\text { GET 1st DRAWING SHEET OF } 4 \\
\text { Jul. 8, } 1997
\end{gathered}
$$

Rare earth substituted thallium-based superconductors
INVENTOR: Tallon, Jeffrey Lewis, 3 Marine Drive, York Bay, Eastbourne, New Zealand
Presland, Murray Robert., 4/1 Mahina Bay Road, Mahina Bay, Eastbourne, New Zealand

ABST:
... lanthanide rare earth elements and where $0.3</=a, b</=0.7,0.05</=c$ $</=1.1,2-c</=d</=1.95,0.05</=e</=1,1.9</=f</=2.1$ and $6.5</=g$ $</=7.5$. These compounds, which are layered perovskite-like oxides, exhibit a high chemical stability, form readily into nearly single phase, do not require adjustment of oxygen stoichiometry after synthesis and compositions may be chosen allowing superconductivity at temperatures ...

SUM:
... for example, do not require adjustment of oxygen stoichiometry after synthesis, and compositions may be chosen allowing superconductivity at temperatures exceeding 100 K .

The novel compounds described herein have the same tetragonal layered perovskite-like structure of the parent compound T 10.5 Pb 0.5 CaSr 2 Cu 207 comprising in sequence: a T 10.5 Pb 0.50 layer with $\mathrm{Tl} / \mathrm{Pb}$ occupying square comer-shared sites and oxygen distributed about the face centre; a Sr0 layer with ...

FOCUS - 8 OF 107 PATENTS
5,626,906
$<=2>$ GET 1st DRAWING SHEET OF 3
May 6, 1997
Electrodes comprising conductive perovskite-seed layers for perovskite dielectrics

INVENTOR: Summerfelt, Scott R., Dallas, Texas
Beratan, Howard R., Dallas, Texas

ABST:

... layer and the conductive oxide layer each comprise the same metal. The metal should be conductive in its metallic state and should remain conductive when partially or fully oxidized. Generally, the perovskite-seed layer has a perovskite or perovskite-like crystal structure and lattice parameters which are similar to the perovskite dielectric layer formed thereon. At a given deposition temperature, the crystal quality and other properties of the perovskite dielectric will generally be enhanced by depositing it on ...

SUM :
... As used herein, the term "high-dielectric-constant" means a dielectric constant greater than about 50 at device operating temperature. As used herein the term "perovskite" means a material with a perovskite or perovskite-like

$$
c 4
$$

crystal structure. As herein the term "dielectric", n used in reference to a perovskite, means a non-conductive perovskite, pyroelectric, ferroelectric, or high-dielectric-constant oxide material. The deposition of a ...
... structure. To facilitate perovskite crystal formation, perovskite dielectrics such as PZT have been deposited on some conductive perovskites such as YBa2Cu30[7-x]and (La,Sr)Co03. Deposition of PZT on a substrate with a perovskite or perovskite-like crystal structure normally minimizes the formation of the pyrochlore phase and improves the properties of the perovskite dielectric. However, the materials used thus far for the deposition surface have several problems. For example, they typically involve new cations such ...
... layer each comprise the same metal. The metal should be conductive in its metallic state and should remain conductive when partially or fully oxidized, and when in a perovskite. Generally, the perovskite-seed layer has a perovskite or perovskite-like crystal structure and lattice parameters which are similar to the perovskite dielectric layer formed thereon. At a given deposition temperature, the crystal quality and other properties of the perovskite dielectric will generally be enhanced by depositing it on ...

DETDESC:
TABLE
ruthenate seed layer ... perovskite-like materials FOCUS - 9 OF 107 PATENTS

$$
5,611,854
$$

Mar. 18, 1997
Seed crystals with improved properties for melt processing superconductors for practical applications

INVENTOR: Veal, Boyd W., Downers Grove, Illinois
Paulikas, Arvydas, Downers Grove, Illinois
Balachandran, Uthamalingam, Hinsdale, Illinois
Zhong, Wei, Chicago, Illinois
DETDESC:
... Although $\mathrm{PbTiO3}$ is shown in the Table, other perovskites of the form RTiO3, when R is La or a rare earth are good candidates. EuTiO3 has a lattice parameter of 3,897 [Angstrom]. NdGa03, and other perovskite-like oxides with the prototype GdFe03 structure should also serve well. NdGa03 is available as a commercial substrate material. Others may also be commercially available, particularly LaCrO3 which has many industrial applications.

Oxides with the GdFeO3 (...

```
                        FOCUS - 10 OF 107 PATENTS
                                5,602,080
    <=2> GET 1st DRAWING SHEET OF 1
```

Feb. 11, 1997
Method for manufacturing lattice-matched substrates for high-T[c] superconductor films

INVENTOR: Bednorz, Johannes G., Wolfhausen, Switzerland
Mannhart, Jochen D., Thalwil, Switzerland
Mueller, Carl A., Hedingen, Switzerland
Schlom, Darrell G., State College, Pennsylvania
SUM:
... a close match-preferably approaching an ideal match-of the lattice parameters of a substrate-without a buffer layer-to a selected high-Tic
]superconductor material, Laving a perovskite or a perovsh :-like crystal structure can be achieved by a method comprising the following steps: Determining the relevant lattice constant or constants of the selected superconductor material; choosing a desired orientation of the superconductor layer to ...
... for the deposition of the superconductor.
One preferred method of the invention for manufacturing a latticematched substrate for a film of a selected high-T[c]superconductor material having a perovskite or perovskite-like crystal structure at a selected orientation relative to the film dimensions comprises the steps set forth below.

The preferred method of the invention includes the step of determining a relevant lattice constant or constants of the selected...
... make the codeposition from separate sources each containing one or more of the materials combined to form the buffer layer.

Preferred substrate component materials include strontium titanate SrTi03 and lanthanum aluminate LaAl03 for perovskite-like superconductor materials such as YBa2Cu307 - delta.

In the following description, a preferred method for manufacturing crystalline substrate material having essentially the same lattice constant as the corresponding lattice constant of a...

FOCUS - 11 OF 107 PATENTS
$5,593,951$
$<=2>$ GET list DRAWING SHEET OF 4
Jan. 14, 1997
Epitaxy of high T[C]superconductors on silicon
INVENTOR: Himpsel, Franz J., Mt. Kisco, New York
SUM :
... first showed superconducting behavior in mixed copper-oxides, typically including rare earth and/or rare earth-like elements and alkaline earth elements, for example La, Ba, Sr, . . . , and having a perovskite-like structure.

Materials including the so called " $1-2-3$ " phase in the $\mathrm{Y}-\mathrm{Ba}-\mathrm{Cu}-\mathrm{O}$ system have been found to exhibit a superconducting transition temperature in excess of 77K. R. B. ...

FOCUS - 12 OF 107 PATENTS
5,590,053
<=2> GET list DRAWING SHEET OF 20
Dec. 31, 1996
Method of determining a space group
INVENTOR: Ito, Tatsuya, Kawasaki, Japan
Kawai, Masahito, Kawasaki, Japan
Yasukawa, Yoshihito, Kawasaki, Japan
DETDESC:
... present invention will be described with reference to FIG. 15 to FIG. 20.
Let it be assumed here that a crystal as a target of analysis is one of LaGdSrCu04. In the case of investigation into such a perovskite-like copper oxide superconductor, it is an effective technique of investigating a new substance to laminate partial structures to grasp a laminate structure
characteristic of the tance. The structure analysis .he target crystal by this technique will...

FOCUS - 13 OF 107 PATENTS

$$
5,589,284
$$

<=2> GET 1st DRAWING SHEET OF 3
Dec. 31, 1996
Electrodes comprising conductive perovskite-seed layers for perovskite dielectrics

INVENTOR: Summerfelt, Scott R., Da1las, Texas
Beratan, Howard R., Dallas, Texas

ABST:

... layer and the conductive oxide layer each comprise the same metal. The metal should be conductive in its metallic state and should remain conductive when partially or fully oxidized. Generally, the perovskite-seed layer has a perovskite or perovskite-like crystal structure and lattice parameters which are similar to the perovskite dielectric layer formed thereon. At a given deposition temperature, the crystal quality and other properties of the perovskite dielectric will generally be enhanced by depositing it on ...

SUM:
... As used herein, the term "high-dielectric-constant" means a dielectric constant greater than about 50 at device operating temperature. As used herein the term perovskite" means a material with a perovskite or perovskite-like crystal structure. As used herein the term "dielectric", when used in reference to a perovskite, means a non-conductive perovskite, pyroelectric, ferroelectric, or high-dielectric-constant oxide material. The deposition of a ...
... structure. To facilitate perovskite crystal formation, perovskite dielectrics such as PZT have been deposited on some conductive perovskite such as YBa2Cu30[7-x]and (La,Sr)Co03. Deposition of PZT on a substrate with a perovskite or perovskite-like crystal structure normally minimizes the formation of the pyrochlore phase and improves the properties of the perovskite dielectric. However, the materials used thus far for the deposition surface have several problems. For example, they typically involve new cations such ...
... layer each comprise the same metal. The metal should be conductive in its metallic state and should remain conductive when partially or fully oxidized, and when in a perovskite. Generally, the perovskite-seed layer has a perovskite or perovskite-like crystal structure and lattice parameters which are similar to the perovskite dielectric layer formed thereon. At a given deposition temperature, the crystal quality and other properties of the perovskite dielectric will generally be enhanced by depositing it on ...

DETDESC:

TABLE

$$
\begin{gathered}
5,585,300 \\
<=2>\text { GET 1st DRAWING SHEET OF } 5
\end{gathered}
$$

Dec. 17, 1996
Method of making conductive amorphous-nitride barrier layer
for high-dielectric-constant material electrodes
INVENTOR: Summerfelt, Scott R., Dallas, Texas

DETDESC:

TABLE

$* \quad * \quad$ FOCUS - 15 Conductive perovskite like

5,583,096
$<=2>$ GET 1st DRAWING SHEET OF 8
Dec. 10, 1996
Superconductive compounds and process for producing said compounds

INVENTOR: Cavazos, Ramon G., Paseo de la Reforma 403, Primer Piso, Mexico D.F. 06500

DETDESC:
... A. Muller in their article entitled "Possible High Tc Superconductivity in Ba-La-Cu-0 System". (Zeitschrift fur Physik B-Condensed Matter 64,189-193 (1986), reported: " . . . perovskite-like-mixed valent copper compound. Upon cooling, the samples show a linear decrease in resistivity, then an approximately logarithmic increase, interpreted as a beginning of localization. Finally, an abrupt decrease by ...

FOCUS - 16 OF 107 PATENTS
$5,563,331$
$<=2>$ GET 1st DRAWING SHEET OF 3
Oct. 8, 1996
Magnetoresistive sensor utilizing a sensor material with a perovskite-like crystal structure

INVENTOR: Von Helmolt, Rittmar, Erlangen, Federal Republic of Germany Wecker, Joachim, Roettenbach, Federal Republic of Germany

ABST:
A magnetoresistive sensor may be constructed with material having a perovskite-like crystal structure and an increased magnetoresistive effect. The material is based on the composition (A1)[1-x](A2)[x]MnO[z], with A1 (trivalent)

SUM :
background of the invention
The present invention relates to a magnetoresistive sensor with a layer made of a sensor material that possesses a perovskite-like crystal structure and exhibits an increased magnetoresistive effect.

The general structure and operation of magnetoresistive sensors with thin films made of ferromagnetic transition metals are explained further in, for example, the book "Sensors", Vol. ...
... x]Se (cf. "Journal of Ápplied Physics," Vol. 38, No. 3, Mar. 1, 1967, pp. 959-964). A corresponding effect is also evident in NdO.5Pb0.5MnO3 crystals; these crystals have a perovskite-like structure (cf. "Physics B," Vol. 155, 1989, pp. 362-365). However, the change in electrical resistance as a function of magnetic induction observed in these material systems is confined to low ...
... occur only to a reduced extent, in a sensor material that is the subject of a German patent application No. P 4310318.9 (not previously disclosed).

$$
\subset 8
$$

This material possesses perovskite-like crystal structu and exhibits an increased magnetoresistive effect. A composition based on (A1)[1-x](A2)[x]Mn0[x]is to be selected for the material, such that the trivalent constituent A1 at least contains ...
... sensor according to an embodiment of the present invention includes at least two layers, a first layer and a second layer. Each of the first and second layers is made of a sensor material that possesses a perovskite-like crystal structure and exhibits an increased magnetoresistive effect. The sensor material of each of the first and second layers has a composition based on (A1)[1-x](A2)[x]MnO[z], where A1 is a trivalent ...

DETDESC:
... indicated can also contain minimal impurities with less than 0.5 atomic percent of each impurity element. Exemplary embodiments for corresponding materials are therefore La 0.67Ba0.33Mn03, or Pr0.5Sr0.5Mn03, or Nd 0.33 CaO 0.6 MnO 3 , or (Dy 0.67 Mg 0.33) (Mn 0.8 Cu 0.2) 02.9. All these materials have Pat. No. 5563331, *

FOCUS
a perovskite-like crystal structure and are characterized by an increased magnetoresistive effect $M[r$]of, in particular, more than 10%, and preferably more than 50%. The effect is thus considerably greater than in known CusCo multilayer systems.
... 1557-1559). According to the present invention, corresponding layers of the sensor material are advantageously deposited onto substrates whose respective crystalline unit cell has dimensions matched to the unit cell of the sensor material. Substrate materials that also have a perovskite-like crystal structure are therefore particularly suitable. Corresponding exemplary embodiments are SrTi03, Mgr, LaA103, NdGa03, MgAl204, or Y-stabilized ZrO2 (abbreviated YSZ). In addition, however, Si substrates that are coated with a special intermediate ...
... [+1$]$ a layer system comprising at least two layers, including:
a first layer; and
a second layer;
wherein each of said first and second layers comprises a sensor material that possesses a perovskite-like crystal structure and exhibits an increased magnetoresistive effect, such that the sensor material of each of said first and second layers has a composition based on (A1)[1-x](A2)[x]MnO[z], wherein A1 is a
... [$* 4$] similar to said first layer and layers similar to said second layer.
[$\because 5$] 5. A magnetoresistive sensor according to claim 2; wherein the layer system is deposited on a substrate made of a material that has a perovskite-like crystal structure.
[*6] 6. A magnetoresistive sensor according to claim 1, wherein the first layer and the second layer have different thicknesses.
[*7] 7. A magnetoresistive sensor according to claim 6, wherein the layer system includes ...
... [六7] similar to said first layer and layers similar to said second layer.
[*8] 8. A magnetoresistive sensor according to claim 6, wherein the layer system is deposited on a substrate made of a material that has a perovskite-like crystal structure.
[+9] 9. A magnetoresistive sensor according to claim 1 , wherein the layer system includes more than two layers which alternate between layers similar to said first layer and layers similar to said second layer.
[$\because 10$] 10. A magnetoresistive sensor according to claim 9, wherein the layer system is deposited on a substrate made of a material that has a

Pat. No. 5563331, *10
FOCUS
perovskite-like crystal structure.
[*11] 11. A magnetoresistive sensor according to claim 1 , wherein the layer system is deposited on a substrate made of a material that has a perovskite-like crystal structure.
[$\div 12$] 12. A magnetoresistive sensor according to claim 1 , wherein $0.25</=$ $x</=0.75$.
[13] 13. A magnetoresistive sensor according to claim 1 , wherein $z=3$. FOCUS - 17 OF 107 PATENTS

5,554,585
$<=2>$ GET lst DRAWING SHEET OF 1

Sep. 10, 1996
Method of forming a superconductor microstrip transmission
line
INVENTOR: Simon, Randy W., Long Beach, California
Platt, Christine E., El Segundo, California
Lee, Alfred E., Torrance, California
Lee, Gregory S., West Los Angeles, California
REF-CITED:
... 61(1):28-35 (1973).
Gebaile, "Paths to Higher Temperature Superconductors," Science, vol. 259, Mar. 12, 1993, pp. 1550-1551.
Geller, S., et al., "Crystallographic Studies of Perovskite-like Compounds. II. Rare Earth Aluminates," Acta. Cryst., 9:1019-1025 (1956).
Geller, S., "Crystallographic Studies of Perovskite-like Compounds. IV. Rare
Earth Scandates, Vanadites, Galliates, Orthochromites," Acta Cryst., 10:243-248 (1957).

Gulyaev, Yu V., et al., "YBa2Cu30[7-x]Fi1ms with a High-temperature... FOCUS - 18 OF 107 PATENTS
$5,552,373$
<=2> GET 1st DRAWING SHEET OF 2
Sep. 3, 1996
Josephson junction device comprising high critical
temperature crystalline copper superconductive layers
INVENTOR: Agostinelli, John A., Rochester, New York
Mir, Jose M., Webster, New York
Lubberts, Gerrit, Penfield, New York
Chen, Samuel, Penfield, New York
DETDESC:
... can take any convenient form capable of permitting deposition of USCO" thereon as a thin film.

In a specifically preferred form of the invention $S U B^{\prime \prime}$ is chosen from
C 10
materials that themselvexhibit a perovskite or perovs -1ike crystal structure. Strontium titanate is an example of a perovskite crystal structure which is specifically preferred for use as a substrate. Lanthanum aluminate (LaAlO3), lanthanum gallium oxide (LaGa03) and potassium tantalate are ... FOCUS - 19 OF 107 PATENTS

$$
5,527,567
$$

$<=2>$ GET 1st DRAWING SHEET OF 6
Jun. 18, 1996
Metalorganic chemical vapor deposition of layered structure oxides

INVENTOR: Desu, Seshu B., Blacksburg, Virginia
Tao, Wei, Blacksburg, Virginia
Peng, Chien H., Blacksburg, Virginia
Li, Tingkai, Blacksburg, Virginia
Zhu, Yongfei, Blacksburg, Virginia
SUM:
... 1961), 695; G. A. Smolenski, V. A. Isupov and A. I. Agranovskaya, Fiz Tverdogo Tela, 3, (1961), 895). These compounds have a pseudo-tetragonal symmetry and the structure is comprised of stacking of perovskite-like units between (Bi202) $<2+>$ layers along the pseudo-tetragonal c-axis. A large number of these compounds do not contain any volatile components in their sublattice that exhibits spontaneous polarization. The tendency for ...

$$
\begin{gathered}
\text { FOCUS }-20 \text { OF } 107 \text { PATENTS } \\
5,523,283 \\
<=2>\text { GET 1st DRAWING SHEET OF } 1
\end{gathered}
$$

Jun. 4, 1996
L[a]A103 Substrate for copper oxide superconductors
INVENTOR: Simon, Randy W., Long Beach, California
Platt, Christine E., El Segundo, California
Lee, Alfred E., Torrance, California
Lee, Gregory S., West Los Angeles, California
REF-CITED:
... 61(1):28-35 (1973).
Gaballe, "Paths to Higher Temperature Superconductors," Science, vol. 259, Mar. 12, 1993, pp. 1550-1551.
Geller, S., et al., "Crystallographic Studies of Perovskite-like Compounds. II. Rare Earth Aluminates," Acta. Cryst., 9:1019-1025 (1956).
Geller, S., "Crystallographic Studies of Perovskite-like Compounds. IV. Rare
Earth Scandates, Vanadites, Galliates, Orthochromites," Acta Cryst., 10:243-428
(1957).

Gulysev, Yu V., et al., "YBa2CU30[7-x]Films with a High-temperature ...
FOCUS - 21 OF 107 PATENTS
5,523,282
$<=2>$ GET 1st DRAWING SHEET OF 1
Jun. 4, 1996
High-frequency substrate material for thin-film layered perovskite superconductors
INVENTOR: Simon, Randy W., Long Beach, California

Platt, Christine E., El gundo, California
Lee, Alfred E., Torrance, California
Lee, Gregory S., West Los Angeles, California
REF-CITED:
... A., et al., "The Flux Shuttle-A Josephson Junction Shift Register Employing Single Flux Quanta," Proceedings of the IEEE, 61(1):28-35 (1973). Geller, S., "Crystallographic Studies of Perovskite-like Compounds. Rare Earth Scandates, Vanadites, Galliates, Orthochromites," Acta Cryst., 10:243-251 (1957).

Gurvitch, M., et al., "Preparation and Substrate Reactions of Superconducting Y-Ba-Cu-O Films," ...
... in the Coprecipitation of Carbonate and Hydroxide Compounds of Lanthanum and Aluminum," Russian Journal of Inorganic Chenistry, vol. 22, No. 11, pp. 1622-1625, 1977.
S. Geller et al., "Crystallographic Studies of Perovskite-like Compounds. II. Rare Earth Aluminates," Acta Cryst., vol. 9, pp. 1019-1025, 1956.
J. Kilner et al., "Electrolytes for the High Temperature Fuel Cell; Experimental and Theoretical ...

FOCUS - 22 OF 107 PATENTS

$$
5,519,234
$$

$<=2>$ GET 1st DRAWING SHEET OF 30
May 21, 1996
Ferroelectric dielectric memory cell can switch at least giga cycles and has low fatigue - has high dielectric
constant and low leakage current
INVENTOR: Paz de Araujo, Carlos A., Colorado Springs, Colorado
Cuchiaro, Joseph D., Colorado Springs, Colorado
Scott, Michael C., Colorado Springs, Colorado
McMillan, Larry D., Colorado Springs, Colorado
ABST :
$\ldots \mathrm{s} 2>$. . Sk $\mathrm{xk}<+\mathrm{ak}>\mathrm{B} 1 \mathrm{y} 1<+\mathrm{b} 1>\mathrm{B} 2 \mathrm{y} 2<+\mathrm{b} 2>$. . . B1 y1 $<+$ bl> $Q z<-2\rangle$, where $A 1, A 2$. . Aj represent A-site elements in a perovskite-like structure, $\mathrm{S} 1, \mathrm{~S} 2$. . . Sk represent superlattice generator elements, B1, B2 . . . Bl represent B-site elements in a perovskite-like structure, Q represents an anion, the superscripts indicate the valences of the respective elements, the subscripts indicate the number of atoms of the element in the unit cell, and at least wl and y1 are non-zero. Some of these materials are extremely low ...

SUM :
... 676 (1962) and Chapter 8 pages 241-292 and pages $624 \& 625$ of Appendix F of the Lines and Glass reference cited above. As outlined in section 15.3 of the Smolenskii book, the layered perovskite-like materials can be classified under three general types:
(I) compounds having the formula $A m-1 B i 2 M m 03 m+3$, where $A=B i<3+>$, $\mathrm{Ba}<2+>, \mathrm{Sr}<\ldots$
... strontium titanates Sr2Ti04, Sr3Ti207 and Sr4Ti3010; and
(III) compounds having the formula $A m \mathrm{Mm} 03 \mathrm{~m}+2$, including compounds such as Sr2Nb207, La2Ti207, Sr5TiNb4017, and Sr6Ti2Nb4020.

Smolenskii pointed out that the perovskite-like layers may have different thicknesses, depending on the value of m, and that the perovskite AMO3 is in principal the limiting example of any type of layered perovskite-like structure with $m=$ infinity. Smolenskii also noted that if the layer with minimum thickness $(m=1)$ is denoted by P and the bismuth-oxygen layer is denoted by B, then the type I compounds may be described as . . . BP m BP m Further

Smolenskii noted that is a fractional number then thatice contains perovskite-like layers of various thicknesses, and that ad. the known type I compounds are ferroelectrics. Similarly, Smolenskii noted that the type two compounds could be represented as . . . SP m SP m . . . where P is the perovskite-like layer of thickness m and S is the strontium-oxygen connecting layer, and that since the type I and type II compounds have similar perovskite-like layers, the existence of "hybrid" compounds such as . . . BP m SP n BP m SP m . . . "should not be ruled out", though none had been obtained at that time.

Pat. No. 5519234, \div
FOCUS
Up to now, these layered ferroelectric ...

$$
\ldots \mathrm{s} 2>\ldots . \mathrm{Sk} \mathrm{xk}<+\mathrm{sk}\rangle \mathrm{B} 1 \mathrm{y} 1<+\mathrm{b} 1>\mathrm{B} 2 \mathrm{y} 2<+\mathrm{b} 2>\ldots . \text { Bl yl<tb1> }
$$ Q $z<-2>$, where $A 1, A 2$. . . Aj represent A-site elements in a perovskite-like structure, $\mathrm{S} 1, \mathrm{~S} 2$. . . Sk represent superlattice generator elements, B1, B2 . . . Bl represent B-site elements in a perovskite-like structure, Q represents an anion, the superscripts indicate the valences of the respective elements, the subscripts indicate the average number of atoms of the element in the unit cell, and at least $w 1$ and $y 1$ are non-zero. Preferably, the A-

... layered superlattice material comprises a material having a localized structure, within a grain or other larger or smaller unit, which localized structure contains predominately repeatable units containing one or more perovskite-like layers and one or more intermediate non-perovskite-like layers spontaneously linked in an interdependent manner.

In another aspect the invention provides a non-volatile ferroelectric memory comprising: a ferroelectric memory cell including a layered superlattice...

DETDESC:
... curves as shown in FIG. 5C, which show fatigue of less than 30%, which is much less than for any ferroelectric material on which endurance tests had been performed in the prior art. It was realized that the SrBi4Ti4015 was one of the layered perovskite-like materials catalogued by Smolenskii, and thought that perhaps the natural layered structure of these materials might be the source of the low-fatigue property. Other devices were fabricated having the structure shown in FIG. 2C, i.e. a ...
... flexible than the lattice of a ferroelectric material. Turning to FIG. 13, a layered superlattice material 92 is illustrated. Smolenskii recognized that what. we call the layered superlattice materials spontaneously form into layers 94 with a perovskite-like structure which alternate with layers 96 having a simpler structure. Depending on the material, the perovskite-like layers 94 may include one or a plurality of linked layers of perovskite-like octahedrons 90. As an example, FIG. 14 shows a unit cell of the material ABi2B2< $+5>09$, which is the formula for strontium bismuth tantalate (SrBi2Ta209) and other layered superlattice materials, such as tantalum, niobium, and tungsten, having a element with a valence of +5 in the $B-s i t e$. In this structure, each perovskite-like layer 94 includes two layers of octahedrons 90 which are separated by layers 96 of a material that does not have a perovskite-like structure. In this material the primitive unit cell consists of two perovskite layers 94 and two non-perovskite layers 96 , since the structure shifts between the layers 98A and 98B. In FIG. ...
... 015, which is the formula for strontium bismuth titanate (SrBi4Ti4015) and other layered superlattice materials having an element, such as titanium, hafnium, and zirconium, having a valence of +4 in the B-sites. In this material each the perovskite-like layer 94 has four layers of octahedrons 90 .

As the understanding of what Smolenskii called a layered perovskite-like structure increased, the inventors have realized that these materials are more than a substance which spontaneously forms in layers. This is seen most easily by an example. Strontium bismuth tantalate (SrBi2Ta209) can be considered to

Pat. No. 5519234, *
.
... in the following definition: (B) a material having a localized structure, within a grain or other larger or smaller unit, which localized structure contains predominately repeatable units containing one or more perovskite-like layers and one or more intermediate non-perovskite-like layers spontaneously linked in an interdependent manner.

It has been discovered that the layered superlattice materials catalogued by Smolenskii et al. are all likely candidates for fatigue free switching ferroelectrics and dielectric materials that are resistant to ...

```
    ... x2< + s2> . . . Sk xk< + sk> B1 y1< + b1> B2 y2< + b2 > . . . B1 yl
< + bl> Q z< - 2>,
```

where $A 1, A 2$. . . Aj represent A-site elements in the perovskite-like structure, which may be elements such as strontium, calcium, barium, bismuth, lead, and others $S 1, S 2$. . . Sk represent superlattice generator elements, which usually is bismuth, but can also be materials such as yttrium, scandium, lanthanum, antimony, chromium, thallium, and other elements with a valence of + $3, B 1, B 2$. . . B1 represent B-site elements in the perovskite-like structure, which may be elements such as titanium, tantalum, hafnium, tungsten, niobium, zirconium, and other elements, and Q represents an anion, which generally is oxygen but may also be other elements, such as fluorine, ...
$\ldots[\div 2] \mathrm{s} 2>$. . . Sk xk $<+\mathrm{sk}>\mathrm{B} 1 \mathrm{y} 1<+\mathrm{b} 1>\mathrm{B} 2 \mathrm{y} 2<+\mathrm{b} 2>$. . . B1 yl $<+b l>Q \quad z<-2>$, where $A 1, A 2$. . . Aj represent A-site elements in a perovskite-like structure, $\mathrm{S} 1, \mathrm{~S} 2$. . . Sk represent superlattice generator elements, B1, B2 . . . B1 represent B-site elements in a perovskite-like structure, Q represents an anion, the superscripts indicate the valences of the respective elements, the subscripts indicate the average number of atoms of the element in the unit cell, and at least $w 1$ and $y 1$ are non-zero.
[+3] 3. A...
FOCUS - 23 OF 107 PATENTS
5,504,041
$<=2>$ GET 1st DRAWING SHEET OF 5
Apr. 2, 1996
Conductive exotic-nitride barrier layer for high-dielectric-constant materials

INVENTOR: Summerfelt, Scott R., Dallas, Texas
DETDESC:
$+$

* *

TABLE
...
Conductive perovskite like materials
FOCUS - 24 OF 107 PATENTS

$$
\begin{gathered}
5,489,548 \\
<=2>\text { GET 1st DRAWING SHEET OF } 3
\end{gathered}
$$

Feb. 6, 1996
Method of forming high-dielectric-constant material electrodes comprising sidewall spacers

INVENTOR: Nishioka, Yasushiro, Tsukuba, Texas, Japan
Summerfelt, Scott R., Dallas, Texas

$$
c 14
$$

Park, Kyung-Ho, Tsukuba pan Bhattacharya, Pijush, Mionapur, India

DETDESC:

INVENTOR: Desu, Seshu B., Blacksburg, Virginia
Tao, W., Blacksburg, Virginia
SUM:
... 34, (1961), 695; G. A. Smolenski, V. A. Isupov and A. I. Agranovskaya, Fiz Tverdogo Tela, 3, (1961), 895). These compounds have pseudo-tetragonal symmetry and the structure is comprised of stacking of perovskite-like units between (Bi202)<2 $+>$ layers along the pseudo-tetragonal c-axis. A large number of these compounds do not contain any volatile components in their sublattice that exhibits spontaneous polarization. The tendency for ...

FOCUS - 26 OF 107 PATENTS

$$
5,468,679
$$

<=2> GET 1st DRAWING SHEET OF 27
Nov. 21, 1995
Process for fabricating materials for ferroelectric, high dielectric constant, and integrated circuit applications

INVENTOR: Paz de Araujo, Carlos A., Colorado Springs, Colorado
Scott, Michael C., Colorado Springs, Colorado
Cuchiaro, Joseph D., Colorado Springs, Colorado
McMillan, Larry D., Colorado Springs, Colorado
SUM:
... 676 (1962) and Chapter 8 pages 241-292 and pages $624 \& 625$ of Appendix F of the Lines and Glass reference cited above.

As outlined in section 15.3 of the Smolenskii book, the layered perovskite-like materials can be classified under three general types:
(I) compounds having the formula $A m-1 B i 2 M m 03 m+3$, where $A=B i<3+>$, $\mathrm{Ba}<2+>, \mathrm{Sr}<\ldots$
... s2> . . . Sk xk < + sk> B1 y1 < + b1> B2 y2 < + b2> . . . B1 yl < + b1> Q
$z<-2>$,
where A1, A2 . . . Aj represent A-site elements in a perovskite-like structure, S1, S2 . . . Sk represent superlattice generator elements, B1, B2 . . Bl represent B-site elements in a perovskite-like structure, Q represents an anion, the superscripts indicate the valences of the respective elements, the subscripts indicate the average number of atoms of the element in the unit cell, and at least wl and yl are non-zero. Preferably, the A-...

DETDESC:
... compatible with, or can be designed to be compatible with, the other

$$
<15
$$

The class of materials are those disclosed by Smolenskii as having a layered perovskite-like structure, as discussed in the Background of the Invention. It has been realized that these materials are more than a substance which spontaneously forms in layers. This is seen most easily by an example. Strontium bismuth tantalate (SrBi2Ta209) can ...
... in the following definition: (B) a material having a localized structure, within a grain or other larger or smaller unit, which localized structure contains predominately repeatable units containing one or more perovskite-like layers and one or more intermediate non-perovskite-like layers spontaneously linked in an interdependent manner.

It is well-known that compounds having the perovskite structure may be described in terms of the general formula $A B Q 3$, where A and B are cations and Q is an anion. In the ...

$$
\text { Pat. No. 5468679, } \div
$$

FOCUS
... flexible than the lattice of a ferroelectric material. Turning to FIG. 13 , a layered superlattice material 92 is illustrated. Smolenskii recognized that what we call the layered superlattice materials spontaneously form into layers 94 with a perovskite-like structure which alternate with layers 96 having a simpler structure. Depending on the material, the perovskite-like layers 94 may include one or a plurality of linked layers of perovskite-like octahedrons 90. As an example, FIG. 14 shows a unit cell of the material ABi2B2< $+5>09$, which is the formula for strontium bismuth tantalate (SrBi2Ta209) and other layered superlattice materials, such as tantalum, niobium, and tungsten, having a element with a valence of +5 in the B-site. In this structure, each perovskite-like layer 94 includes two layers of octahedrons 90 which are separated by layers 96 of a material that does not have a perovskite-like structure. In this material the primitive unit cell consists of two perovskite layers 94 and two non-perovskite layers 96 , since the structure shifts between the layers 98A and 98B. In FIG. ...
... 015, which is the formula for strontium bismuth titanate (SrBi4Ti4015) and other layered superlattice materials having an element, such as titanium, hafnium, and zirconium, having a valence of +4 in the $B-s i t e s$. In this material each the perovskite-like layer 94 has four layers of octahedrons 90.

It has been discovered that the layered superlattice materials catalogued by Smolenskii et al. are all likely candidates for fatigue free switching ferroelectrics and dielectric materials that are resistant to ...

where $A 1, A 2$. . . Aj represent A-site elements in the perovskite-1ike structure, which may be elements such as strontium, calcium, barium, bismuth, lead, and others $S 1, S 2$. . . Sk represent superlattice generator elements, which usually is bismuth, but can also be materials such as yttrium, scandium, lanthanum, antimony, chromium, thallium, and other elements with a valence of + 3, B1, B2 . . . B1 represent B-site elements in the perovskite-like structure, which may be elements such as titanium, tantalum, hafnium, tungsten, niobium, zirconium, and other elements, and Q represents an anion, which generally is oxygen but may also be other elements, such as fluorine, ... FOCUS - 27 OF 107 PATENTS

5,447,908
$<=2>$ GET 1st DRAWING SHEET OF 1
Sep. 5, 1995
Superconducting thin film and a method for preparing the C16

INVENTOR: Itozaki, Hideo, Hyogo, Japan
Tanaka, Saburo, Hyogo, Japan
Fujita, Nobuhiko, Hyogo, Japan
Yazu, Shuji, Hyogo, Japan
Jodai, Tetsuji, Hyogo, Japan
SUM :
... structure. The term of quasi-perovskite type means a structure which can be considered to have such a crystal structure that is similar to
Perovskite-type oxides and includes an orthorhombically distorted perovskite or a distorted oxygendeficient perovskite or the like.

The superconducting thin film may be also another type of superconductor consisting mainly of a compound oxide represented by the formula:

```
THETA 4( PHI l-q,Ca q ) m Cu ...
                                    FOCUS - 28 OF 107 PATENTS
```

 5,447,906
 Sep. 5, 1995
Thin film high TC oxide superconductors and vapor deposition methods for making the same

INVENTOR: Chaudhari, Praveen, Briarcliff Manor, New York
Gambino, Richard J., Yorktown Heights, New York
Koch, Roger H., Amawalk, New York
Lacey, James A., Mahopac, New York
Laibowitz, Robert B., Peekskill, New York
Viggiano, Joseph M., Wappingers Falls, New York
SUM :
... areas.
It is another object of the present invention to provide continuous, smooth copper oxide superconductive films exhibiting superconductivity at temperatures in excess of 400 K . and methods for making these films, where the films exhibit perovskite-like structure.

It is another object of this invention to provide transition metal oxide superconductive films including a rare earth element, or rare earth-like element, where the films exhibit superconductivity at temperatures greater than 400
... earth-like element, B is an alkaline earth element, and y is sufficient to satisfy valence demands of the composition.

It is another object of the present invention to provide smooth, continuous copper oxide superconducting films having a perovskite-like crystal structure and exhibiting superconductivity at temperatures in excess of 400 K ., and to provide methods for making these films. SUMMARY OF THE INVENTION

The films of this invention are oxide superconductors exhibiting superconductivity at temperatures in excess of ...
... addition to being continuous, smooth, and of excellent compositional uniformity. The Cu oxide films are therefore considered to be unique examples of this class of films, as are the processes for making them.

Typically, the films are characterized by a perovskite-like crystalline structure, such as those described in more detail by C. Michel and B. Rayeau in Revue Die.

Chime Minerale, 21,
407 (1984). These films are fd d by a ... FOCUS - 29 OF 107 PATENTS

5,439,878
<=2> GET 1st DRAWING SHEET OF 21
Aug. 8, 1995

> Method for preparing copper oxide superconductor containing carbonate radicals

INVENTOR: Kinoshita, Kyoichi, Hoy, Japan
Yamada, Tomoaki, Higashimurayama, Japan
SUM:
... novel superconducting material.
Description of the Prior Art
Several types of copper oxide superconductors have been discovered since high-To superconductivity was detected in the La-Ba-Cu-O system.
Superconductivity would arise from the layered perovskite-like structure having
Cu06 octahedra, or Cu05 pyramids, or Cu02 square planes as a building unit. The layered perovskite-like structure and a sufficient carrier concentration of the material are essential factors for making the material superconducting as
indicated by Osamura \& Zhang (Japan. J.Appl.Phys.26, L2094-L2096, 1987). ...
FOCUS - 30 OF 107 PATENTS
5,439, 876
$<=2>$ GET list DRAWING SHEET OF 5
Aug. 8, 1995
Method of making artificial layered high T c superconductors
INVENTOR: Graf, Volker, Wollerau, Switzerland
Mueller, Carl A., Hedingen, Switzerland
DETDESC:

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

One material particularly suited as a substrate in the epitaxial growth of high T c superconductor material is strontium titanate, SrTi03, which forms crystals like perovskite (FIG. 1). Each titanium ion 1 is octahedrally surrounded by six oxygen ions 2, the bigger strontium ions 3 being disposed in the spaces in between. At room temperature, ...

$$
\text { FOCUS - } 31 \text { OF } 107 \text { PATENTS }
$$

$$
5,426,092
$$

$<=2>$ GET list DRAWING SHEET OF 14
Jun. 20, 1995
Continuous or semi-continuous laser ablation method for depositing fluorinate superconducting thin film having basal plane alignment of the unit cells deposited on non-lattice-matched substrates

INVENTOR: Ovshinsky, Stanford R., Bloomfield Hills, Michigan
Young, Rosa, Troy, Michigan
SUM:
... growth of a crystalline superconducting material in a manner as if mimicking the orientation of a substrate having an identical lattice structure

$$
\begin{gathered}
5,424,282 \\
<=2>\text { GET Mst DRAWING SHEET OF } 5 \cdot \\
\text { Jun. } 13,1995
\end{gathered}
$$

Process for manufacturing a composite oxide superconducting wire

INVENTOR: Yamamoto, Susumu, Hyogo, Japan
Mural, Teruyuki, Hyogo, Japan
Kawabe, Nozomu, Hyogo, Japan
Awazu, Tomoyuki, Hyogo, Japan
Yazu, Shuji, Hyogo, Japan
Jodi, Tetsuji, Hyogo, Japan
DETDESC:
... term of "quasiperovskite type structure" means any oxide that can be considered to have such a crystal structure-that is similar to perovskite-type oxides and may include an orthorhombically distorted perovskite or a distorted oxygen-deficient perovskite or the like.

In practice, the element ct is preferably selected from Ba, Sr and/or Ca and the element beta is preferably selected from Y, La andor lanthanide such as Sc, Ce, Gd, Ho, Er, Tin, Y b, ...

FOCUS - 33 OF 107 PATENTS

$$
\begin{gathered}
5,423,285 \\
<=2>\text { GET 1st DRAWING SHEET OF } 27
\end{gathered}
$$

Jun. 13, 1995
Process for fabricating materials for ferroelectric, high dielectric constant, and integrated circuit applications

INVENTOR: Paz de Araujo, Carlos A., Colorado Springs, Colorado
Cuchiaro, Joseph D., Colorado Springs, Colorado
Scott, Michael C., Colorado Springs, Colorado
McMillan, Larry D., Colorado Springs, Colorado
SUM:
... 676 (1962) and Chapter 8 pages 241-292 and pages $624 \& 625$ of Appendix F of the Lines and Glass reference cited above.

As outlined in section 15.3 of the Smolenskii book, the layered perovskite-like materials can be classified under three general types:
(I) compounds having the formula $A m-1 \operatorname{Bi} 2 M m 03 m+3$, where $A=B i<3+>$, $\mathrm{Ba}<2+>, \mathrm{Sr}<\ldots$
\ldots si> . . . Sk wk < + sk> B1 y1 < + bl> B2 y2 < + bi> . . . B1 yd < + bl> Q $z<-2>$, where $A 1, A 2$. . . Adj represent $A-s i t e$ elements in a perovskite-like structure, S1, S2 . . . Sk represent superlattice generator elements, B1, B2 . . . Bl represent B-site elements in a perovskite-like structure, Q represents an anion, the superscripts indicate the valences of the respective elements, the subscripts indicate the average number of atoms of the element in the unit cell, and at least wi and gl are nonzero. Preferably, the A- ...

DETDESC:
... compatible with, can be designed to be compatil with, the other materials commonly used in integrated circuits, such as s...icon and gallium arsenide.

The class of materials are those disclosed by Smolenskii as having a layered perovskite-like structure, as discussed in the Background of the Invention. It has been realized that these materials are more than a substance which spontaneously forms in layers. This is seen most easily by an example. Strontium bismuth tantalate (SrBi2Ta209) can ...
... in the following definition: (B) a material having a localized structure, within a grain or other larger or smaller unit, which localized structure contains predominately repeatable units containing one or more perovskite-like layers and one or more intermediate non-perovskite-like layers spontaneously linked in an interdependent manner.

It is well-known that compounds having the perovskite structure may be described in terms of the general formula ABQ3, where A and B are cations and Q is an anion. In the ...
... flexible than the lattice of a ferroelectric material. Turning to FIG. 13, a layered superlattice material 92 is illustrated. Smolenskii recognized Pat. No. 5423285, *
focus
that what we call the layered superlattice materials spontaneously form into layers 94 with a perovskite-like structure which alternate with layers 96 having a simpler structure. Depending on the material, the perovskite-like layers 94 may include one or a plurality of linked layers of perovskite-like octahedrons 90. As an example, FIG. 14 shows a unit cell of the material ABi2B2< $+5>09$, which is the formula for strontium bismuth tantalate (SrBi2Ta209) and other layered superlattice materials, such as tantalum, niobium, and tungsten, having a element with a valence of +5 in the B-site. In this structure, each perovskite-like layer 94 includes two layers of octahedrons 90 which are separated by layers 96 of a material that does not have a perovskite-like structure. In this material the primitive unit cell consists of two perovskite layers 94 and two non-perovskite layers 96 , since the structure shifts between the layers 98A and 98B. in FIG. ...
... 015, which is the formula for strontium bismuth titanate (SrBi4Ti4015) and other layered superlattice materials having an element, such as titanium, hafnium, and zirconium, having a valence of +4 in the B-sites. In this material each the perovskite-like layer 94 has four layers of octahedrons 90.

It has been discovered that the layered superlattice materials catalogued by Smolenskii et al. are all likely candidates for fatigue free switching ferroelectrics and dielectric materials that are resistant to ...

```
    \ldots.Sk xk<+ sk> B1 y1<+b1> B2 y2< + b2> . . . B1 yl< + bl> Q z< - 2>
,tm (1)
```

where $A 1, A 2$. . . Adj represent A-site elements in the perovskite-like structure, which may be elements such as strontium, calcium, barium, bismuth, lead, and others S1, S2 . . . Sk represent superlattice generator elements, which usually is bismuth, but can also be materials such as yttrium, scandium, lanthanum, antimony, chromium, thallium, and other elements with a valence of + 3, B1, B2 . . . B1 represent B-site elements in the perovskite-like structure, which may be elements such as titanium, tantalum, hafnium, tungsten, niobium, zirconium, and other elements, and Q represents an anion, which generally is oxygen but may also be other elements, such as fluorine, ... FOCUS - 34 OF 107 PATENTS

$$
\begin{gathered}
5,409,890 \\
\text { Apr. } 25,1995
\end{gathered}
$$

Process for producing an elongated sintered article

$$
C 20
$$

INVENTOR: Yamamoto, Susumu, Hyogo, Japan
Kawabe, Nozomu, Hyogo, Japan
Awazu, Tomoyuki, Hyogo, Japan
Murai, Teruyuki, Hyogo, Japan
SUM :
... term quasi-perovskite type means a structure which can be considered to have such a crystal structure that is similar to perovskite-type oxides and includes an orthorhombically distorted perovskite or a distorted oxygen-deficient perovskite or the like.

The sintering operation of the powder mixture is carried out at temperature which is higher than 6000 C . but is not higher than the lowest melting point of any component in the material powder to be sintered. If the sintering temperature exceeds the ...

FOCUS - 35 OF 107 PATENTS

$$
\begin{gathered}
5,401,715 \\
<=2>\text { GET 1st DRAWING SHEET OF } 1
\end{gathered}
$$

Mar. 28, 1995
Semiconductor substrate having a superconducting thin film
INVENTOR: Itozaki, Hideo, Hyogo, Japan
Harada, Keizo, Hyogo, Japan
Fujimori, Naoji, Hyogo, Japan
Yazu, Shuji, Hyogo, Japan
Jodai, Tetsuji, Hyogo, Japan
DETDESC:
... term quasi-perovskite type means a structure which can be considered to have such a crystal structure that is similar to perovskite-type oxides and includes an orthorhombically distorted perovskite or a distorted oxygen-deficient perovskite or the like.

An atomic ratio of the lanthanide element "Ln":Ba:Cu is preferably 1:2:3 as is defined by the formula but the atomic ratio is not restricted strictly to this ratio. In fact, the other compound oxides having ... FOCUS - 36 OF 107 PATENTS

$$
5,389,603
$$

$<=2>$ GET 1st DRAWING SHEET OF 5

Feb. 14, 1995
Oxide superconductors, and devices and systems comprising such a superconductor

INVENTOR: Batlogg, Bertram J., New Providence, New Jersey
Cava, Robert J., Bridgewater, New Jersey
DETDESC:
... microscopy indicate a basically orthorhombic crystal structure, but there are also indications that, at least for some of the inventive compounds, the structure may be weakly monoclinic. Both of these possibilities are intended to be included in the term "perovskite-like" or analogous terms. Diffraction studies have also revealed the presence of a variety of long period long range ordered superlattices (typically in the ab plane).

FIG. 2 shows the field (225 Oe)-cooled ...
We claim:

$$
c 21
$$

[*1] 1. An article. omprising a superconductive eld comprising at least one superconductive material having a perovskite-like crystal structure and nominal formula ($\mathrm{Pb} 2 \mathrm{~A} 2 \mathrm{Cu}{ }^{\prime}$) $\mathrm{BCu} 208+$ delta with (A selected from the group consisting of $\mathrm{Sr}, \mathrm{Ba}, \mathrm{Sr}$ and Ba, Sr and Ca , and Sr, Ba and $\mathrm{Ca} ; \mathrm{Cu}$ is selected from the group consisting of ...
... [${ }^{-1]}$ parallel to the ab- plane; and wherein the composition is selected such that the superconductive material has a transition temperature of at least about 30 K .
[:2] 2. An article comprising a superconductive element comprising at least one superconductive material having a perovskite-like crystal structure and nominal formula ($\mathrm{X} 2 \mathrm{~A} 2 \mathrm{Cu}{ }^{\prime}$) $\mathrm{BCu} 208+$ delta, where X is selected from the group consisting of Pb, Pb and Bi, Pb and Tl , and Pb, Bi and Tl , with X being at least 50 atomic \% of ...

FOCUS - 37 OF 107 PATENTS
5,362,710
<=2> GET 1st DRAWING SHEET OF 2
Nov. 8, 1994
Process for preparing high Tc superconducting material
INVENTOR: Fujita, Nobuhiko, Hyogo, Japan
Kobayashi, Tadakazu, Hyogo, Japan
Itozaki, Hideo, Hyogo, Japan
Tanaka, Saburo, Hyogo, Japan
Yazu, Shuji, Hyogo, Japan
Jodai, Tetsuji, Hyogo, Japan
SUM:
... quasi-perovskite type oxide means a structure which can be considered to have such a crystal structure that is similar to perovskite-type oxides and includes an orthorhombically distorted perovskite or a distorted oxygen-deficient perovskite or the like.

The present invention also provides a process for producing the abovementioned superconducting material, characterized by sintering a mixture of the following powders:
an oxide, carbonate, nitrate or sulfate of one element " A " selected from ... FOCUS - 38 OF 107 PATENTS

$$
\begin{gathered}
5,356,674 \\
<=2>\text { GET 1st DRAWING SHEET OF } 2
\end{gathered}
$$

Oct. 18, 1994
Process for applying ceramic coatings using a plasma jet carrying a free form non-metallic element

INVENTOR: Mene, Rudolf, Boeblingen, Federal Republic of Germany Weber, Winfried, Leinfelden-Echterdingen, Federal Republic of Germany Schiller, Guenter, Gerlingen, Federal Republic of Germany Schnurnberger, Werner, Stuttgart, Federal Republic of Germany
Kabs, Michael, Hanau, Federal Republic of Germany

SUM :

... materials are oxidized materials, for example, spinels and perovskites on a nickel or cobalt or nickel-cobalt basis. It is, however, also conceivable to apply all possible kinds of spinels and perovskites in accordance with the inventive process. This also applies to spinel-like and perovskite-like compounds and to non oxidized compounds, for example, nitrides, halides, carbides, etc., with nitrogen or halogens or also non-metallic compounds,

$$
c 22
$$ FOCUS - 39 OF 107 PATENTS

```
                                    5,354,733
<=2> GET 1st DRAWING SHEET OF 21
```

Oct. 11, 1994
Copper oxide superconductor containing carbonate radicals
INVENTOR: Kinoshita, Kyoichi, Hoya, Japan
Yamada, Tomoaki, Higashimurayama, Japan
SUM:
... 2. Description of the Prior Art
Several types of copper oxide superconductors have been discovered since high-T c superconductivity was detected in the La-Ba-Cu-O system.
Superconductivity would arise from the layered perovskite-like structure having Cu06 octahedra, or Cu05 pyramids, or Cu02 square planes as a building unit. The layered perovskite-like structure and a sufficient carrier concentration of the material are essential factors for making the material superconducting as indicated by Osamura \& Zhang (Japan.J.App1.Phys.26, L2094-L2096, 1987). ... FOCUS - 40 OF 107 PATENTS

5,340,796
$<=2>$ GET 1st DRAWING SHEET OF 5
Aug. 23, 1994
Oxide superconductor comprising $\mathrm{Cu}, \mathrm{Bi}, \mathrm{Ca}$ and Sr
INVENTOR: Cava, Robert J., Bridgewater, New Jersey
Sunshine, Steven A., Berkeley Heights, New Jersey

ABST:

Novel superconductive oxides are disclosed. The oxides all have layered perovskite-like crystal structure and manifest superconductivity above about 77 K . An exemplary material has composition Bi2.2Sr2Ca0.8Cu208. Other materials are described by the nominal formula $\mathrm{X} 2+\mathrm{xMn}-\mathrm{xCu} \mathrm{n}-\ldots$

SUM:
... high temperature superconductors has been reported since publication of the above seminal papers. Most of the work deals with YBa2Cu30 x (the so-called 1-2-3 compound) and related compounds.

In all of these compounds the superconducting phase is perovskite-like, typically having orthorhombic crystal structure, and the compounds that exhibit high (i.e., T $c>77 \mathrm{~K}$) temperature superconductivity generally contain one or more rare earth elements.

The discovery of high T c superconductivity in some ...
... likely to be stable high T c superconductors, with T c s likely to be above 100 K .

The novel phases all have a crystal structure that is closely related to that of the above described 80 K compound and thus are perovskite-like. They differ from each other essentially only in the number of crystal planes between the two Bi-0 double planes that bound the unit cell in the c-direction, or by the size of the supercell. The composition of the ...

DETDESC:
... in added layers of M and $C u$ between the $B i-O$ double layers and are expected to result in one or more phases of stable high T c superconductive

$$
C 23
$$

```
material.
```

All of the inventive phases have layered perovskite-like crystal structure, and the existence of relatively weak bonding between at least some layers may be the cause of the observed relatively high ductility of the inventive materials. It will be appreciated that by "perovskite-like" we mean not only the prototypical, truly cubic structure, but very significantly distortions therefrom.

Material specification in accordance with the invention depends upon the nature of the intended use. For power transmission, or any other currentcarrying ...

> Pat. No. 5340796,

FOCUS
What is claimed is:
[*1] 1. An article comprising material perovskite-like structure and of nominal composition $\mathrm{X} 2+\mathrm{xM} 4-\mathrm{x}$ Cu3010 $+0.5+/-$ delta, where $[\mathrm{x}=\mathrm{p} / \mathrm{q}<$ 0.4 , and p and q are positive integers] $0</=\mathrm{x}<0.4, \mathrm{X}$ is Bi and Pb, \ldots FOCUS - 41 OF 107 PATENTS

$$
5,338,721
$$

<=2> GET 1st DRAWING SHEET OF 5
Aug. 16, 1994
Process for manufacturing a superconducting composite
INVENTOR: Yamamoto, Susumu, Hyogo, Japan
Murai, Teruyuki, Hyogo, Japan
Kawabe, Nozomu, Hyogo, Japan
Awazu, Tomoyuki, Hyogo, Japan
Yazu, Shuji, Hyogo, Japan
Jodai, Tetsuji, Hyogo, Japan
DETDESC:
... quasi-perovskite type structure" means any oxide that can be considered to have such a crystal structure that is similar to perovskite-type oxides and may include an orthorhombically distorted perovskite or a distorted oxygen-deficient perovskite or the like.

In practice, the element alpha is preferably selected from Ba, Sr and/or Ca and the element beta is preferably selected from Y, La and/or lanthanid such as $\mathrm{Sc}, \mathrm{Ce}, \mathrm{Gd}, \mathrm{Ho}, \mathrm{Er}, \mathrm{Tm}, \mathrm{Yb}, \mathrm{Lu}$ and the ...

FOCUS - 42 OF 107 PATENTS
5,332,722
<=2> GET 1st DRAWING SHEET OF 3
Jul. 26, 1994
Nonvolatile memory element composed of combined superconductor ring and MOSFET

INVENTOR: Fujihira, Mitsuka, Yokohama, Japan
DETDESC:
... term quasi-perovskite type means a structure which can be considered to have such a crystal structure that is similar to perovskite-type oxides and includes an orthorhombically distorted perovskite or a distorted oxygen-deficient perovskite or the like.

Another superconducting compound oxide which can be used by the present invention is represented by the general formula:

$$
<24
$$

(M,Sr)2Cu0 4- delta
in which M stands for Y or La and ...
FOCUS - 43 OF 107 PATENTS
5,328,892
Jul. 12, 1994
Oxide superconductor composition and a process for the production thereof

INVENTOR: Manako, Takashi, Tokyo, Japan
Shimakawa, Yuichi, Tokyo, Japan
Kubo, Yoshimi, Tokyo, Japan
SUM:
... following formulae:
TlSr 3 - x Y x Cu207(IA)
wherein $0.1</=x</=1$, and
TlSr 4 - x Y x Cu309(IB)
wherein $0.1</=x</=2$. Unit cells of the layered perovskite-like crystal structures of these compositions of the formulae (IA) and (IB) may be shown respectively as follows:
$\mathrm{T} 10 / \mathrm{SrO} / \mathrm{Cu} 02 / \mathrm{Sr}$ or $\mathrm{Y} / \mathrm{Cu} 02 / \mathrm{SrO}(\mathrm{IX})$
$\mathrm{T} 10 / \mathrm{SrO} / \mathrm{Cu} 02 / \mathrm{Sr}$ or Y / I.
FOCUS - 44 OF 107 PATENTS
5,296,458
$<=2>$ GET 1st DRAWING SHEET OF 4
Mar. 22, 1994
Epitaxy of high Tc superconducting films on (001) silicon surface

INVENTOR: Himpsel, Franz J., Mt. Kisco, New York
SUM:
... first showed superconducting behavior in mixed copper-oxides, typically including rare earth and/or rare earth-like elements and alkaline earth elements, for example La, Ba, Sr, . . . , and having a perovskite-like structure. Materials including the so called " $1-2-3$ " phase in the $\mathrm{Y}-\mathrm{Ba}-\mathrm{Cu}-0$ system have been found to exhibit a superconducting transition temperature in excess of 77K.
R. B. ...

FOCUS - 45 OF 107 PATENTS
5,286,712
$<=2>$ GET 1st DRAWING SHEET OF 2
Feb. 15, 1994
High TC superconducting film
INVENTOR: Fujita, Nobuhiko, Hyogo, Japan
Kobayashi, Tadakazu, Hyogo, Japan
<25

Itozaki, Hideo, Hyogo, Japan Tanaka, Saburo, Hyogo, Japan Yazu, Shuji, Hyogo, Japan Jodai, Tetsuji, Hyogo, Japan

SUM :
... quasi-perovskite type oxide means a structure which can be considered to have such a crystal structure that is similar to perovskite-type oxides and includes an orthorhombically distorted perovskite or a distorted oxygen-deficient perovskite or the like.

The present invention also provides a process for producing the abovementioned superconducting material, characterized by sintering a mixture of the following powders:
an oxide, carbonate, nitrate or sulfate of one element "A" selected from... FOCUS - 46 OF 107 PATENTS

5,283,465
$<=2>$ GET 1st DRAWING SHEET OF 5
Feb. 1, 1994
Superconducting lead on integrated circuit
INVENTOR: Yamazaki, Shunpei, Tokyo, Japan
DETDESC:
... subjected to supplemental annealing at $5000-6000 \mathrm{C}$. for $1-2$ hours as illustrated in FIG. 1(B). The supplemental annealing allows the superconducting ceramic material to form a modulated perovskite-like structure and, as a result, a high critical temperature is realized. On the substrate, there are provided superconducting leads 10 and 10^{\prime} for interconnection among devices and contacts formed in or on the semiconductor substrate and a ...

FOCUS - 47 OF 107 PATENTS

$$
5,278,140
$$

$<=2>$ GET 1st DRAWING SHEET OF 5
Jan. 11, 1994
Method for forming grain boundary junction devices using high T c superconductors

INVENTOR: Chaudhari, Praveen, Briarcliff Manor, New York
Chi, Cheng-Chung J., Yorktown Heights, New York
Limos, Duane B., Montclair, New Jersey,
Mannhart, Jochen D., Metzingen, New York, Federal Republic of Germany Tsuei, Chang C., Chappaqua, New York

SUM :
... first showed superconducting behavior in mixed copper -oxides, typically including rare earth and/or rare earth-like elements and alkaline earth elements, for example La, Ba, Sr, . . . , and having a perovskite-like structure. Materials including the so called " $1-2-3$ " phase in the $Y-B a-C u-0$ system have been found to exhibit a superconducting transition temperature in excess of $77 \mathrm{~K} . \mathrm{R}$. B. ...

FOCUS - 48 OF 107 PATENTS

$$
5,252,547
$$

$<=2>$ GET 1st DRAWING SHEET OF 1
Oct. 12, 1993

$$
\subset 26
$$

INVENTOR: Itozaki, Hideo, Hyogo, Japan
Tanka, Saburo, Hyogo, Japan
Fujita, Nobuhiko, Hyogo, Japan
Yazu, Shuji, Hyogo, Japan
Jodi, Tetsuji, Hyogo, Japan
SUM:
... term of quasi-perovskite type means a structure which can be considered to have such a crystal structure that is similar to Perovskite-type oxides and includes an orthorhombically distorted perovskite or a distorted oxygen-deficient perovskite or the like.

The superconducting thin film may be also another type of superconductor consisting mainly of a compound oxide represented by the formula:

$$
\begin{aligned}
& \text { THETA 4(PHI 1-q , Ca q) m Cu ... } \\
& \text { FOCUS - } 49 \text { OF } 107 \text { PATENTS } \\
& \text { 5,249,525 } \\
& \text { <=2> GET dst DRAWING SHEET OF } 11
\end{aligned}
$$

Oct. 5, 1993
Spark-discharge lithography plates containing image-support pigments

INVENTOR: Lewis, Thomas E., E. Hampstead, New Hampshire
Nowak, Michael T., Gardner, Massachusetts
DETDESC:
... A perspective view of the first layer, labeled "Layer 0 ", appears in FIG. 6 E . As shown in these figures, the spinel structure contains a number of octahedral sites for metal ions. Like perovskite structures spinels may also be defective, an example being gamma-Fe203. A spinel structure may also be intergrown with other structures.

In spinel compounds useful as image-support pigments, the ... FOCUS - 50 OF 107 PATENTS

$$
5,244,874
$$

Sep. 14, 1993
Process for producing an elongated superconductor
INVENTOR: Yamamoto, Susumu, Hyogo, Japan
Kawabe, Nozomu, Hyogo, Japan
Awazu, Tomoyuki, Hyogo, Japan
DETDESC:
... term quasi-perovskite type means a structure which can be considered to have such a crystal structure that is similar to perovskite-type oxides and includes an orthorhombically distorted perovskite or a distorted oxygen-deficient perovskite or the like.

Another superconducting compound oxide which can be prepared by the present invention is represented by the general formula:
(M, Sr) 2 CuO 4 - delta
in which M stands for Y or $L a$ and ...

Aug. 31, 1993
Cubic perovskite crystal structure, a process of preparing the crystal structure, and articles constructed from the
crystal structure
INVENTOR: Agostine1li, John A., Rochester, New York Chen, Samuel, Penfield, New York

DETDESC:
... 1, PA-2, PA-3, PA-4 and PA-5, cited above and here incorporated by reference, can be employed. Highly compatible substrates are materials that themselves exhibit a perovskite or perovskite-like crystal structure. Strontium titanate is an example of a perovskite crystal structure which is specifically preferred for use as a substrate. Lanthanum aluminate (LaAl03), lanthanum gallium oxide (LaGa03) and potassium tantalate are...

FOCUS - 52 OF 107 PATENTS

$$
5,236,894
$$

Aug. 17, 1993
Process for producing a superconducting thin film at relatively low temperature

INVENTOR: Tanaka, Saburo, Itami, Japan
Itozaki, Hideo, Itami, Japan
Higaki, Kenjiro, Itami, Japan
Yazu, Shuji, Itami, Japan
Jodai, Tetsuji, Itami, Japan
SUM:
... crystal structure. The term quasi-perovskite type means a structure which can be considered to be similar to perovskite-type oxides and includes an orthorhombically distorted perovskite or a distorted oxygen-deficient perovskite or the like.

Still another example of the above-mentioned compound oxide is compound oxides represented by the general formula:

```
THETA 4( PHI 1 - q , Ca q ) m Cu n O p + ...
    FOCUS - 53 OF 107 PATENTS
        5,221,660
        <=2> GET 1st DRAWING SHEET OF 1
            Jun. 22, 1993
```

Semiconductor substrate having a superconducting thin film
INVENTOR: Itozaki, Hideo, Hyogo, Japan
Harada, Keizo, Hyogo, Japan
Fujimori, Naoji, Hyogo, Japan
Yazu, Shuji, Hyogo, Japan
Jodai, Tetsuji, Hyogo, Japan
DETDESC:
... term quasi-perovskite type means a structure which can be considered to have such a crystal structure that is similar to perovskite-type oxides and includes an orthorhombically distorted perovskite or a distorted oxygen-deficient perovskite or the like.

An atomic ratio of lanthanide element "Ln": Ba: Cu referable 1:2:3 as is defined by the formula but the atomic ratio is not reswicted strictly to this ratio. In fact, the other compound oxides having ... FOCUS - 54 OF 107 PATENTS

5,212,148
$<=2>$ GET 1st DRAWING SHEET OF 1
May 18, 1993
Method for manufacturing oxide superconducting films by laser evaporation

INVENTOR: Roas, Bernhard, Erlangen, Federal Republic of Germany Endres, Gerhard, Forchheim, Federal Republic of Germany Schultz, Ludwig, Bubenreuth, Federal Republic of Germany

SUM :
... yet exactly established. This initial product is then converted, by applying a heat and oxygen treatment, into the material with the desired superconducting phase.

The superconductive metal-oxide phases, to be obtained in this manner, can have perovskite-like crystal structures and, in the case of YBa2Cu30 $7-x$, whereby $0<x<0.5$, have an orthorhomic structure (compare, for example, "Europhysics Letters", Vol. 3, No. 12, Jun. 15, 1987, pages ...

FOCUS - 55 OF 107 PATENTS

$$
5,183,799
$$

<=2> GET 1st DRAWING SHEET OF 16
Feb. 2, 1993
Superconducting materials including $\mathrm{La}-\mathrm{Sr}-\mathrm{Nb}-\mathrm{O}, \mathrm{Y}-\mathrm{Ba}-\mathrm{Nb}-\mathrm{O}$, $\mathrm{La}-\mathrm{Sr}-\mathrm{Nb}-\mathrm{Cu}-\mathrm{O}$, and $\mathrm{Y}-\mathrm{Ba}-\mathrm{Nb}-\mathrm{Cu}-\mathrm{O}$

INVENTOR: Ogushi, Tetsuya, Kagoshima, Japan
Hakuraku, Yoshinori, Kagoshima, Japan
Ogata, Hisanao, Ibraki, Japan
ABET:
$\ldots \mathrm{V}, \mathrm{Nb}, \mathrm{Ta}, \mathrm{T}, \mathrm{Zr}$ or $\mathrm{Hf} ; 0<\mathrm{x}<1 ; 0<2<1 ; \mathrm{i}=1,3 / 2$ or $2 ; 0<\mathrm{y}</=$ 4; Gis F, Cl or N; delta is oxygen defect, and having a perovskite-like crystal structure, show superconductivity at a temperature higher than the liquid nitrogen temperature.

SUM :

BACKGROUND OF THE INVENTION

This invention relates to a superconducting material having a perovskite-like crystal structure and a superconducting part using the same, particularly to a superconducting material suitable for having a high superconducting transition temperature (Tc), and a process for producing the same.

Heretofore, ...

DETDESC:

DESCRIPTION OF THE PREFERRED EMBODIMENTS

The superconducting materials of this invention have a perovskite-like crystal structure and represented by the formulae:
(L XA1-x) i MO
(L xA1-x) i M1-zCuz...
... by laminating this superconducting material with other films of electrical insulating material. It is preferable to laminate a plurality of film-like layers alternately, respectively. Further, it is preferable to use as an insulating material a perovskite-like ceramic of the same series.

Further, in the above-mentioned formulae (1) and (2), a total of valence number (p) of L, A and M , or $\mathrm{L}, \mathrm{A}, \mathrm{M}$ and Cu , and the valence number y of \ldots
... OMITTED p SYMBOL OMITTED = SYMBOL OMITTED y SYMBOL OMITTED +/- 0.5 Pat. No. 5183799, *

FOCUS

Further, it is preferable to include M of the valence of two.
More in detail, the material represented by the formula (1) has a perovskite-like crystal structure and has as the L element at least one element selected from the group consisting of scandium (Sc), yitrium (Y), and lanthanide elements of atomic numbers 57 to 71 (La to Lu) belonging to the group...
$\ldots \mathrm{Ta}$) belonging to the group Vb of the periodic table and titanium (Ti), zirconium (Zr) and hafnium (Hf) belonging to the group Vb of the periodic table, these element being able to include Cu .

The oxide superconducting material having the perovskite-like crystal structure of this invention has as a fundamental constitution an octahedron having the M element which is an atom belonging to the group Vb or Vb as its center and 6 oxygen atoms. Since this material has defect of oxygen, that is, one or ...
... a mutual action of strong attraction necessary for forming a hole pair or electron pair showing a superconducting phenomenon at a temperature of 150 K or higher.

The oxide superconducting material of this invention has the perovskite-like crystal structure as shown in FIGS. 1 and 2. These drawings show unit lattices of the materials represented by the formulae:
(Lx A 1-x) i MO y(1)
and (...
... formula (4) with at least one element selected from those of the group IVb and Vb , the total amount of the elements of the group Vb and Vb can exceed the amount of Cu .

It is also possible to produce an oxide superconducting powder having a perovskite-like crystal structure containing M element mainly by mixing a powder of oxide material represented by (Lx A 1-x) i CuD y, wherein x is $0<x<$ 1; ...
$\ldots \mathrm{Cu}: \mathrm{M}=1: 1$, carrying out substitution reaction between Cu and M element in vacuum, and finally pulverizing the final reaction product.

It is further possible to produce an oxide superconducting powder having a perovskite-like crystal structure and containing M element mainly by depositing in vacuum a film of pure metal of M element selected from the elements of groups IVb and Vb on outer surface of oxide ceramic...
$\ldots 1,3 / 2$ or 2 ; y is $0<\mathrm{y}</=4$, containing the M element mainly (M being

Attachment D

```
Received: from mailhub.\ion.ibm.com (9.2.250.97) by yk :.watson.ibm.com
    (IBM VM SMTP V2R4) w1.a TCP; Mon, 24 Nov 97 12:53:32 E
Received: from igw2.watson.ibm.com (igw2.watson.ibm.com [9.2.250.12]) by mailhub
Received: from prod.lexis-nexis.com (prod.lexis-nexis.com [138.12.4.30]) by igw2
Received: by prod.lexis-nexis.com id AA13249
    (InterLock SMTP Gateway 3.0 for dmorris@watson.ibm.com);
    Mon, 24 Nov 1997 12:53:35-0500
Message-Id: <199711241753.AA13249@prod.lexis-nexis.com>
Received: by prod.lexis-nexis.com (Internal Mail Agent-1);
    Mon, 24 Nov 1997 12:53:35-0500
Date: Mon, 24 Nov 97 12:53:34 EST
From: lexis-nexis@prod.lexis-nexis.com (LEXIS(R)/NEXIS(R) Print Delivery)
To: dmorris@watson.ibm.com
Subject: LEXIS(R)/NEXIS(R) Print Request Job 53252, 1 of 1
MORRIS, DAN
IBM CORPORATION
YORKTOWN PATENT OPERATIONS
T. J. WATSON RESEARCH CENTER
P.O. BOX 218
YORKTOWN HEIGHTS, NEW YORK 10598-0218
    MAIL-IT REQUESTED: NOVEMBER 24, 1997
                                    100G6J
                                    CLIENT: 98774
                                    LIBRARY: LEXPAT
                                    FILE: UTIL
YOUR SEARCH REQUEST AT THE TIME THIS MAIL-IT WAS REQUESTED:
    CLAIMS(PEROVSKITE W/1 LIKE OR PEROVSKITE W/1 TYPE)
NUMBER OF PATENTS FOUND WITH YOUR REQUEST THROUGH:
        LEVEL 1... 2
LEVEL 1 PRINTED
DISPLAY FORMAT: KWIC
SEND TO: MORRIS, DAN
    IBM CORPORATION
    YORKTOWN PATENT OPERATIONS
    T. J. WATSON RESEARCH CENTER
    P.O. BOX 218
    YORKTOWN HEIGHTS NEW YORK 10598-0218
```

 LEVEL 1 - 1 OF 2 PATENTS

$$
5,134,042
$$

$$
<=2>\text { GET 1st DRAWING SHEET OF } 6
$$

Jul. 28, 1992
Solid compositions for fuel cells, sensors and catalysts
Inventor: Madou, Marc J., Pale Alto, California
Otagawa, Takaaki, Fremont, California
Sher, Arden, Foster City, California
... [:12] selected from lanthanum, cerium, neodymium, praseodymium, or scandium, B is independently selected from strontium, calcium, barium or magnesium, Q is independently selected from nickel, cobalt, iron or manganese, and y is between about 0.0001 and 1, wherein the perovskite or perovskite-type structure has an average size and distribution of between about 50 and 200 Angstroms in diameter; and the composite layer of between about 25 and 1000 microns in thickness;

$$
4,948,680
$$

<=2> GET 1st DRAWING SHEET OF 26
Aug. 14, 1990
Solid compositions for fuel cell electrolytes
INVENTOR: Madou, Marc J., Palo Alto, California
Otagawa, Takaaki, Fremont, California
Sher, Arden, Foster City, California
$\ldots[\div 25] \quad 1.5$ and d is between 0.001 and less than or equal to 3 ,
wherein either the first electrode material (C) or second electrode material (A^{\prime}) comprises

A 1 - x B x QO 3
having a perovskite or perovskite-type structure as an electrode catalyst in combination with

A $1-x$ B X
as a polycrystalline solid electrolyte wherein
A is independently selected from lanthanum, cerium, neodymium, praseodymium or scandium,

D2

Attachment E

EI

© 1990 by OPA (Amsterdam) B.V. All rights reserved. Published under license by Gordon and Breach Science Publishers S.A.

Gordon and Breach Science Publishers

Post Office Box 786
Cooper Station
New York, New York 10276
United States of America
5301 Tacony Street, Slot 330
Philadelphia, Pennsylvania 19137
United States of America
Post Office Box 197
London WC2E 9PX
United Kingdom
58, rue Lhomond
75005 Paris
France

Post Office Box 161
1820 Montreux 2
Switzerland
3-14-9, Okubo
Shinjuku-ku, Tokyo 169
Japan
Private Bag 8
Camberwell, Victoria 3124
Australia

Portions of this material were published previously in "Structure, Properties and Preparation of Perovskite-Type Compounds" by Francis S. Galasso, copyright (C) 1968 by Pergamon Press, Oxford.

Library of Congress Cataloging-in-Publication Data
Galasso, Francis S.
Perovskites and high T_{c} superconductors / by Francis S . Galasso. p. cm.

ISBN 2-88124-391-6

1. High temperature superconductors. 2. Perovskite. I. Title.

QC611.98.H54G35 1990
537.6'23--dc20 89-38877

No part of this book may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and recording, or by any information storage or retrieval system, without permission in writing from the publishers. Printed in the United States of America.

F. Galasso
these compounds as jibed. In addition, a les oxides with the
tic bubble research, high dielectric conic memory work and en conducted for the of interest in devices ;o been investigated
te more interest in in that the greatest - the discovery of the , k is devoted to this

Chapter II

Structure of Perovskite-type Compounds

Most of the compounds with the general formula ABO_{3} have the perovskite structure. The atomic arrangement in this structure was first found for the mineral perovskite, $\mathrm{CaTiO}{ }_{3}$. It was thought that the unit cell of CaTiO_{3} could be represented by calcium ions at the corners of a cube with titanium ions at the body center and oxygen ions at the center of the faces (Fig. 2.1). This simple cubic structure has retained the name perovskite, even though CaTiO_{3} was later determined to be orthorhombic by Megaw. ${ }^{(1)}$ Through the years it has been found that very few perovskite-type oxides have the simple cubic structure at room temperature, but many assume this ideal structure at higher temperatures.

In the perovskite structure, the A cation is coordinated with twelve oxygen ions and the B cation with six. Thus, the A cation is normally found to be somewhat larger than the B cation. In order to have contact between the A, B, and O ions, $R_{A}+R_{o}$ should equal $\sqrt{2}\left(R_{B}+R_{O}\right)$, where R_{A}, R_{B} and R_{O} are the ionic radii. Goldschmidt ${ }^{(2)}$ has shown that the cubic perovskite structure is stable only if a tolerance factor, t defined by $\mathrm{R}_{\mathrm{A}}+\mathrm{R}_{\mathrm{O}}=t \sqrt{2}\left(\mathrm{R}_{\mathrm{B}}+\mathrm{R}_{\mathrm{O}}\right)$, has an approximate range of $0.8<t<0.9$, and a somewhat larger range for distorted perovskite structures. It should be noted that conflicting reports in the literature make it difficult to assign the correct unit cell dimensions for these distorted perovskite structures.

The ternary perovskite-type oxides described in this chapter will be divided into $\mathrm{A}^{1+} \mathrm{B}^{5+} \mathrm{O}_{3}, \quad \mathrm{~A}^{2+} \mathrm{B}^{4+} \mathrm{O}_{3}, \quad \mathrm{~A}^{3+} \mathrm{B}^{3+} \mathrm{O}_{3}$ types and oxygen- and cation-deficient phases. The oxygen- and cation-deficient phases will be regarded as those which contain considerable vacancies and not those phases which are only slightly non-stoichiometric. Many of these contain \mathbf{B} ions of one element in two valence states and should

Attachment F

COPPER OXIDE SUPERCONDUCTORS

Charles P. Poole, Jr.
Timir Datta
Horacio A. Farach

with help from
M. M. Rigney
C. R. Sanders

Department of Physics and Astronomy
University of South Carolina
Columbia, South Carolina

WILEY
A Wiley-Interscience Publication JOHN WILEY \& SONS
New York - Chichester - Brisbane - Toronto - Singapore

tetragonal phase, and the metal-to-insulator transition occurs at the tetragonal-to-orthorhombic phase boundary $x \approx 0.35$ (Matt7, Slei1).

D. PEROVSKITE-TYPE SUPERCONDUCTING STRUCTURES

In their first report on high-temperature superconductors Bednorz and Müller referred to their samples as "metallic, oxygen deficient . . . perovskite like mixed valent copper compounds." Subsequent work has confirmed that the new superconductors do indeed have these characteristics. In this section we will comment on their perovskite-like aspects.

1. Atom Sizes

In the oxide superconductors Cu replaces the Ti^{++}ions ($0.68 \AA$) of perovskite, and in most cases retains the CuO_{2} layering with two oxygens per copper in the layer. Other cationic replacements tend to be $\mathrm{Bi}, \mathrm{Ca}, \mathrm{La}, \mathrm{Sr}, \mathrm{Tl}$, and Y for the larger Ba, forming "layers" containing only one oxygen or none per cation. We see from the following list of ionic radii

$$
\begin{array}{ll}
\mathrm{Cu}^{2+} & 0.72 \AA \\
\mathrm{Bi}^{5-} & 0.74 \AA \\
\mathrm{Y}^{3-} & 0.94 \AA \\
\mathrm{Ti}^{3-} & 0.95 \AA \\
\mathrm{Bi}^{3-} & 0.96 \AA \\
\mathrm{Ca}^{2-} & 0.99 \AA \tag{VI-4}\\
& \\
\mathrm{Sr}^{2-} & 1.12 \AA \\
\mathrm{La}^{3-} & 1.14 \AA \\
& \\
\mathrm{Ba}^{2-} & 1.34 \AA \\
\mathrm{O}^{2-} & 1.32 \AA
\end{array}
$$

that there are four size groups, with all other cations significantly smaller then the Ba of perovskite. The common feature of CuO_{2} layers that are planar or close to planar establishes a fairly uniform lattice size in the a, b plane. The parameters of the compounds $\operatorname{LaSrCuO}(a=b=3.77 \AA), \mathrm{YBaCuO}(a=3.83 \AA, b=$ $3.89 \dot{\mathrm{~A}}), \mathrm{BiSrCaCuO}(a=b=3.82 \AA)$, and $\mathrm{TIBaCaCuO}(a=b=3.86 \AA)$ are all between the ideal fce oxygen lattice value of $3.73 \AA$ and the perovskite one of $4.01 \dot{A}$.

Table VI-2 gives the ionic radii of the positively charged ions of various elements of the periodic table. These radii are useful for estimating changes in lattice constant when ionic substitutions are made in existing structures. They also provide some insight into which types of substitutions will be most favorable.
 Sleil).

STRUCTURES

actors Bednorz and Müller icient . . . perovskite like has confirmed that the new cs. In this section we will
ns $(0.68 \AA$) of perovskite, oxygens per copper in the . La, Sr, TI, and Y for the en or none per cation. We
ignificantly smaller then s that are planar or close a, b plane. The parame$\mathrm{aCuO}(a=3.83 \dot{\AA}, b=$ $\mathrm{CuO}(a=b=3.86 \dot{\mathrm{~A}}$) ${ }^{\prime} 3 \dot{A}$ and the perovskite
ged ions of various le timating changes in lating structures. They also dill be most favorable.
(V1-4)

TABLE VI-2. Ionic Radii in Angstroms of Selected Elements for Various Positive Charge States ${ }^{4}$

Z	Element	+1	+2	+3	+4	+5	+6
			Alkali				
3	Li	0.68					
11	Na	0.97					
19	K	1.33					
37	Rb	1.47					
55	Cs	1.67					

Group IV

TABLE VI-2. (continued)

Z	Element	+1		+2	+3	+4	+5
26	Fe		0.74	0.64			+6
27	Co		0.72	0.63			
28	Ni		0.69				
29	Cu	0.96	0.72				
30	Zn	0.88	0.74				

Second transition series ($4 d^{\text {² }}$)							
39	Y			0.94			
40	Zr	1.09			0.79		
41	Nb	1.00			0.74	0.69	
42	Mo	0.93			0.70		0.62
43	Tc						
44	Ru				0.67		
45	Rh			0.68			
46	Pd		0.80		0.65		
47	Ag	1.26	0.89				

Third transition series ($5 d^{\mathrm{n}}$)

57	La	1.39	1.14	
58	Ce	1.27	1.07	0.94
59	Pr		1.06	0.92
60	Nd		1.04	
61	Pm	1.06		
62	Sm	1.00		
63	Eu		0.98	
64	Gd	0.62		
65	Tb	0.93	0.81	
66	Dy	0.92		
67	Ho	0.91		
68	Er	0.89		
69	Tm	0.87		
70	Yb	0.86		
71	Lu		0.85	

- Three anion radii are 1.32 for $\mathrm{O}^{2-}, 1.33$ for F^{-}, and 1.84 for S^{2-} (Handbook of Chemistry and Physics).
80

Attachment G

Copyright © 1988 by John Wiley \& Sons, Inc.
All rights reserved. Published simultaneously in Canada.
Reproduction or transiation of any part of this work
beyond that permitted by Section 107 or 108 of the
1976 United States Copyright Act without the permission
of the copyright owner is unlawful. Requests for
permission or further information should be addressed to the Permissions Department, John Wilcy \& Sons. Ine.
Libran' of Congress Cataloging in Publication Data:
Poolc, Charles P.
Copper oxide superconductors / Charles P. Pooke. Jr.. Timir Datta.
and Horacio A. Farach: with help from M. M. Rigney and C. R. Sanders.
p. cm.
"A Wiley-Interscience publicalion."
Bibliography: p.
Includes index.

1. Copper oxide superconductors. 1. Datta. Timir. II. Farach. Horacio A. 111. Title.
QC611.98.C64P66 1988
539.6'23-dc $19 \quad 88-18569$ CIP ISBN 0-471-62342-3
Printed in the United States of America
$\begin{array}{llllllllll}10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1\end{array}$

the superconducting ructures of the comure studies have been the locations of the possible presence of rovided much of the ntso, Beech, Cappo, rar, Vakni, Yamag, which can identify a sful for checking the
rameters and bond ir quoted values will ition is organized in
vskite structure and we will describe the ', we will show how clarify its layering tures of the newer Ids.

B. PEROVSKITES

Much has been written about the oxide superconductor compounds being perovskite types, so we will begin with a description of the perovskite structure. This will permit us to develop some of the notation to be used in describing the structures of the superconductors themselves.

1. Cubic Form

Above $200^{\circ} \mathrm{C}$ barium titanate crystallizes in the perovskite structure, which is cubic, so the three lattice parameters are all equal (i.e., $a=b=c$). The unit cell contains one formula unit BaTiO_{3} and the atoms are located in the following special positions (Wyck2, p. 390):

$$
\begin{array}{lll}
\mathrm{Ba} & \text { (1a) } & \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \\
\mathrm{Ti} & \text { (1b) } & 0,0,0 \tag{VI-1}\\
\mathrm{O} & \text { (3c) } & 0,0, \frac{1}{2} ; 0, \frac{1}{2}, 0 ; \frac{1}{2}, 0,0
\end{array}
$$

where we have employed the crystallographic notation (1a) for an a-type lattice site which contains one atom, (3c) for a c-type lattice site which contains three atoms, and so on. Each atomic position is given by three coordinates, such as $0,0, \frac{1}{2}$ for the oxygen located at $x=0, y=0, z=0.5 \mathrm{a}$. This arrangement corresponds to placing a titanium atom on each apex. a barium atom in the body center, and an oxygen atom on the center of each edge of the cube, as illustrated on Fig. VI-1. We see from the figure that the barium atoms are 12 -fold coordinated and the titaniums have sixfold (octahedral) coordination. The lattice constant or length of the unit cell is $a=4.0118 \AA$ at $201^{\circ} \mathrm{C}$. The crystallographic space group is $P m 3 m, O_{h}^{1}$.

An alternate way to represent this structure, which is commonly used in solidstate texts and in crystallography monographs (e.g.. Wyck2). is to locate the

Fig. VI-1. Perovskite cubic unit cell showing titanium on the apices and oxygen in the edge-centered positions. Barium, which is in the body center, is not shown.
origin at the barium site; this places titanium in the center and the oxygens on the centers of the cube faces. The representation (Eq. VI-1) given above is more convenient for comparison with the structures of the oxide superconductors.

The compound $\mathrm{LaBaCu}_{2} \mathrm{O}_{5}$ was found to have a cubic perovskite subcell with the lattice parameter $a=3.917 \AA$ (Sishe).

2. Tetragonal Form

At room temperature barium titanate is tetragonal with the unit cell dimensions $a=3.9947 \dot{\mathrm{~A}}$ and $c=4.0336 \AA$, which is close to cubic. For this lower symmetry the oxygens are assigned to two different sites, a single site along the side edges and a twofold one at the top and bottom. The atomic positions (Wyck2, p. 401)

$$
\begin{array}{ll}
\mathrm{Ba} & \frac{1}{2}, \frac{1}{2}, 0.488 \\
\mathrm{Ti} & 0,0,0 \\
\mathrm{O}(1) & 0,0,0.511 \\
\mathrm{O}(2) & 0, \frac{1}{2},-0.026 ; \frac{1}{2}, 0,-0.026
\end{array}
$$

are shown in Fig. VI-2. The distortions from the ideal structure of Fig. VI-1 are exaggerated on this sketch. We will see later that a similar distortion occurs in the YBaCuO structure. The cubic and tetragonal atom arrangements (VI-1) and (VI-2) are compared in Table VI-1, and we see from this table that the deviation from cubic symmetry is actually quite small.

3. Orthorhombic Form

When barium titanate is cooled below $5^{\circ} \mathrm{C}$ it undergoes a transition with a further lowering of the symmetry to the orthorhombic space group Amm2, $\mathrm{C}_{2 \mathrm{v}}$, and

TABLE VI-1. Comparison of Atom Positions of BaTiO_{3} in Its Cubic, Tetragonal and Orthorhombic Forms"

Group	Atom	Cubic and Tetragonal		Cubic z	Tetragonal$=$	Orthorhombic z
		x	y			
TiO_{2}	$\int \mathrm{Ti}$	0	0	1	1	1
	, 0	0	$\frac{1}{2}$	1	0.974	1
	O	$\frac{1}{2}$	0	1	0.974	1
BaO	O	0	0	$\frac{1}{2}$	0.511	$\frac{1}{2}$
	Ba	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	0.488	$\frac{1}{2}$
TiO_{2}	(Ti	0	0	0	0	0
	O	0	$\frac{1}{2}$	0	-0.026	0
	0	$\frac{1}{2}$	0	0	-0.026	0

- The x and y coordinates are the same for both positions. The orthorhombic form z coordinates are also given (Wyck2, pp. 390, 401, 405).
ter and the oxygens on $1-1)$ given above is more ide superconductors. perovskite subcell with
he unit cell dimensions For this lower symmeigle site along the side mic positions (Wyck2,
(VI-2)
ucture of Fig. V1-1 are ar distortion occurs in angements (VI-1) and able that the deviation
transition with a furroup $A m m 2, C_{2 v}$, and

Zubic, Tetragonal and

al Orthorhombic
1
1
1
$\frac{1}{2}$
$\frac{1}{2}$
0
0
0
bic form z coordinates are

Fig. VI-2. Perovskite tetragonal unit cell showing the puckering of the Ti-O layers.
an enlargement of the unit cell to accommodate two formula units $\left(\mathrm{BaTiO}_{3}\right)_{2}$. The enlarged cell is rotated by 45° relative to the higher-temperature ones, as shown on Fig. VI-3, and therefore its a and b lattice parameters are larger by the factor $\sqrt{2}$. The three lattice constants are $a=5.669=4.009 \sqrt{2} \dot{A}, b=$ $5.682=4.018 \sqrt{2} \dot{\AA}$, and $c=3.990 \AA$. There are no longer any special sites, and the atomic positions are (Wyck2, p. 405):

\[

\]

where $u=0$ for Ba .
One should note that in Eq. (VI-3) Ba and $\mathrm{O}(1)$ are in the same (2a) type of site with different values of the parameter u. Figure VI-3 shows the coordinates of the atoms in the orthorhombic cell drawn using the approximation $\approx \frac{1}{2}$ for 0.490 and 0.510 and $\approx \frac{1}{4}$ for 0.253 and 0.237 .

A comparison of Eqs. VI-1 to VI-3 indicates that the transformation from cubic to tetragonal involves only shifts in the z coordinates of atoms, while the orthorhombic phrase differs from the cubic one only through shifts in atom positions within x, y planes (see Tab̆le VI-1).

4. Atom Arrangements

The ionic radii of $\mathrm{Ba}^{2+}(1.34 \dot{\mathrm{~A}})$ and $\mathrm{O}^{2-}(1.32 \dot{\mathrm{~A}})$ are almost the same, and together they form a face-centered cubic (fcc) close-packed lattice with the smaller Ti^{4+} ions $(0.68 \dot{A})$ located in octahedral holes. The octahedral holes of a close-packed oxygen lattice have a radius of $0.545 \AA$, and if these holes were empty the lattice parameter would be $a=3.73$. as shown on Fig. VI-4a. If each

Fig. VI-3. Atom positions of perovskite when the monomolecular tetragonal unit cell is expanded to the bimolecular orthorhombic cell with new axes at 45° with respect to the old ones.
titanium were to move the surrounding oxygens apart to its ionic radius when occupying the hole, as shown on Fig. V1-4b, the lattice parameter a would be $4.00 \AA$ A. The observed cubic $(a=4.012 \dot{A})$ and tetragonal $(a=3.995 \dot{\AA}, c=$ $4.034 \dot{A}$) lattice parameters are close to these values, indicating a pushing apart of the oxygens. The tetragonal distortion illustrated on Fig. V1-2 and the orthorhombic distortion of Eq. (VI-3) constitute attempts to achieve this through an enlarged but distorted octahedral site. This same mechanism is operative in the oxide superconductors.

C. BARIUM-LEAD-BISMUTH OXIDE

In 1983 Mattheiss and Hamann referred to the 1975 "discovery by Sleight et al. of high temperature superconductivity" of the compound $\mathrm{BaPb}_{1-x} \mathrm{Bi}_{x} \mathrm{O}_{3}$ in the composition range $0.05 \leq x \leq 0.3$ with T_{c} up to 13 K (Matt7, Sleig). Many consider this system, which disproportionates $2 \mathrm{Bi}^{4+} \rightarrow \mathrm{Bi}^{3+}+\mathrm{Bi}^{{ }^{5+}}$ in going from the metallic to the semiconducting state, as a predecessor to the LaSrCuO system.

TABLE VI-3. Atom Positions of Regular and Alternate $\mathrm{La}_{2} \mathrm{CuO}_{4}$ Structure, Both of Which Correspond to Space Group $/ 4 / \mathrm{mmm}, D_{4 \mathrm{~h}}^{17}$

${ }^{\text {a }}$ Superconducting compounds crystallize in the regular structure (Oguch; see also Onoda). The ideal z values in column 2 are for the prototype perovskite.
constants for tetragonal LaSrCuO superconductors with various values of x, y, and δ in the formula $\left(\mathrm{La}_{1-x} \mathrm{Sr}_{x}\right)_{2-y} \mathrm{CuO}_{4-\delta}$.

2. Alternate Tetragonal Form

In the previous section we discussed tie tetragonal structure which is adopted by LaSrCuO superconductors. It has a variant (Hutir, Oguch) called the $\mathrm{Nd}_{2} \mathrm{CuO}_{4}$ structure in which the oxygens $O(2)$ are in special sites (4d) instead of the general (4e) sites in the same space group, corresponding to

$$
\begin{equation*}
O(2) \text { (4d) } \quad 0, \frac{1}{2}, \frac{1}{4} ; \frac{1}{2}, 0, \frac{1}{4} ; \frac{1}{2}, 0, \frac{3}{4} ; 0, \frac{1}{2}, \frac{3}{4} \tag{VI-7}
\end{equation*}
$$

The remaining atoms are in the positions given by Eq. (VI-6) and listed in Table VI-3, and the unit cell is sketched on the right-hand side of Fig. VI-S. This structore tends to be unstable relative to its $\mathrm{K}_{2} \mathrm{NiF}_{4}$ counterpart, and is not known to superconduct.

tetragonal phase, and the metal-to-insulator transition occurs at the tetragonal-to-orthorhombic phase boundary $x=0.35$ (Matt7, Sleil).

D. PEROVSKITE-TYPE SUPERCONDUCTING STRUCTURES

In their first report on high-temperature superconductors Bednorz and Müller referred to their samples as "metallic, oxygen deficient . . . perovskite like mixed valent copper compounds." Subsequent work has confirmed that the new superconductors do indeed have these characteristics. In this section we will comment on their perovskite-like aspects.

1. Atom Sizes

In the oxide superconductors $C u$ replaces the Ti^{4+} ions $(0.68 \AA)$ of perovskite, and in most cases retains the CuO_{2} layering with two oxygens per copper in the layer. Other cationic replacements tend to be $\mathrm{Bi}, \mathrm{Ca}, \mathrm{La}, \mathrm{Sr}, \mathrm{Tl}$, and Y for the larger Ba, forming "layers" containing only one oxygen or none per cation. We see from the following list of ionic radii

Cu^{2+}	$0.72 \AA$
Bi^{+}	$0.74 \AA$
Y^{9-}	$0.94 \AA$
Ti^{3+}	$0.95 \AA$
Bi^{3+}	$0.96 \AA$
Ca^{2+}	$0.99 \AA$
Sr^{2+}	$1.12 \AA$
La^{3+}	$1.14 \AA$
Ba^{3+}	$1.34 \AA$
O^{2-}	$1.32 \AA$

that there are four size groups, with all other cations significantly smaller then the Ba of perovskite. The common feature of CuO_{2} layers that are planar or close to planar establishes a fairly uniform lattice size in the a, b plane. The parameters of the compounds $\mathrm{LaSrCuO}(a=b=3.77 \dot{\mathrm{~A}}), \mathrm{YBaCuO}(a=3.83 \dot{\mathrm{~A}}, b=$ $3.89 \dot{\AA}), \operatorname{BiSrCaCuO}(a=b=3.82 \AA)$, and $\mathrm{TiBaCaCuO}(a=b=3.86 \AA)$ are all between the ideal fcc oxygen lattice value of $3.73 \dot{A}$ and the perovskite one of $4.01 \dot{A}$.

Table VI-2 gives the ionic radii of the positively charged ions of various elements of the periodic table. These radii are useful for estimating changes in lattice constant when ionic substitutions are made in existing structures. They also provide some insight into which types of substitutions will be most favorable.
urs at the tetragonal

CTURES

Bednorz and Müller . . . perovskite like nfirmed that the new this section we will
$68 \dot{A}$) of perovskite, ins per copper in the ir, Tl, and Y for the none per cation. We
icantly smaller then It are planar or close plane. The parame$\mathrm{O}(a=3.83 \dot{\mathrm{~A}}, b=$ - $(a=b=3.86 \dot{A})$ and the perovskite
ions of various eletting changes in lattructures. They also e most favorable.
(VI-4)

TABLE VI-2. Ionic Radii in Angstroms of Selected Elements for Various Positive Charge States ${ }^{\prime}$

Z	Element	$+1$	$+2$	$+3$	$+4$	$+5$	$+6$
Alkali							
3	Li	0.68					
11	Na	0.97					
19	K	1.33					
37	Rb	1.47					
55	Cs	1.67					

Alkaline earths.

0.35	
0.66	
0.99	
1.12	
1.34	
Group 1II	
	0.23
	0.51
	0.62
	0.81
	0.95

Group IV

	0.16
	0.42
0.73	0.53
0.93	0.71
1.20	0.84

Group V

0.44	0.35
0.58	0.46
0.70	0.62
0.96	0.74

Chalcogenides

0.37	0.30
0.50	0.42
0.70	0.56

First (ransition series (3l")

		0.81	
0.96	0.94	0.76	0.68
	0.88	0.74	0.63
0.81	0.89	0.63	
	0.80	0.66	0.60

0.59
0.52

2. Unit Cell Stacking

Three and four fundamental fcc unit cells stack vertically to form the superconducting unit cells of YBaCuO and LaSrCuO , respectively, with some oxygens removed in the process. This causes the vertical height or c parameter of the unit cell to be less than that expected for the stacking of perovskite cells:

$$
\begin{array}{ll}
\mathrm{YBaCuO}: & c \approx 11.7 \dot{\AA}, 3 c_{\mathrm{fcc}}=11.19 \dot{A}, 3 c_{\text {per }}=12.03 \dot{\AA} \\
\mathrm{LaSrCuO}: & c \approx 13.18 \dot{\mathrm{~A}}, 4 c_{\mathrm{fcc}}=14.92 \dot{A}, 4 c_{\mathrm{per}}=16.04 \dot{\mathrm{~A}} \tag{VI-5}
\end{array}
$$

Similar stackings occur in the BiSrCaCuO and TIBaCaCuO compounds.

E. LANTHANUM-COPPER OXIDE

The structure of $\mathrm{LaSrCuO},\left(\mathrm{La}_{1-x} \mathrm{M}_{x}\right)_{2} \mathrm{CuO}_{4-\delta}$, called the 21 structure, where M is usually Sr or Ba , is tetragonal in some cases and orthorhombic in others. We will describe the tetragonal case first and then the orthorhombic distortion of it. The structures will be described in terms of the prototype compound $\mathrm{La}_{2} \mathrm{CuO}_{4}$ corresponding to $x=\delta=0$ in the above expression, keeping in mind that in the superconducting compounds themselves some of the La atoms are replaced by a divalent cation such as Sr or Ba . Since lanthanum has a charge of +3 and oxygen is -2 , it follows that all of the copper is divalent $(+2)$ when $x=0$, and some becomes trivalent for $x>0$.

The compound $\mathrm{La}_{2} \mathrm{CuO}_{4}$ itself is considered to be nonsuperconducting, but some investigators claim that it or portions of it do exhibit superconductivity, perhaps of a filimentary type (Beill, Coop1, Dvora, Gran1, Pick1, Shahe, Skelt, Skel1, Skel2).

1. Tetragonal Form

The tetragonal LaSrCuO superconductors crystallize in what is called the $\mathrm{K}_{2} \mathrm{NiF}_{4}$ structure with space group $/ 4 / \mathrm{mmm}, D_{4 \mathrm{~h}}^{17}$ and two formula units per unit cell (e.g., Burns, Coll1, Hirot, Mossz, Onoda; Wyck3, p. 68). The copper atoms and one of the oxygen types $O(1)$ are in special positions and the remaining atoms are all in general positions, with a single undetermined parameter associated with the z coordinate. The positions are

$$
\begin{array}{lll}
\mathrm{La} & \text { (4e) } & 0,0, u ; 0,0,-u ; \frac{1}{2}, \frac{1}{2}, u+\frac{1}{2} ; \frac{1}{2}, \frac{1}{2},-u+\frac{1}{2} \\
\mathrm{Cu} & \text { (2a) } & 0,0,0 ; \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \tag{VI-6}\\
\mathrm{O}(1) & \text { (4c) } & 0, \frac{1}{2}, 0 ; \frac{1}{2}, 0,0 ; \frac{1}{2}, 0, \frac{1}{2} ; 0, \frac{1}{2}, \frac{1}{2} \\
\mathrm{O}(2) & \text { (4e) } & 0,0, v ; 0,0,-v ; \frac{1}{2}, \frac{1}{2}, v+\frac{1}{2} ; \frac{1}{2}, \frac{1}{2},-v+\frac{1}{2}
\end{array}
$$

with $u=0.362$ and $v=0.182$. Typical lattice dimensions are $a=b=3.77 \dot{\mathrm{~A}}$, $c=13.18 \dot{\AA}$. Table VI-3 gives more details on the atom positions and Fig. VISa provides a sketch of this 21 structure. Table VI-4 lists the measured lattice

TABLE VI-3. Atom Positions of Regular and Alternate $\mathrm{La}_{2} \mathrm{CuO}_{4}$ Structure, Both ${ }_{\mathbf{~}}$ Which Correspond to Space Group $/ 4 / \mathrm{mmm}, D_{4 h}^{17_{6}}$

Complex	Ideal z	Regular Structure					Alternate Structure				
		Atom	Site	x	y	z	Atom	Site	x	y	z
CuO_{2}	1	O(1)	4 c	$\frac{1}{2}$	0	1	O(1)	4 c	$\frac{1}{2}$	0	1
		O(1)	4 c	0	$\frac{1}{2}$	1	$\mathrm{O}(1)$	4 c	0	2	1
		Cu	2a	0	0	1	Cu	2a	0	0	1
OLa	$\frac{5}{6}=0.833$	$\{\mathrm{La}$	4 e	$\frac{1}{2}$	$\frac{1}{2}$	0.862	La	4 e	$\frac{1}{2}$	$\frac{1}{2}$	0.862
		O(2)	4 e	0	0	0.818					
	$\frac{2}{3}=0.667$						O(2)	4d	0	$\frac{1}{2}$	$\frac{3}{4}$
LaO							O(2)	4 d	$\frac{1}{2}$	0	$\frac{3}{4}$
		O(2)	4 e	$\frac{1}{2}$	$\frac{1}{2}$	0.682					
		La	4 e	0	0	0.638	La	4 e	0	0	0.638
$\mathrm{O}_{2} \mathrm{Cu}$	$\frac{1}{2}$	$\underline{O(1)}$	4 c	0	$\frac{1}{2}$	$\frac{1}{2}$	O(1)	4 c	0	$\frac{1}{2}$	$\frac{1}{2}$
		O(1)	4 c	$\frac{1}{2}$	0	$\frac{1}{2}$	O(1)	4 c	$\frac{1}{2}$	0	$\frac{1}{2}$
		Cu	2 a	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	Cu	2 a	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$
LaO	$\frac{1}{3}=0.333$	La	4 e	0	0	0.362	La	$4 e$	0	0	0.362
		O(2)	4 e	$\frac{1}{2}$	$\frac{1}{2}$	0.318					
OLa	$\frac{1}{6}=0.167$						$\mathrm{O}(2)$	4d	$\frac{1}{2}$	0	$\frac{1}{4}$
							$\mathrm{O}(2)$	4 d	0	$\frac{1}{2}$	$\frac{1}{4}$
		$\left\{\begin{array}{l}\text { O } \\ \text { (2) }\end{array}\right.$	4 e	0	0	0.182					
		La	4 e	1	$\frac{1}{2}$	0.138	La	4 e	$\frac{1}{2}$	$\frac{1}{2}$	0.138
CuO_{2}	0	(O(1)	4 c	$\frac{1}{2}$	0	0	O(1)	4 c	$\frac{1}{2}$	0	0
		O(1)	4 c	0	$\frac{1}{2}$	0	$\mathrm{O}(1)$	4 c	0	$\frac{1}{2}$	0
		(Cu	2a	0	0	0	Cu	2a	0	0	0

- Superconducting compounds crystallize in the regular structure (Oguch; see also Onoda). The ideal \approx values in column 2 are for the prototype perorskite.
constants for tetragonal LaSrCuO superconductors with various values of x, y, and δ in the formula $\left(\mathrm{La}_{1-x} \mathrm{Sr}_{x}\right)_{2-y} \mathrm{CuO}_{4-\delta}$.

2. Alternate Tetragonal Form

In the previous section we discussed the tetragonal structure which is adopted by LaSrCuO superconductors. It has a variant (Hutir, Oguch) called the $\mathrm{Nd}_{2} \mathrm{CuO}_{4}$ structure in which the oxygens $O(2)$ are in special sites (4d) instead of the general (4e) sites in the same space group. corresponding to

$$
\begin{equation*}
O(2) \text { (4d) } \quad 0, \frac{1}{2}, \frac{1}{4} ; \frac{1}{2}, 0, \frac{1}{4} ; \frac{1}{2}, 0, \frac{3}{4} ; 0, \frac{1}{2}, \frac{3}{4} \tag{VI-7}
\end{equation*}
$$

The remaining atoms are in the positions given by Eq. (VI-6) and listed in Table VI-3, and the unit cell is sketched on the right-hand side of Fig. VI-S. This structure tends to be unstable relative to its $\mathrm{K}_{2} \mathrm{NiF}_{4}$ counterpart, and is not known to superconduct.

ions values of x, y.
which is adopted by :called the $\mathrm{Nd}_{2} \mathrm{CuO}_{4}$ stead of the general
(VI-7)
and listed in Table g. VI -5. This strucind is not known to

Fig. VI-5. Lanthanum copper oxide tetragonal unit cell. The regular cell (a) associated with the superconducting compounds is shown on the left and the alternative one (b) is on the right (Oguch: see also Ohbal). The oxygens denoted by \otimes have different positions in the two cells.

3. Orthorhombic Form

The 21 orthorhombic LaSrCuO structure (Lingo) is related to its tetragonal analogue given by Eq. (VI-6) in the same way that the orthorhombic perovskite structure (VI-3) is related to its tetragonal (VI-2) and cubic (VI-1) forms. This means that the orthorhombic basis directions are at 45° relative to the tetragonal ones, and the number of formula units in the cell is doubled. The situation is similar to that described by Fig. VI-3, with $a=5.363 \AA=3.792 \sqrt{2} \dot{A}, b=$ $5.409 \AA=3.825 \sqrt{2} \AA, c=13.17 \dot{\AA}$. Writing the a and b lattice parameters times $\sqrt{2}$ compensates for the new choice of axes and shows that the orthorhombic values are close to the tetragonal $a=3.81 \dot{A}$ given earlier. There is also very little change in c. Table VI-5 lists the measured lattice constants for several orthorhombic compounds. The anisotropy factors ANIS

$$
\begin{equation*}
\mathrm{ANIS}=\frac{100|b-a|}{0.5(b+a)} \tag{VI-8}
\end{equation*}
$$

listed in column 6 give the percentage deviation from tetragonality.

TABLE VI-4. Selected Lattice Parameters for $\left(\mathrm{R}_{1-x} \mathrm{M}_{x}\right)_{2} \mathrm{CuO}_{4-6}$ Type Superconductors with Tetragonal Structure ${ }^{\circ}$

- The table is sorted by cations and then by increasing x, the dopant parameter (prepared by M. M. Rigney).
- The a and b lattice parameters were converted from measured values of a_{0}, b_{0} of Fig. Vl-3 through the expression $a=a_{0} / \sqrt{2}, b=b_{0} / \sqrt{2}$.

Copper atoms and one of the oxygen types $O(1)$ are in special positions; the remaining two atoms La and $\mathrm{O}(2)$ are in general positions with a single undetermined parameter associated with the z coordinate. The space group is Fmmm, $D_{2 \mathrm{~h}}^{23}$, and the positions of the atoms are as follows:

where the parameters $u=0.362$ and $\nu=0.182$ have the same values as in the tetragonal case presented above. Since u and v are the same and the lattice constans are so close to the tetragonal values, the sketch of the tetragonal unit cell in Fig. VI-5a applies here also. Another work (Hirot, see also Onoda) assigned

Ref.
Allie
Smelt
Fuzz
Fujit
Fujit
Tara
Hidak
Tara
Deco
Tara
Shelf
Braun
Tara
Tara
Prays
Taral
Tara
Tara
Tara
prepared by M. M.

TABLE VI-5. Selected Lattice Parameters for $\left(\mathrm{R}_{1-x} \mathrm{M}_{x}\right)_{2} \mathrm{CuO}_{4-8}$ Type Superconductors with the Orthorhombic Structure ${ }^{a}$

"ANIS is the anisotropy factor $100|b-a| / 0.5(b+a)$ (prepared by M. M. Rigney).
${ }^{6}$ The a and b lattice parameters were converted from the measured values of a_{0}, b_{0} of Fig. V1-3 through the expressions $a=a_{0} / \sqrt{2}, b=b_{0} / \sqrt{2}$.
$\left(\mathrm{La}_{0.9} \mathrm{Ba}_{0.1}\right)_{2} \mathrm{O}_{4}$ to the space group $P c c m, D_{2 \mathrm{~h}}^{3}$ with $a=5.354=3.786 \sqrt{2} \dot{\mathrm{~A}}, b=$ $5.408=3.824 \sqrt{2} \AA$, and $c=13.264 \AA$.

4. Phase Transition

The compounds $\left(\mathrm{La}_{1-\mathrm{x}} \mathrm{M}_{x}\right)_{2} \mathrm{CuO}_{4}$ with $\mathrm{M}=\mathrm{Sr}$ and Ba are orthorhombic at low temperatures and low M contents, and tetragonal otherwise, and superconductivity has been found on both sides of this transition (Baris, Bedn3, Barge, Dayzz, Dvora, Fujit, Gree, Kangz, Koyam, Mihal, Paulz; see also Heldz). The prototype compound $\mathrm{La}_{2} \mathrm{CuO}_{4}$ itself also exhibits the tetragonal-to-orthorhombic transition. The phase diagram of Fig. VI-6 shows the tetragonal, orthorhom-

Fig. VI-6. Phase diagram showing data points along the tetragonal-to-orthorhombic transition line for $\left(\mathrm{La}_{1-x} \mathrm{Ba}_{x}\right)_{2} \mathrm{CuO}_{4-5}(\mathrm{O}, \mathrm{Fujit})$ and $\left(\mathrm{La}_{1-x} \mathrm{Sr}_{x}\right)_{2} \mathrm{CuO}_{4}$ (\cdot, Mort). The spin-density wave (SDW) and superconducting regions are indicated. These two com-
f Fig. VI-3 through

I] positions; the single undeterroup is Fmmm , \boldsymbol{u}

g u)

values as in the the lattice conagonal unit cell)nodi) assigned pounds have about the same superconducting region.
prepared by M. M
(VI-9)

	DATE TIME	TO/FROM	MODE	MIN/SEC	PG	CMDH STATUS	
19	$12 / 10$	$16: 39$	7033055433	EC--S	$04,52 "$	024	104

FACSIMILE

To: Examininer M: Rope
adDREsS: USPTO-Hroup 1105
phone no. $\frac{(703) 30 f-1088}{(703) 305-5433}$

CLASSIFICATION:
\qquad IBM CONFIDENTIAL \qquad IBM INTERNAL USE ONLY
\qquad PERSONAL \qquad UNCLASSIFIED

MESSAGE: \qquad
\qquad

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: J. Bednorz et al.
Serial No. 08/303,561
Filed: September 9, 1994

Date: December 10, 1998
Group Art Unit: 1105
Examiner: M. Kopec

For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, AND METHODS FOR THEIR USE AND PREPARATION

CERTIFICATE OF FACSIMILE TRANSMISSION
I hereby certify that this paper is being facsimile transmitted under Rule CFR 1.61 (d) to the U.S. Patent and Trademark Office on the date shown above To telephone number 703-305 3600.5433

Daniel P. Morris
Reg. No. 32,053
The Commissioner of Patents and Trademarks Washington, D.C. 20231

Amendment After Final Rejection

In response to the final rejection dated June 25, 1998 please consider the following:

IN THE CLAIMS

115. (Amended) A method comprising the steps of:
forming a composition including copper, oxygen and [any] an element selected from the group consisting of at least one Group II A element and at least one element selected from
the group consisting of a rare earth element and a Group III B element, where said composition is a mixed copper
oxide having a non-stoichiometric amount of oxygen therein and exhibiting a superconducting state at a temperature greater than $26^{\circ} \mathrm{K}$;
maintaining said composition in said superconducting state at a temperature greater than $26^{\circ} \mathrm{K}$; and
passing an electrical current through said composition while said composition is in said superconducting state.
116. (Amended) A method comprising the steps of:
forming a composition including a transition metal, oxygen and [any] an element selected from the group consisting of at least one Group II A element and at least one element selected from the group consisting of a rare earth element and a Group III B element, where said composition is a mixed transitional metal oxide formed from said transition metal and said oxygen, said mixed transition metal oxide having a non-stoichiometric amount of oxygen therein and exhibiting a superconducting state at a temperature greater than $26^{\circ} \mathrm{K}$;
maintaining said composition in said superconducting state at a temperature greater than $26^{\circ} \mathrm{K}$; and
passing an electrical current through said composition while said composition is in said superconducting state.
117. (Amended) A superconductive method for conducting an electric current
essentially without resistive losses, comprising:
(a) providing a superconductor element made of a superconductive composition, the superconductive composition consisting
essentially of a transition metal-oxide compound having a layer-type perovskite-like crystal structure, the transition metal-oxide compound including at least one element selected from the group consisting of a Group II A element and at least one element selected from the group consisting of a rare earth element and a Group III B element, the composition having a superconductive/resistive transition defining a superconductive/resistive-transition temperature range between an upper limit defined by a transition-onset temperature $[T] T_{c}$ and a lower limit defined by an effectively-zero-bulk-resistivity intercept temperature $T_{p=0}$, the transition-onset temperature T_{c} being greater than $26^{\circ} \mathrm{K}$;
(b) maintaining the superconductor element at a temperature below the effectively-zero-bulk-resistivity intercept temperature $T_{p=0}$ of the superconductive composition; and
(c) causing an electric current to flow in the superconductor element.
118. (Amended) A method comprising providing a composition having a transition temperature greater than $26^{\circ} \mathrm{K}$, the composition including a rare earth or alkaline earth element, a transition metal element capable of exhibiting multivalent states and oxygen, including at least one phase that exhibits superconductivity at temperature in excess of $26^{\circ} \mathrm{K}$, maintaining said composition at said temperature to exhibit said superconductivity and passing an electrical superconducting current through said composition [while] with said phase exhibiting said superconductivity.
119. (Amended). A method comprising providing a superconducting transition metal oxide having a superconductive onset temperature greater than $26^{\circ} \mathrm{K}$, maintaining said superconducting transition metal oxide [being] at a temperature less than
said superconducting onset temperature and flowing a superconducting current therein.
120. (Amended). A method comprising providing a superconducting copper oxide having a superconductive onset temperature greater than $26^{\circ} \mathrm{K}$, [maintaing] maintaining said superconducting copper oxide at a temperature less than said superconducting onset temperature and flowing a superconducting current [therein] in said superconducting oxide.
121. (Amended). A method comprising providing a superconducting oxide composition having a superconductive onset temperature greater than $26^{\circ} \mathrm{K}$, maintaining said superconducting copper oxide at a temperature less than said superconducting onset temperature and flowing a [superconduting] superconducting current therein, said composition comprising at least one each of rare earth, an alkaline earth, and copper.
122. (Amended). A method comprising providing a superconducting oxide composition having a superconductive onset temperature greater than $26^{\circ} \mathrm{K}$, [maintianing] maintaining said superconducting copper oxide at a temperature less than said superconducting onset temperature and flowing a superconducting electrical current therein, said composition comprising at least one each of a Group III B element, an alkaline earth, and copper.
123. (Amended) A method comprising flowing a superconducting electrical current in a transition metal oxide having a T_{c} greater than $26^{\circ} \mathrm{K}$ and maintianing said transition metal oxide at a temperature less than said T_{6}.
124. (Amended) A method comprising flowing a superconducting electrical current in a copper oxide having a T_{c} greater than $26^{\circ} \mathrm{K}$ and maintianing said copper oxide at a temperature less than said T_{ε}.
125. (Amended) A method comprising flowing a superconducting electrical current in a composition of matter having a T_{c} greater than $26^{\circ} \mathrm{K}$, said composition comprising at least one each of a III B element, an alkaline earth, and copper oxide and maintianing said composition of matter at a temperature less than said T_{c}.
126. (Amended) A method comprising flowing a superconducting electrical current in a composition of matter having a T_{c} greater than $26^{\circ} \mathrm{K}$, said composition comprising at least one each of a rare earth, alkaline earth, and copper oxide and maintianing said composition of matter at a temperature less than said T_{c}.
127. (Amended) A method comprising flowing a superconducting electrical current in a composition of matter having a T_{c} greater than $26^{\circ} \mathrm{K}$, said composition comprising at least one each of a rare earth, and copper oxide and maintianing said composition of matter at a temperature less than said T_{c}.
128. (Amended) A method comprising flowing a superconducting elecrical current in a composition of matter having a T_{c} greater than $26^{\circ} \mathrm{K}$ carrying, said composition comprising at least one each of a III B element, and copper oxide and maintianing said composition of matter at a temperature less than said T_{c}.
129. (Amended) A method comprising flowing a superconducting electrical current in a transition metal oxide comprising a $\mathrm{T}_{\mathrm{c}}>26^{\circ} \mathrm{K}$ and maintaining said transition metal oxide at a temperature less than said $T_{\text {c }}$.
130. (Amended) A method comprising flowing a superconducting electrical current in a copper oxide composition of matter comprising a $T_{c}>26^{\circ} \mathrm{K}$ and maintianing said copper oxide composition of matter at a temperature less than said $[T C] T_{c}$.

Added claims:
143. (Added) A method, comprising the steps of:
forming a composition including a transition metal, a group IIIB element, an alkaline earth element, and oxygen, where said composition is a mixed transition metal oxide having a non-stoichiometric amount of oxygen therein and exhibiting a superconducting state at a temperature greater than $26^{\circ} \mathrm{K}$,
maintaining said composition in said superconducting state at a temperature greater than $26^{\circ} \mathrm{K}$, and
passing an electrical current through said composition while said composition is in said superconducting state.
144. (Added) The method of claim 143, where said transition metal is copper.
145. (Added) A superconductive method for causing electric current flow in a superconductive state at a temperature in excess of 26 K , comprising:
(a) providing a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound having a substantially layered perovskite crystal structure, the composition having a superconductor transition temperature T_{c} of greater than 26 K;
(b) maintaining the superconductor element at a temperature above 26 K and below the superconductor transition temperature T_{c} of the superconductive composition; and (c) causing an electric current to flow in the superconductor element.
146. (Added) The superconductive method according to claim 145 in which the copper-oxide compound of the superconductive composition includes at least one element selected from the group consisting of a rare-earth element and a Group III B element and at least one alkaline-earth element.
147. (Added) The superconductive method according to claim 146 in which the rare-earth or rare-earth-like element is lanthanum.
148. (added) The superconductive method according to claim 146 in which the alkaline-earth element is barium.
149. (Added) The superconductive method according to claim 145 in which the copper-oxide compound of the superconductive composition includes mixed valent copper ions.
150. (Added) The superconductive method according to claim 149 in which the copper-oxide compound includes at least one element in a nonstoichiometric atomic proportion.
151. (Added) The superconductive method according to claim 150 in which oxygen is present in the copper-oxide compound in a nonstoichiometric atomic proportion.
152. (Added) A superconductive method for conducting an electric current essentially without resistive losses, comprising:
(a) providing a superconductor element made of a superconductive composition, the superconductive composition
consisting essentially of a copper-oxide compound having a substantially layered perovskite crystal structure, the copper-oxide compound including at least one element selected from the group consisting of a rare-earth element and a Group III B element and at least one alkaline-earth element, the composition having a superconductive/resistive transition defining a superconductive/resistive-transition temperature range between an upper limit defined by a transition-onset temperature T_{c} and a lower limit defined by an effectively-zero-bulk-resistivity intercept temperature $T_{p=0}$, the transition-onset temperature T_{c} being greater than 26 K ;
(b) maintaining the superconductor element at a temperature below the effectively-zero-bulk-resistivity intercept temperature $\mathrm{T}_{\mathrm{p}=0}$ of the superconductive composition; and (c) causing an electric current to flow in the superconductor element.
153. (Added) The superconductive method according to claim 103 in which said at least one element is lanthanum.
154. (Added) The superconductive method according to claim 152 in
which the alkaline-earth element is barium.
155. (Added) The superconductive method according to claim 152 in which the copper-oxide compound of the superconductive composition includes mixed valent copper ions.
156. (Added) The superconductive method according to claim 155 in which the copper-oxide compound includes at least one element in a nonstoichiometric atomic proportion.
157. (Added) The superconductive method according to claim 156 in which oxygen is present in the copper-oxide compound in a nonstoichiometric atomic proportion.
158. (Added) A superconductive method for causing electric-current flow in a superconductive state at a temperature in excess of $26^{\circ} \mathrm{K}$, comprising:
(a) providing a superconductor element made of a superconductive composition, the superconductive
composition consisting essentially of a copper-oxide compound having a substantially layered perovskite crystal structure, the composition having a superconductive transition temperature T_{c}. of greater than $26^{\circ} \mathrm{K}$, said superconductive composition includes at least one element selected from the group consisting of a Group II A element, a rare earth element; and a Group III B element;
(b) maintaining the superconductor element at a temperature above $26^{\circ} \mathrm{K}$ and below the superconductor transition temperature T_{c} of the superconductive composition; and (c) causing an electric current to flow in the superconductor element.
159. (Added) A superconductive method for conducting an electric current essentially without resistive losses, comprising:
(a) providing a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound having a substantially layered perovskite crystal structure, the copper-oxide
compound including at least one element selected from the group consisting of a Group II A element, a rare earth element and a Group III B element, the composition having a superconductive/ resistive transition defining a superconductive/resistivetransition temperature range between an upper limit defined by a transition-onset temperature T_{c} and a lower limit defined by an effectively-zero-bulk-resistivity intercept temperature $T_{p=0}$, the transition-onset temperature T_{c} being greater than $26^{\circ} \mathrm{K}$;
(b) maintaining the superconductor element at a temperature below the effectively-zero-bulk-resistivity intercept temperature $T_{p=0}$ of the superconductive composition; and
(c) causing an electric current to flow in the superconductor element.
160. (Added) A superconductive method for causing electric-current flow in a superconductive state at a temperature in excess of $26^{\circ} \mathrm{K}$, comprising:
(a) providing a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound having a substantially layered perovskite
crystal structure, the composition having a superconductive transition temperature T_{c} of greater than $26^{\circ} \mathrm{K}$, said superconductive composition includes at least one element selected from the group consisting of a Group II A element and at least one element selected from the group consisting of a rare earth element and a Group III B element;
(b) maintaining the superconductor element at a temperature above $26^{\circ} \mathrm{K}$ and below the superconductor transition temperature T_{c} of the superconductive composition; and
(c) causing an electric current to flow in the superconductor element.
161. (Added) A superconductive method for conducting an electric current essentially without resistive losses, comprising:
(a) providing a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound having a substantially layered perovskite crystal structure, the copper-oxide compound including at least one element selected from the group consisting of a Group II A element and at least one element selected from the group consisting
of a rare earth element and a Group III B element, the composition having a superconductive/resistive transition defining a superconductive-resistive-transition temperature range between an upper limit defined by a transition-onset temperature T_{c} and a lower limit defined by an effectively-zero-bulk-resistivity intercept temperature $T_{p=0}$, the transition-onset temperature T_{c} being greater than $26^{\circ} \mathrm{K}$;
(b) maintaining the superconductor element at a temperature below the effectively-zero-bulk-resistivity intercept temperature $\mathrm{T}_{\mathrm{p}=0}$ of the superconductive composition; and
(c) causing an electric current to flow in the superconductor element.
162. (Added) A superconductive method for causing electric-current flow in a superconductive state at a temperature in excess of $26^{\circ} \mathrm{K}$, comprising:
(a) providing a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a transition metal oxide compound having a substantially layered perovskite crystal structure, the composition having a superconductive
transition temperature T_{c} of greater than $26^{\circ} \mathrm{K}$, said superconductive composition includes at least one element selected from the group consisting of a Group II A element and at least one element selected from the group consisting of a rare earth element and a Group III B element;
(b) maintaining the superconductor element at a temperature above $26^{\circ} \mathrm{K}$ and below the superconductor transition T_{c} of the superconductive composition; and
(c) causing an electric current to flow in the superconductor element.
163. (Added) A superconductive method for conducting an electric current essentially without resistive losses, comprising:
(a) providing a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a transition metal-oxide compound having a substantially layered perovskite crystal structure, the transition metal-oxide compound including at least one element selected from the group consisting of a Group II A element and at least one element selected from the group consisting of a rare earth element and
a Group III B element, the composition having a superconductive/resistive transition defining a superconductive/resistive-transition temperature range between an upper limit defined by a transition-onset temperature T_{c} and a lower limit defined by an effectively-zero-bulk-resistivity intercept temperature $T_{p=0}$, the transition-onset temperature T_{c} being greater than $26^{\circ} \mathrm{K}$;
(b) maintaining the superconductor element at a temperature below the effectively-zero-bulk-resistivity intercept temperature $T_{p=0}$ of the superconductive composition; and (c) causing an electric current to flow in the superconductor element.
164. (Added) A method according to claim 129 wherein said composition comprises a substantially layered perovskite crystal structure.
165. (Added) A method according to claim 130 wherein said superconducting transistor metal oxide comprises a substantially layered perovskite crystal structure.
166. (Added) A method according to claim 131 wherein said superconducting copper oxide comprises a substantially layered perovskite crystal structure.
167. (Added) A method according to claim 132 wherein said superconducting oxide composition comprises a substantially layered perovskite crystal structure.
168. (Added) A method according to claim 133 wherein said superconducting oxide composition comprises a substantially layered perovskite crystal structure.
169. (Added) A method according to claim 134 wherein said transistor metal oxide comprises a substantially layered perovskite crystal structure.
170. (Added) A method according to claim 135 wherein said copper oxide comprises a substantially layered perovskite crystal structure.
171. (Added) A method according to claim 136 wherein said composition comprises a substantially layered perovskite crystal structure.
172. (Added) A method according to claim 137 wherein said composition of matter comprises a substantially layered perovskite crystal structure.
173. (Added) A method according to claim 138 wherein said composition of matter comprises substantially layered perovskite crystal structure.
174. (Added) A method according to claim 139 wherein said composition of matter comprises a substantially layered perovskite crystal structure.
175. (Added) A method according to claim 140 wherein said composition of matter comprises substantially layered perovskite crystal structure.
176. (Added) A method according to claim 141 wherein said transistor metal oxide comprises substantially layered perovskite crystal structure.
177. (Added) A method according to claim 142 wherein said copper oxide composition comprises substantially layered perovskite crystal structure.

REMARKS

Reconsideration is respectfully requested in view of and changes to the claims and the remarks herein. Please contact the undersigned to conduct a telephone
interview in accordance with MPEP 713.01 to resolve any remaining requirements and/or issues prior to sending another Office Action. Relevant portions of MPEP 713.01 are included on the signature page of this amendment. In view of the changes to the claims and the remarks herein, the Examiner is respectfully requested to reconsider the above-identified application. If the Examiner wishes to discuss the application further, or if additional information would be required, the undersigned will cooperate fully to assist in the prosecution of this application.

In paragraphs 6-7 on pages 12-16 of the referenced office action Claims 86-87, 96-108, 115, 118, 120, 122, 123, 129-135 and 137-142 have been rejected under 35 USC 112. All changes suggested by the examiner have been made except for those directed to the terms "layer-like", "perovskite-like, "rare-earth-like", and "layer-type". These terms occur in claims 86-87, 96-108, $112,113,117,118,122$, and 123. Added claims 143 to 163 have there same wording as these claims and include the changes suggested by the examiner to overcome the rejection based on these terms. As stated by applicants in previous responses these are terms of art and well understood by persons of skill in the art.

Claims 164-177 are added, support found throughout the specification and claims.

In paragraph 5 of the referenced office action claims 129-131, 134, 135, 139-142 added by applicants in there response dated April 27, 1998 have been rejected under 35 USC 112 as not enabled. Applicants respectfully disagree. The examiner has given no specific reason why these claims are not enabled.

Please charge any fee necessary to enter this paper to deposit account 09-0468.

If the above-identified Examiner's Action is a final Action, and if the above-identified application will be abandoned without further action by applicants, applicants file a Notice of Appeal to the Board of Appeals and Interferences appealing the final rejection of the claims in the above-identified Examiner's Action. Please charge deposit account 09-0468 any fee necessary to enter such Notice of Appeal.

In the event that this amendment does not result in allowance of all such claims, the undersigned attorney respectfully requests a telephone interview at the Examiner's earliest convenience.

MPEP 713.01 states in part as follows:

Where the response to a first complete action includes a request for an interview or a telephone consultation to be initiated by the examiner, ... the examiner, as soon as he or she has considered the effect of the response, should grant such request if it appears that the interview or consultation would result in expediting the case to a final action.

IBM CORPORATION

 Intellectual Property Law Dept.Yorktown Heights, New York 10598

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: J. Bednorz et al.
Serial No.: 08/303,561
Filed: September 9, 1994

Date: December 3, 1998
Group Art Unit: 1105
Examiner: M. Kopec

For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, AND METHODS FOR THEIR USE AND PREPARATION

The Commissioner of Patents and Trademarks
Washington, D.C. 20231

CERTIFICATE OF FACSIMILE TRANSMISSION

I hereby certify that this paper is being facsimile transmitted under 37 CFR 1.61(d) to the U.S. Patent and Trademark Office on December 3, 1998yo telephone number 703-305-5433.

Petition for Wlthdrawal of the Final Rejection.

dated June 25, 1998
Applicants petition for withdrawal of the final rejection rejection dated June 25, 1998 for the following reasons:

Claims 24-26, 86-90, 96-135 and 137-142 have been rejected under 35 USC 102 (a) as anticipated by the Asahi Shinbum article and have been rejected under 35 USC 103 as being unpatentable over the Asahi Shinbum article. Applicants have disagreed for various reasons of record. One of those reasons is that applicants have proven that

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: J. Bednorz et al.
Serial No.: 08/303,561
Filed: September 9, 1994

Date: December 3, 1998
Group Art Unit: 1105
Examiner: M. Kopec

For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, AND METHODS FOR THEIR USE AND PREPARATION

The Commissioner of Patents and Trademarks
Washington, D.C. 20231

CERTIFICATE OF FACSIMILE TRANSMISSION

I hereby certify that this paper is being facsimile transmitted under 37 CFR 1.61 (d) to the U.S. Patent and Trademark Office on December 3, 1998 to telephone number 703-305-5433.

Daniel P. Mórris
Reg. No. 32,053

Petition for Withdrawal of the Final Rejection

 dated June 25, 1998Applicants petition for withdrawal of the final rejection rejection dated June 25, 1998 for the following reasons:

Claims 24-26, 86-90, 96-135 and 137-142 have been rejected under 35 USC 102 (a) as anticipated by the Asahi Shinbum article and have been rejected under 35 USC 103 as being unpatentable over the Asahi Shinbum article. Applicants have disagreed for various reasons of record. One of those reasons is that applicants have proven that
the conception of their invention was in the United states prior to the date of the Asahi Shinbum article , November 28, 1986, and applicants have proven that they were diligent from prior to the date of the Asahi Shinbum article by instructing coworkers in the United States until December 3, 1986 which is the date the examiner believes is the earliest date of applicants reduction to practice in the United States. (For the reasons of record applicants believe that they have shown that their invention was reduced to practice in the United States prior to the date of the Asahi Shinbum article). The examiner has not rebutted applicants proof that applicants conception was in the United States at their direction prior to the date of the Asahi Shinbum article and the examiner has not denied that applicants have proven that they were diligent by instructing coworkers in the United States from a time prior to the date of the Asahi Shinbum article until the date the examiner believes is the date of applicants' date of reduction to practice in the United States. The details of applicants' proof are discussed at pages 22 , line 8 to page 24 , last line, of applicant's Substitute Amendment dated March 6, 1997.

The examiners response to applicants' proof is at page 19, paragraph d. ii of the final rejection " $[t]$ he applicants further urge that they have shown clear diligence from before November 28, 1996 until actual reduction to practice at or around December 3, 1986. Nevertheless, the actual reduction in this country is deemed to have occurred on December 3, 1986, which is after the publication date for the reference."

Willson v. Sherts 81 F 2d 775, 28 USPQ 379 (CCPA 1936) held that an inventor who conceives an invention outside of the United States gets the benefit of the date that a third party, to whom the invention is disclosed, brings the conception into the United States (28 USPQ 379, 381) and that acts in this country done on behalf of the inventors can be used to show diligence to reduction to practice in the United States (28 USPQ 379, 383). Thus the rejections of applicants' claims under 35 USC 102 and 103 over the Asahi Shinbum article should be withdrawn.

Applicants are entitled to know why the examiner has maintained the rejection under 35 USC 102 and 103 over the Asahi Shinbum article in light of applicants proof which the examiner has not rebutted. Applicants are in the position of having to guess at what are the reasons for maintaining these rejections. Applicants cannot properly appeal these rejections with out knowing the examiner's reasons for maintaining the rejections.

Applicants petition for withdrawal of the final rejection and request a new non-final action containing the reasons for why the examiner disagrees that applicants have proven that they their conception was in the United states at their direction prior to the Asahi Shinbum article and they were diligent in instructing coworkers in the United States to their reduction to practice in the United States and thereby have shown that the Asahi Shinbum article is not a reference applicable to their invention. Applicants believe they should be given an opportunity to know and rebut the undisclosed reasons of the examiner.

Respectfully submitted,

(914) 945-3217

IBM CORPORATION

Intellectual Property Law Dept.
P.O. Box 218

Yorktown Heights, New York 10598

	DATE TIME	TO/FROM	MODE	MIN/SEC	FGS	CMDA	STATUS
16	$12 / 03$	$16: 10$	7033055433	$E C-S$	$00,59 "$	004	100

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: J. Bednorz et al.
Serial No.: 08/303,561
Filed: September 9, 1994

Date: December 3, 1998
Group Art Unit: 1105
Examiner: M. Kopec

For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, AND METHODS FOR THEIR USE AND PREPARATION

The Commissioner of Patents and Trademarks
Washington, D.C. 20231

CERTIFICATE OF FACSIMILE TRANSMISSION

I hereby certify that this paper is being facsimile transmitted under 37 CFR 1.61(d) to the U.S. Patent and Trademark Office on December 3, 9998 yo telephone number 703-305-5433.

Petition for Wlthdrawal of the Final Rejection

 dated June 25. 1998Applicants petition for withdrawal of the final rejection rejection dated June 25, 1998 for the following reasons:

Claims 24-26, 86-90, 96-135 and 137-142 have been rejected under 35 USC 102 (a) as anticipated by the Asahi Shinbum article and have been rejected under 35 USC 103 as being unpatentable over the Asahi Shinbum article. Applicants have disagreed for various reasons of record. One of those reasons is that applicants have proven that

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: J. Bednorz et al.
Serial No.: 08/303,561
Filed: September 9, 1994

Date: December 3, 1998
Group Art Unit: 1105
Examiner: M. Kopec

For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, AND METHODS FOR THEIR USE AND PREPARATION

The Commissioner of Patents and Trademarks
Washington, D.C. 20231

CERTIFICATE OF FACSIMILE TRANSMISSION

I hereby certify that this paper is being facsimile transmitted under 37 CFR 1.61(d) to the U.S. Patent and Trademark Office on December 3,-1998 yo telephone number 703-305-5433.

Petition for Withdrawal of the Final Rejection dated June 25, 1998

Applicants petition for withdrawal of the final rejection rejection dated June 25, 1998 for the following reasons:

Claims 24-26, 86-90, 96-135 and 137-142 have been rejected under 35 USC 102 (a) as anticipated by the Asahi Shinbum article and have been rejected under 35 USC 103 as being unpatentable over the Asahi Shinbum article. Applicants have disagreed for various reasons of record. One of those reasons is that applicants have proven that
the conception of their invention was in the United states prior to the date of the Asahi Shinbum article , November 28, 1986, and applicants have proven that they were diligent from prior to the date of the Asahi Shinbum article by instructing coworkers in the United States until December 3, 1986 which is the date the examiner believes is the earliest date of applicants reduction to practice in the United States. (For the reasons of record applicants believe that they have shown that their invention was reduced to practice in the United States prior to the date of the Asahi Shinbum article). The examiner has not rebutted applicants proof that applicants conception was in the United States at their direction prior to the date of the Asahi Shinbum article and the examiner has not denied that applicants have proven that they were diligent by instructing coworkers in the United States from a time prior to the date of the Asahi Shinbum article until the date the examiner believes is the date of applicants' date of reduction to practice in the United States. The details of applicants' proof are discussed at pages 22, line 8 to page 24, last line, of applicant's Substitute Amendment dated March 6, 1997.

The examiners response to applicants' proof is at page 19, paragraph d. ii of the final rejection " $[\mathrm{t}]$ he applicants further urge that they have shown clear diligence from before November 28, 1996 until actual reduction to practice at or around December 3, 1986. Nevertheless, the actual reduction in this country is deemed to have occurred on December 3, 1986, which is after the publication date for the reference."

Willson v. Sherts 81 F 2d 775, 28 USPQ 379 (CCPA 1936) held that an inventor who conceives an invention outside of the United States gets the benefit of the date that a third party, to whom the invention is disclosed, brings the conception into the United States (28 USPQ 379, 381) and that acts in this country done on behalf of the inventors can be used to show diligence to reduction to practice in the United States (28 USPQ 379, 383). Thus the rejections of applicants' claims under 35 USC 102 and 103 over the Asahi Shinbum article should be withdrawn.

Applicants are entitled to know why the examiner has maintained the rejection under 35 USC 102 and 103 over the Asahi Shinbum article in light of applicants proof which the examiner has not rebutted. Applicants are in the position of having to guess at what are the reasons for maintaining these rejections. Applicants cannot properly appeal these rejections with out knowing the examiner's reasons for maintaining the rejections.

Applicants petition for withdrawal of the final rejection and request a new non-final action containing the reasons for why the examiner disagrees that applicants have proven that they their conception was in the United states at their direction prior to the Asahi Shinbum article and they were diligent in instructing coworkers in the United States to their reduction to practice in the United States and thereby have shown that the Asahi Shinbum article is not a reference applicable to their invention. Applicants believe they should be given an opportunity to know and rebut the undisclosed reasons of the examiner.

Respectfully submitted,

(914) 945-3217

IBM CORPORATION

Intellectual Property Law Dept.
P.O. Box 218

Yorktown Heights, New York 10598

	DATE	TIME	TO/FROM	MODE	MINTSEC	PGS	CMDH	gTATUS
13	11/25	20131	917635553E59	EC-S	619 $49^{\prime \prime}$	E6]	086	INC
14	11/25	20:33	517033053600	EC--S	04'46"	025	096	OK

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: J. Bednorz et al.
Seria! No.: 08/303,561
Filed: September 9, 1994
McGinty

Date: November 25, 1998
Group Art Unit: 1105
Examiner: M. Kopec

For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, AND METHODS FOR THEIR USE AND PREPARATION

CERTIFICATE OF FACSIMILE TRANSMISSION

I hereby certify that this paper is being facsimile transmitted under Rule CFR 1.61 (d) to the U.S. Patent and Irademafk Office on the date shown above To telephone-nulnber 703-705/3600.

Paniel P. Morris
Reg. No. 32,053
The Commissioner of Patents and Trademarks
Washington, D.C. 20231

Amendmant After Final Rejection

In response to the final rejection dated June 25, 1998 please consider the
following:

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: J. Bednorz et al.
Serial No.: 08/303,561
Filed: September 9, 1994 McGinty

Date: November 25, 1998
Group Art Unit: 1105
Examiner: M. Kopec

For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, AND METHODS FOR THEIR USE AND PREPARATION

CERTIFICATE OF FACSIMILE TRANSMISSION

I hereby certify that this paper is being facsimile transmitted under Rule CFR 1.61(d) to the U.S. Patent and Irademark Office on the date shown above To telephone number 703-305-3600.

Daniel P. Morris
Reg. No. 32,053
The Commissioner of Patents and Trademarks Washington, D.C. 20231

Amendmant After Final Rejection

In response to the final rejection dated June 25, 1998 please consider the following:

IN THE CLAIMS

115.(Amended) A method comprising the steps of:
forming a composition including copper, oxygen and [any] an element selected from the group consisting of at least one Group II A element and at least one element selected from
the group consisting of a rare earth element and a Group III B element, where said composition is a mixed copper
oxide having a non-stoichiometric amount of oxygen therein and exhibiting a superconducting state at a temperature greater than $26^{\circ} \mathrm{K}$;
maintaining said composition in said superconducting state at a temperature greater than $26^{\circ} \mathrm{K}$; and
passing an electrical current through said composition while said composition is in said superconducting state.
120. (Amended) A method comprising the steps of:
forming a composition including a transition metal, oxygen and [any] an element selected from the group consisting of at least one Group II A element and at least one element selected from the group consisting of a rare earth element and a Group III B element, where said composition is a mixed transitional metal oxide formed from said transition metal and said oxygen, said mixed
transition metal oxide having a non-stoichiometric amount of oxygen therein
and exhibiting a superconducting state at a temperature greater than $26^{\circ} \mathrm{K}$;
maintaining said composition in said superconducting state at a temperature greater than $26^{\circ} \mathrm{K}$; and
passing an electrical current through said composition while said composition is in said superconducting state.
> 123. (Amended) A superconductive method for conducting an electric current
> essentially without resistive losses, comprising:
(a) providing a superconductor element made of a superconductive composition, the superconductive composition consisting
essentially of a transition metal-oxide compound having a layer-type perovskite-like crystal structure, the transition metal-oxide compound including at least one element selected from the group consisting of a Group II A element and at least one element selected from the group consisting of a rare earth element and a Group III B element, the composition having a superconductive/resistive transition defining a superconductive/resistive-transition temperature range between an upper limit defined by a transition-onset temperature $[T] T_{c}$ and a lower limit defined by an effectively-zero-bulk-resistivity intercept temperature $\mathrm{T}_{\mathrm{p}=0}$, the transition-onset temperature T_{c} being greater than $26^{\circ} \mathrm{K}$;
(b) maintaining the superconductor element at a temperature below the effectively-zero-bulk-resistivity intercept temperature $\mathrm{T}_{\mathrm{p}=0}$ of the superconductive composition; and
(c) causing an electric current to flow in the superconductor element.

129 (Amended). A method comprising providing a composition having a transition temperature greater than $26^{\circ} \mathrm{K}$, the composition including a rare earth or alkaline earth element, a transition metal element capable of exhibiting multivalent states and oxygen, including at least one phase that exhibits superconductivity at temperature in excess of $26^{\circ} \mathrm{K}$, maintaining said composition at said temperature to exhibit said superconductivity and passing an electrical superconducting current through said composition [while] with said phase exhibiting said superconductivity.

130 (Amended). A method comprising providing a superconducting transition
metal oxide having a superconductive onset temperature greater than $26^{\circ} \mathrm{K}$, maintaining said superconducting transition metal oxide [being] at a temperature less than
said superconducting onset temperature and flowing a superconducting current therein.

131 (Amended). A method comprising providing a superconducting copper oxide having a superconductive onset temperature greater than $26^{\circ} \mathrm{K}$, [maintaing] maintaining said superconducting copper oxide at a temperature less than said superconducting onset temperature and flowing a superconducting current [therein] in said superconducting oxide.

132 (Amended). A method comprising providing a superconducting oxide composition having a superconductive onset temperature greater than $26^{\circ} \mathrm{K}$, maintaining said superconducting copper oxide at a temperature less than said superconducting onset temperature and flowing a [superconduting]
superconducting current therein, said composition comprising at least one each of rare earth, an alkaline earth, and copper.

133 (Amended). A method comprising providing a superconducting oxide composition having a superconductive onset temperature greater than $26^{\circ} \mathrm{K}$, [maintianing] maintaining said superconducting copper oxide at a temperature less than said superconducting onset temperature and flowing a superconducting electrical current therein, said composition comprising at least one each of a Group III B element, an alkaline earth, and copper.
134. (Amended) A method comprising flowing a superconducting electrical current in a
transition metal oxide having a T_{c} greater than $26^{\circ} \mathrm{K}$ and maintianing said \quad transition metal oxide at a temperature less than said T_{6}.
135. (Amended) A method comprising flowing a superconducting electrical current in a copper oxide having a T_{c} greater than $26^{\circ} \mathrm{K}$ and maintianing said copper oxide at a temperature less than said T_{c}.
136. (Amended) A method comprising the steps of:
forming a composition of the formula $\mathrm{Ba}_{\mathrm{x}} \mathrm{La}_{\mathrm{x}-5}$, Cu50Y, wherein x is from about 0.75 to about 1 and y is the oxygen deficiency resulting from annealing said composition at temperatures from about $540^{\circ} \mathrm{C}$ to about $950^{\circ} \mathrm{C}$ and for times of about 15 minutes to about 12 hours, said composition having a metal oxide phase which exhibits a superconducting state at a critical temperature in excess of $26^{\circ} \mathrm{K}$;
maintaining the temperature of said composition at a temperature less than said critical temperature to induce said superconducting state in said metal oxide phase; and
passing an electrical current through said composition while said metal oxide phase is in said superconducting state.
137. (Amended) A method comprising flowing a superconducting electrical current
in a composition of matter having a T_{c} greater than $26^{\circ} \mathrm{K}$, said composition comprising at least one each of a III B element, an alkaline earth, and copper oxide and maintianing said composition of matter at a temperature less than said T_{c}.
138. (Amended) A method comprising flowing a superconducting electrical current
in a composition of matter having a T_{c} greater than $26^{\circ} \mathrm{K}$, said composition comprising at least one each of a rare earth, alkaline earth, and copper oxide and maintianing said composition of matter at a temperature less than said T_{c}.
139. (Amended) A method comprising flowing a superconducting electrical current
in a composition of matter having a T_{c} greater than $26^{\circ} \mathrm{K}$, said composition comprising at least one each of a rare
earth, and copper oxide and maintianing said composition of matter at a - temperature less than said T_{c}.
140. (Amended) A method comprising flowing a superconducting elecrical current in a composition of matter having a T_{c} greater than $26^{\circ} \mathrm{K}$ carrying, said composition comprising at least one each of a III B element, and copper oxide and maintianing said composition of matter at a temperature less than said T_{c}.
141. (Amended) A method comprising flowing a superconducting electrical current
in a transition metal oxide comprising a $\mathrm{T}_{\mathrm{c}}>26^{\circ} \mathrm{K}$ and maintianing said transition metal oxide at a temperature less than said T_{c}.
142.(Amended) A method comprising flowing a superconducting electrical current in a copper oxide composition of matter comprising a $T_{c}>26^{\circ} \mathrm{K}$ and maintianing said copper oxide composition of matter at a temperature less than said [TC] $\quad T_{C}$.

Added claims:
143 (Added). A method, comprising the steps of:
forming a composition including a transition metal, a [rare earth or rare earth-like] group IIIB element, an alkaline earth element, and oxygen, where said composition is a mixed transition metal oxide having a non-stoichiometric amount of oxygen therein and exhibiting a superconducting state at a temperature greater than $26^{\circ} \mathrm{K}$,
maintaining said composition in said superconducting state at a temperature greater than $26^{\circ} \mathrm{K}$, and
passing an electrical current through said composition while said composition is in said superconducting state.

144 (Added). The method of claim 143, where said transition metal is copper.

145 (Added). A superconductive method for causing electric current flow in a superconductive state at a temperature in excess of 26 K , comprising:
(a) providing a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound having a [layer-type perovskite-like] substantially layered crystal structure, the composition having a superconductor transition temperature T_{c} of greater than 26 K ;
(b) maintaining the superconductor element at a temperature above 26 K and below the superconductor transition temperature T_{c} of the superconductive composition; and
(c) causing an electric current to flow in the superconductor element.

146 (Added). The superconductive method according to claim 145 in
which the copper-oxide compound of the superconductive composition includes at least one element selected from the group consiting of a rare-earth element and a Group III B element and at least one alkaline-earth element.

147 (Added). The superconductive method according to claim 146 in which the rare-earth or rare-earth-like element is lanthanum.

148 (added). The superconductive method according to claim 146 in which the alkaline-earth element is barium.

149 (Added). The superconductive method according to claim 145 in which the copper-oxide compound of the superconductive composition includes mixed valent copper ions.

150 (Added). The superconductive method according to claim 149 in which the copper-oxide compound includes at least one element in a nonstoichiometric atomic proportion.

151 (Added). The superconductive method according to claim 150 in which oxygen is present in the copper-oxide compound in a nonstoichiometric atomic proportion.

152 (Added). A superconductive method for conducting an electric current essentially without resistive losses, comprising:
(a) providing a superconductor element made of a superconductive composition, the superconductive composition
consisting essentially of a copper-oxide compound having a substantially layered perovskite crystal structure, the copper-oxide compound including at least one element selected from the group consisting of a rare-earth element and a Group III B element and at least one alkaline-earth element, the composition having a superconductive/resistive transition defining a superconductive/resistive-transition temperature range between an upper limit defined by a transition-onset temperature T_{c} and a lower limit defined by an effectively-zero-bulk-resistivity intercept temperature $\mathrm{T}_{\mathrm{p}=0}$, the transition-onset temperature T_{c} being greater than 26 K ;
(b) maintaining the superconductor element at a temperature below the effectively-zero-bulk-resistivity intercept temperature $T_{p=0}$ of the superconductive composition; and
(c) causing an electric current to flow in the superconductor element.

153 (Added). The superconductive method according to claim 103 in which said at least one element is lanthanum.

154 (Added). The superconductive method according to claim 152 in which the alkaline-earth element is barium.

155(Added). The superconductive method according to claim 152 in which the copper-oxide compound of the superconductive composition includes mixed valent copper ions.

156 (Added). The superconductive method according to claim 155 in
which the copper-oxide compound includes at least one element in a nonstoichiometric atomic proportion.

157 (Added). The superconductive method according to claim 156 in which oxygen is present in the copper-oxide compound in a nonstoichiometric atomic proportion.

158 (Added). A superconductive method for causing electric-current flow in a superconductive state at a temperature in excess of $26^{\circ} \mathrm{K}$, comprising:
(a) providing a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound having aa substantially layered perovskite crystal structure, the composition having a superconductive transition temperature T_{c} of greater than $26^{\circ} \mathrm{K}$, said superconductive composition includes at least one element selected from the group consisting of a Group II A element, a rare earth element; and a Group III B element;
(b) maintaining the superconductor element at a temperature
above $26^{\circ} \mathrm{K}$ and below the superconductor transition temperature T_{c} of the superconductive composition; and
(c) causing an electric current to flow in the superconductor element.

159 (Added).. A superconductive method for conducting an electric current essentially without resistive losses, comprising:
(a) providing a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound having a substantially layered perovskite crystal structure, the copper-oxide compound including at least one element selected from the group consisting of
a Group II A element, a rare earth element and a Group

III B element, the composition having a superconductive/ resistive transition defining a superconductive/resistivetransition temperature range between an upper limit defined by a transition-onset temperature T_{c} and a lower
limit defined by an effectively-zero-bulk-resistivity intercept temperature $\mathrm{T}_{\mathrm{p}=0}$, the transition-onset temperature T_{c} being greater than $26^{\circ} \mathrm{K}$;
(b) maintaining the superconductor element at a temperature below the effectively-zero-bulk-resistivity intercept temperature $T_{p=0}$ of the superconductive composition; and
(c) causing an electric current to flow in the superconductor element.

160 (Added). A superconductive method for causing electric-current flow in a superconductive state at a temperature in excess of $26^{\circ} \mathrm{K}$, comprising:
(a) providing a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound having a substantially layered perovskite crystal structure, the composition having a superconductive transition temperature T_{c} of greater than $26^{\circ} \mathrm{K}$, said superconductive composition includes at least one element selected from the group consisting of a Group II A element and at least one element selected from the group
consisting of a rare earth element and a Group III B element;
(b) maintaining the superconductor element at a temperature above $26^{\circ} \mathrm{K}$ and below the superconductor transition temperature T_{c} of the superconductive composition; and
(c) causing an electric current to flow in the superconductor element.

161 (Added). A superconductive method for conducting an electric current essentially without resistive losses, comprising:
(a) providing a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound having a substantially layered
perovskite crystal structure, the copper-oxide compound including at least one element selected from the group consisting of a Group II A element and at least one element selected from the group consisting of a rare earth element and a Group III B element, the composition having a superconductive/ resistive transition defining a superconductive-resistivetransition temperature range between an upper limit defined by a transition-onset temperature T_{c} and a lower limit
defined by an effectively-zero-bulk-resistivity intercept temperature $T_{p=0}$, the transition-onset temperature T_{c} being greater than $26^{\circ} \mathrm{K}$;
(b) maintaining the superconductor element at a temperature below the effectively-zero-bulk-resistivity intercept temperature $T_{p=0}$ of the superconductive composition; and (c) causing an electric current to flow in the superconductor element.

162 (Added). A superconductive method for causing electric-current flow in a superconductive state at a temperature in excess of $26^{\circ} \mathrm{K}$, comprising:
(a) providing a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a transition metal oxide compound having a substantially layered perovskite crystal structure, the composition having a superconductive transition
temperature T_{c} of greater than $26^{\circ} \mathrm{K}$, said superconductive composition includes at least one element selected from
the group consisting of a Group II A element and at least one element selected from the group consisting of a rare earth element and a Group III B element;
(b) maintaining the superconductor element at a temperature above $26^{\circ} \mathrm{K}$ and below the superconductor transition T_{c} of the superconductive composition; and
(c) causing an electric current to flow in the superconductor element.

163 (Added). A superconductive method for conducting an electric current essentially without resistive losses, comprising:
(a) providing a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a transition metal-oxide compound having a substantially layered
perovskite crystal structure, the transition metal-oxide compound including at least one element selected from the group consisting of a Group II A element and at least one element
selected from the group consisting of a rare earth element and a Group III B element, the composition having a superconductive/resistive transition defining a superconductive/resistive-transition temperature range between an upper limit defined by a transition-onset temperature T_{c} and a lower limit defined by an effectively-zero-bulk-resistivity intercept temperature $\mathrm{T}_{\mathrm{p}=0}$, the transition-onset temperature T_{c} being greater than $26^{\circ} \mathrm{K}$;
(b) maintaining the superconductor element at a temperature below the effectively-zero-bulk-resistivity intercept temperature $T_{p=0}$ of the superconductive composition; and
(c) causing an electric current to flow in the superconductor element.

REMARKS

Reconsideration is respectfully requested in view of and changes to the claims and the remarks herein. Please contact the undersigned to conduct a telephone interview in accordance with MPEP 713.01 to resolve any remaining requirements and/or issues prior to sending another Office Action. Relevant portions of MPEP 713.01 are included on the signature page of this amendment. In view of the changes to the claims and the remarks herein, the Examiner is respectfully requested to reconsider the above-identified application. If the

Examiner wishes to discuss the application further, or if additional information would be required, the undersigned will cooperate fully to assist in the prosecution of this application.

In paragraphs 6-7 on pages 12-16 of the referenced office action Claims 86-87, $96-108,115,118,120,122,123,129-135$ and 137-142 have been rejected under 35 USC 112. All changes suggested by the examiner have been made except for those directed to the terms "layer-like", "perovskite-like, "rare-earth-like", and "layer-type". These terms occur in claims 86-87, 96-108, $112,113,117,118,122$, and 123. Added claims 143 to 163 have there same wording as these claims and include the changes suggested by the examiner to overcome the rejection based on these terms. As stated by applicants in previous responses these are terms of art and well understood by persons of skill in the art.
In paragraph 5 of the referenced office action claims 129-131, 134, 135, 139-142 added by applicants in there response dated April 27, 1998 have been rejected under 35 USC 112 as not enabled. Applicants respectfully disagree. The examiner has given no specific reason why these claims are not enabled.

The examiner has rejected all pending claims, except for claim 136 which is allowable, under 35 USC 102 as anticipated by the Asahi Shinbum article. In the prior response applicants have proven that the conception of applicants' invention was in this country prior to the date of the Asahi Shinbum article and that they were diligent from that time until the actual reduction to practice in this country. Thus applicants have effectively sworn behind the date of the Asahi Shinbum article. The examiner has ignored this stating at page 19 of the office action in paragraph d. ii "Nevertheless, the actual reduction in this country is deemed to have occurred on December 3, 1986, which is after the publication date for the reference." This comment is inconsistent with the law. The examiner is being arbitrary and capacious in not responding to applicants'
arguments. This is clearly erroneous. Applicants have sworn behind the date of the Asahi Shinbum article and have thus over come the rejection of the claims as anticipated by the Asahi Shinbum article and withdrawal of this rejection is respectfully requested. The examiner is placing applicants in a position of having to guess why in the apparent view of the examiner they have not effectively sworn behind the date of the Asahi Shinbum article. Thus applicants can not properly appeal this rejection since the examiner has not stated a coherent rejection. In view thereof applicant respectfully request that the final rejection be withdrawn so that applicants can be informed of the reason why the examiner apparently believes that applicants have not effectively sworn behind the date of the Asahi Shinbum article by the combination of affidavits under 37 CFR 1.132 which prove that the conception of applicants' invention was in this country prior to the date of the Asahi Shinbum article and that they were diligent from that time until the actual reduction to practice in this country.

Please charge any fee necessary to enter this paper to deposit account 09-0468.

If the above-identified Examiner's Action is a final Action, and if the above-identified application will be abandoned without further action by applicants, applicants file a Notice of Appeal to the Board of Appeals and Interferences appealing the final rejection of the claims in the above-identified Examiner's Action. Please charge deposit account 09-0468 any fee necessary to enter such Notice of Appeal.

In the event that this amendment does not result in allowance of all such claims, the undersigned attorney respectfully requests a telephone interview at the Examiner's earliest convenience.

MPEP 713.01 states in part as follows:

Where the response to a first complete action includes a request for an interview or a telephone consultation to be initiated by the examiner, ... the examiner, as soon as he or she has considered the effect of the response, should grant such request if it appears that the interview or consultation would result in expediting the case to a final action.

Reg. No. 32,053
(914) 945-3217

IBM CORPORATION
Intellectual Property Law Dept.
P.O. Box 218
Yorktown Heights, New York 10598

Address:
 COMMISSIONER OF PATENTS AND TRADEMARKS Washington, D.C. 20231

Γ 19051/0625

```
    gAwTEL P mumRES
    TBM CORPORATTLEN
    INTEl&iG:UAL PRUPGRTY LAW DEPARTHERG
    O 30x %18
```


DATE MAILED: $06 / 25 / 98$

FINAL

Please find below and/or attached an Office communication concerning this application or proceeding.

Office Action Summary

| Application No.
 $08 / 303,561$ | Applicant(s) |
| :---: | :---: | :---: | :---: |
| Examiner
 Douglas J. McGinty | Group Art Unit
 1751 |

\searrow Responsive to communication(s) filed on May 1, 1998 and May 14, 1998
\triangle This action is FINAL.
\square Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quap1®35 C.D. 11; 453 O.G. 213.

A shortened statutory period for response to this action is set to expire__ $\quad 3 \quad$ month(s), or thirty days, whichever is longer, from the mailing date of this communication. Failure to respond within the period for response will cause the application to become abandoned. (35 U.S.C. § 133). Extensions of time may be obtained under the provisions of 37 CFR 1.136(a).

Disposition of Claim

© Claim(s) 24-26, 86-90, and 96-142
is/are pending in the applicat
Of the above, claim(s) \qquad is/are withdrawn from consideration

X Claim(s) 136 is/are allowed
\boxtimes Claim(s) 24-26, 86-90, 96-135, and 137-142_ is/are rejected.
$\square]$ Claim(s) \qquad is/are objected to.Claims \qquad are subject to restriction or election requirement.

Application Papers

\square See the attached Notice of Draftsperson's Patent Drawing Review, PTO-948.The drawing(s) filed on \qquad is/are objected to by the Examiner.The proposed drawing correction, filed on \qquad is \qquad approved \square disapproved.
\square The specification is objected to by the Examiner.The oath or declaration is objected to by the Examiner.
Priority under 35 U.S.C. § 119
\triangle Acknowledgement is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d).
\boxtimes All \quad Some* None of the CERTIFIED copies of the priority documents have beenreceived.
\triangle received in Application No. (Series Code/Serial Number) \qquad 08/053,307 .received in this national stage application from the International Bureau (PCT Rule 17.2(a)).
*Certified copies not received:
\square Acknowledgement is made of a claim for domestic priority under 35 U.S.C. § 119(e).

Attachment(s)

Notice of References Cited, PTO-892Information Disclosure Statement(s), PTO-1449, Paper No(s) $\qquad$$\square$ Interview Summary, PTO-413Notice of Draftsperson's Patent Drawing Review, PTO-948Notice of Informal Patent Application, PTO-152

DETAILED ACTION

1. The text of those sections of Title 35, U.S. Code not included in this action can be found in a prior Office action. The rejections and objections, if any, from the previous Office Action have been withdrawn if not repeated in this Office Action.
2. It is requested that this Examiner be notified of all pending, related applications. ${ }^{1}$ That notice need not be in a PTO form - 1449, however. ${ }^{2}$

Status of the Claims

3. Claims 24-26, 86-90, and 96-142 are pending.

Priority

4. Acknowledgment is made of applicant's claim for priority under 35 U.S.C. § 119. The certified copy has been filed in parent application, Serial No. 08/053,307, filed on April 23, 1993 as paper no. 28 .
a. However, a review of that certified copy, which is in English, indicates that it does not support the present assertion of priority. Support is not found in that certified copy for the invention as presently claimed. See MPEP 201.13 et seq. and 201.14 et seq.
b. Applicants' arguments filed April 11, 1996, January 3, 1996, and September 29, 1995, paper nos. 53, 50, and 51, as well as the Affidavits filed September 29, 1995 and January 3, 1996, paper nos. 49 and 52, have been fully considered but they are not deemed to be persuasive. The applicants quote some passages out of the priority document and argue that the present claims are fully based that document. Nevertheless, that priority document is not deemed to provide basis for the following limitations found in the present claims:
i. The limitations "a composition including a transition metal, a rare earth or rare earth-like element, an alkaline earth element, and oxygen", as found in claim 86 (lines 2-4). The certified priority document may provide basis for the formula RE_{2} TM. O_{4} at p. 2, para. 4, but the claimed composition is deemed to be much broader than that formula.

[^27]ii. The limitation "non-stoichiometric amount of oxygen", as found in claim 86 (line 6). Basis may be seen for an oxygen deficit at p. 2, para. 4, but no such basis is seen for the more general limitation of "a nonstoichiometric amount of oxygen".
iii. The limitation "a composition exhibiting a superconductive state", as found in claim 88 (line 2), wherein the composition is a "(transition) metal oxide", as found in claims 24 (lines 1 and 2), 89 and 90. The certified priority document may provide basis for compositions of the formula $\mathrm{RE}_{2} \mathrm{TM} . \mathrm{O}_{4}$, as discussed above, but "a composition", "metal oxide", or "transition metal oxide" is deemed to be much broader than the formula $\mathrm{RE}_{2} \mathrm{TM} . \mathrm{O}_{4}$.
iv. The limitation "a copper-oxide compound", as recited in claim 96 (line 6). The certified priority document may provide basis for compositions of the formula RE_{2} TM. O_{4}, as discussed above, but "a copper-oxide compound" is not deemed to be equivalent to a composition of the formula $\mathrm{RE}_{2} \mathrm{TM} . \mathrm{O}_{4}$. Basis is not seen in the certified priority document for "a copperoxide compound" with the breadth of the present claims.
v. The limitation to the effect that "the copper oxide compound includes (including) at least one rare-earth or rare-earth-like element and at least one alkaline-earth element", as recited in claim 97 (lines 3 and 4) and claim 103 (lines 6-8). The certified priority document may provide basis for compositions of the formula $\mathrm{RE}_{2} \mathrm{TM} . \mathrm{O}_{4}$, as discussed above, but basis is not seen for the more general limitation of "a copper-oxide compound" with a rare-earth (like) element and an alkaline earth element.
vi. The limitation to the effect that "the copper-oxide compound includes at least one element (oxygen) in a nonstoichiometric atomic proportion", as found in claim 101 (lines 2 and 3), 102 (lines 2 and 3), 107 (lines 2 and 3), and 108 (lines 2 and 3). Basis may be seen for an oxygen deficit as discussed above, but no such basis is seen for the more general limitation of "a nonstoichiometric atomic proportion".
vii. The limitation as to "the effectively-zero-bulk-resistivity intercept temperature $\mathrm{T}_{\mathrm{p}=0}{ }^{\prime \prime}$, as found in claim 103 (lines 13,16 , and 17). The critical temperature, T_{c}, is discussed throughout that certified priority document, but not $T_{p=0}$.
c. Applicants' arguments filed March 7, 1997 (\#59) have been fully considered but not found to be persuasive.
i. The applicants quote portions out of the priority document and assert that those quoted sections "clearly (support) a much broader composition than the Examiner is claiming it does, and that the priority document, in fact, does support applicant's (sic) claim 86." The fact remains, nevertheless, that the priority document refers to the general formula $\mathrm{RE}_{2} \mathrm{TM.O}_{4}$ in which the rare earth element (RE) may be partially substituted with a Group IIA metal. That disclosure in the priority document does not provide support for the broader limitations of the present claims, which do not limit the invention to that general formula.
ii. The applicants argue that the disclosure of varying amounts of oxygen in the priority document provides support for earlier priority for the term "non-stoichiometric amount of oxygen". Again, however, that disclosure in the priority document does not provide support for the broader limitations of the present claims, which do not limit the invention to those varying amounts.
iii. The applicants urge that the disclosure in the priority document of the formula RE_{2} TM. O_{4} provides support for their limitations of "transition metal", "copper-oxide compounds", "rare earth or rare earth-like elements", and "alkaline earth element". Again, however, that disclosure in the priority document does not provide support for the broader limitations of the present claims, which do not limit the invention to that formula.
iv. The applicants further "assume that the Examiner agrees with applicant's (sic) statements in their prior response in that the concept of the intercept temperature is well known in the prior art and can be included in claim 103." No basis is seen for that assumption. As noted in the previous Office Action and repeated above, the term " $\mathrm{T}_{\mathrm{p}=0}$ " is not found in the priority document. Well known or not, there is no basis for that term in the priority document.
d. Applicants' arguments filed May I, 1998 (\#64) and May 14, 1998 (\#62) have been fully considered but not found to be persuasive. The applicants' arguments have been fully discussed above.

Claim Rejections - 35 USC § 112

5. The specification is objected to under 35 U.S.C. § 112 , first paragraph, as failing to provide an enabling disclosure commensurate with the scope of the claims.
a. The present specification is deemed to be enabled only for compositions comprising $\mathrm{Ba}_{x} \mathrm{La}_{5-x} \mathrm{Cu}_{5} \mathrm{O}_{y}$. The art of high temperature (above $30^{\circ} \mathrm{K}$) superconductors is an extremely unpredictable one. Small changes in composition can result in dramatic changes in or loss of superconducting properties. The amount and type of examples necessary to support broad claims increases as the predictability of the art decreases. ${ }^{3}$ Claims broad enough to cover a large number of compositions that do not exhibit the desired properties fail to satisfy the requirements of 35 USC $112 .{ }^{4}$ Merely reciting a desired result does not overcome this failure. ${ }^{5}$ In particular, the question arises: Will any layered perovskite material containing copper exhibit superconductivity? Also, does any stoichiometric combination of rare earth, an alkaline earth, and copper elements result in an oxide superconductor?
b. It should be noted that at the time the invention was made, the theoretical mechanism of superconductivity in these materials was not well understood. That mechanism still is not understood. Accordingly, there appears to be little factual or theoretical basis for extending the scope of the claims much beyond the proportions and materials actually demonstrated to exhibit high temperature superconductivity. A "patent is not a hunting license. It is not a reward for the search, but a reward for its successful conclusion". ${ }^{6}$

[^28]c. Claims 24-26, 86-90, 96-113, 129-131, 134, 135, and 139-142 are rejected under 35 U.S.C. § 112, first paragraph, for the reasons set forth in the objection to the specification.
d. Applicants' arguments filed April 11, 1996, January 3, 1996, and September 29, 1995, paper nos. 53, 50, and 51, as well as the Affidavits filed September 29, 1995 and January 3,1996 , paper nos. 49 and 52 , have been fully considered but they are not deemed to be persuasive.
i. The additional caselaw and arguments by the applicants have been duly noted. For the reasons that follow, however, the record as a whole is deemed to support the initial determination that the originally filed disclosure would not have enabled one skilled in the art to make and use the invention to the scope that it is presently claimed.
ii. The applicants quote several passages from their specification at pp. 13-15 of their September 29, 1995 Amendment, but the issue is the scope of enablement, not support. The present disclosure may or may not provide support for particular embodiments, but the issue here is the scope to which that disclosure would have taught one skilled in the art how to make and use a composition which shows the onset of superconductivity at above $26^{\circ} \mathrm{K}$.
iii. Construed in light of that issue, the invention is not deemed to have been fully enabled by the disclosure to the extent presently claimed.
(1) In their September 29, 1995 Amendment, the applicants argue that their disclosure refers to "the composition represented by the formula RE-TM-O, where RE is a rare earth or rare earth-like element, TM is a nonmagnetic transition metal, and O is oxygen", and list several species such as " $\mathrm{La}_{2-\mathrm{x}} \mathrm{Ba}_{\mathrm{x}} \mathrm{CuO}_{4-y}$ " which they indicate are found in the present disclosure.
(2) Notwithstanding that argument, it still does not follow that the invention is fully enabled for the scope presently claimed. The claims include formulae which are much broader than the RE-TM-O formula cited in the disclosure. Claim 24 recites "a transition metal oxide", claim 88 "a composition", and claim 96 "a copper-oxide compound".
(a) The present specification actually shows that known forms of "a transition metal oxide", "a composition", and "a copper-oxide compound" do not show the onset of superconductivity at above $26^{\circ} \mathrm{K}$. At p. 3, line 20, through p. 4 , line 9 , of their disclosure, the applicants state that the prior art includes a "Li-Ti-O system with superconducting onsets as high as $13.7^{\circ} \mathrm{K}$." Official Notice is taken of the well-known fact that Ti is a transition metal. That disclosure also refers to "a second, non-conducting CuO phase" at p .14 , line 18 .
(b) Accordingly, the present disclosure is not deemed to have been fully enabling with respect to the "transition metal oxide" of claim 24, the "composition" of claim 88, or the "copper-oxide compound" of claim 96.
(3) The examples at p. 18, lines 1-20, of the present specification further substantiates the finding that the invention is not fully enabled for the scope presently claimed.
(a) With a $1: 1$ ratio of $(\mathrm{Ba}, \mathrm{La})$ to Cu and an x value of 0.02 , the La-Ba-Cu-O form (i.e., "RE-AE-TM-O", per p. 8, line 11) shows "no superconductivity".
(b) With a $2: 1$ ratio of $(\mathrm{Ba}, \mathrm{La})$ to Cu and an x value of 0.15 , the $\mathrm{La}-\mathrm{Ba}-\mathrm{Cu}-\mathrm{O}$ form shows an onset of superconductivity at " $\mathrm{T}_{\mathrm{c}}=26^{\circ} \mathrm{K}$ ". It should be noted, however, that all of the claims in this application require the critical temperature $\left(\mathrm{T}_{\mathrm{c}}\right)$ to be "in excess of $26^{\circ} \mathrm{K}$ " or "greater than $26^{\circ} \mathrm{K}$ ".
(c) Consequently, the present disclosure is not deemed to adequately enable the full scope of the present claims. Independent claims 86 and 103 may require the presence of rare earth, alkaline earth, and transition metals, but the aforementioned examples show that superconductivity is still very unpredictable. Those claims cannot be deemed to be fully enabled.
iv. The applicants also have submitted' three affidavits attesting to the applicants' status as the discoverers of materials that superconduct $>26^{\circ} \mathrm{K}$. Each of the affidavits further states that "all the high temperature superconductors which have been developed based on the work of Bednorz and Muller behave in a similar manner (way)". Each of the affidavits add " (t) hat once a person of skill in the art knows of a specific transition metal oxide composition
which is superconducting above $26^{\circ} \mathrm{K}$, such a person of skill in the art, using the techniques described in the (present) application, which includes all known principles of ceramic fabrication, can make the transition metal oxide compositions encompassed by (the present) claims ... without undue experimentation or without requiring ingenuity beyond that expected of a person of skill in the art." All three affiants apparently are the employees of the assignee of the present application.
(1) Those affidavits do not set forth particular facts to support the conclusions that all superconductors based on the applicants' work behave in the same way and that one skilled in the art can make those superconductors without undue experimentation. Conclusory statements in an affidavit or specification do not provide the factual evidence needed for patentability. ${ }^{7}$
(2) Those affidavits do not overcome the non-enablement rejection. The present specification discloses on its face that only certain oxide compositions of rare earth, alkaline earth, and transition metals made according to certain steps will superconduct at $>26^{\circ} \mathrm{K}$.
(3) Those affidavits are not deemed to shed light on the state of the art and enablement at the time the invention was made. One may know now of a material that superconducts at more than $26^{\circ} \mathrm{K}$, but the affidavits do not establish the existence of that knowledge on the filing date for the present application. Even if the present application "includes all known principles of ceramic fabrication", those affidavits do not establish the level of skill in the ceramic art as of the filing date of that application.
(4) It is fully understood that the applicants are the pioneers in high temperature metal oxide superconductivity. The finding remains, nonetheless, that the disclosure is not fully enabling for the scope of the present claims.
e. Applicants' arguments filed March 7, 1997 (\#59) have been fully considered but they are not persuasive.
i. The applicants quote a statement from part of the previous Office Action and asserts that the "Examiner does not support this statement with any case law citations."

[^29](1) That assertion is incorrect. Seven decisions have been cited as providing the legal basis for this determination of non-enablement. ${ }^{8}$
(2) The applicants further "note that the Examiner seemed to have specifically avoided applying (sic) the case law and, consequently, ... applicants take the Examiner's silence as concurrence in the manner that applicants have applied this case law." Apparently, the applicants are referring to their discussion ${ }^{9}$ of the caselaw previously cited by this Examiner. Notwithstanding the applicants' commentary on caselaw, the April 15, 1997 Office Action, paper no. 54, sets forth the factual basis for the determination of non-enablement at pp. 5-10.
(3) The applicants still further argues "that the Examiner does not rebut the case law and argument provided by applicants on (pages) 15-25 of their September 29, 1995 amendment which addresses (these issues) in detail." The point remains, nevertheless, that there appears to be a concurrence as to the applicable caselaw. That caselaw speaks for itself. What has been fully addressed in the previous Office Action and repeated above is the factual basis for the determination of non-enablement for the scope of the present invention.
ii. The applicants urge that "their disclosure supports a substantially broader scope than (particular) species." With respect to transition metals, the applicants point to the support in their disclosure and argue that they were enabled for transition metals other than just copper. Again, however, it is noted that high temperature superconductivity is a highly unpredictable art. In view of the record as a whole, it is again determined that one skilled in the art would not have been enabled to practice the presently disclosed invention with transition metals other than copper.
iii. The applicants argue that their own examples do not support the determination of non-enabling scope of the invention. Nevertheless, the record is viewed as a

[^30]whole. If the applicants could not show superconductivity with a $T_{c}>26^{\circ} \mathrm{K}$ for certain compositions falling within the scope of the present claims, it is unclear how someone else skilled in the art would have been enabled to do so at the time the invention was made.
iv. The applicants assert that "(b)y the Examiner's statement that these (statements in the affidavits) are conclusionary (sic) the Examiner appears to be placing himself up as an expert in the field of superconductivity" and "respectfully request that the Examiner submit an affidavit in the present application rebutting the position taken by applicants' 3 affiants." Notwithstanding those assertions, this Examiner has determined that those affidavits were insufficient because they were conclusory only, i.e., they lacked particular facts to support the conclusions reached.
v. The applicants argue that the "Examiner has provided no substantial evidence to support this assertion (of non-enabling scope of the invention). It is respectfully requested that the Examiner support (his) assertion with factual evidence and not unsupported statements." Nevertheless, the determination of non-enabling scope is maintained for the reasons of record.
f. Applicants' arguments filed May 1, 1998 (\#64) and May 14, 1998 (\#62) have been fully considered but not found to be persuasive.
i. The applicants argue that the "standard of enablement for a method of use is not the same as the standard of enablement for a composition of matter" and that their claimed invention is enabling because it is directed to a method of use rather than a composition. Basis is not seen for that argument, to the extent that it is understood. It is noted that 35 USC 112, first paragraph, reads as follows:

The specification shall contain a written description of the invention, and of the manner and process of making and using it, in such full, clear, concise, and exact terms as to enable any person skilled in the art to which it pertains, or with which it is most nearly connected, to make and use the same, and shall set forth the best mode contemplated by the inventor of carrying out his invention.

Process of use claims also would be subject to the statutory provisions of 35 USC 112, first paragraph.
ii. The applicants assert that the "Examiner has not shown by evidence not contained within applicants' teaching that the art of high T_{C} superconductors is unpredictable in view of applicants' teaching" (spelling and punctuation errors corrected). To the extent that the same assertion is understood, the rejection is maintained for the reasons of record.
iii. The applicants point to "Copper Oxide Superconductors" by Charles P. Poole, Jr., et al., (hereinafter, "the Poole article") as supporting their position that higher temperature superconductors were not that difficult to make after their original discovery.
(1) Initially, however, it should be noted that the Poole article was published after the priority date presently claimed. As such, it does not provide evidence of the state of the art at the time the presently claimed invention was made.
(2) Moreover, the present claims are directed to processes of using metal oxide superconductors, not processes of making them. Even if the Poole article provided direct evidence of the state of the art at the time the invention was made, which it apparently does not, that evidence still does not pertain to the issue at hand, namely, the process of using metal oxide superconductors to conduct electricity under superconducting conditions.
(3) Finally, the Preface states in part at A3: "The unprecedented worldwide effort in superconductivity reseach that has taken place over the past two years has produced an enormous amount of experimental data on the properties of the copper oxide type materials that exhibit superconductivity above the temperature of liquid nitrogen. ... During this period a consistent experimental description of many of the properties of the principal superconducting compounds such as $\mathrm{BiSrCaCuO}, \mathrm{LaSrCuO}, \mathrm{TlBaCaCuO}$, and YBaCuO has emerged. ... The field of high-temperature superconductivity is still evolving ..." That preface is deemed to show that the field of high-temperature superconductivity continued to grow, on the basis of on-going basic reseach, after the Bednorz and Meuller article was published.
iv. The applicants submitted three affidavits, one each from Drs. Tsuei, Dinger, and Mitzi which were signed in May of 1998.
(1) Except for one change, those three affidavits are the same as the ones submitted before and discussed above.
(2) Those affidavits have been changed to indicate that the present application "includes all known principles of ceramic fabrication known at the time the application was filed." However, that additional indication also is considered to be a conclusory statement unsupported by particular evidence.
v. This Office Action is deemed to be a complete discussion of all relevant issues raised by the applicants.
6. Claims 134, 135, and 137-142 are rejected under 35 U.S.C. 112, first paragraph, as based on a disclosure which is not enabling.
a. Each of claims 134,135 , and $137-142$ provide for a superconductor "having a T_{c} greater than $26^{\circ} \mathrm{K}$ ", but those claims do not provide for a step of -- maintaining said (superconductor) at a temperature less than said $\mathrm{T}_{\mathrm{c}}-$.
b. Those claims are not enabled because they lack the critical step of maintaining the appropriate temperature for superconductivity. ${ }^{10}$
7. Claims 86-87, 96-108, 115, 118, 120, 122, 123, 129-135, and 137-142 are rejected under 35 U.S.C. § 112 , second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which applicant regards as the invention.
a. With respect to claims 86-87 and 96-108, the terms "layer-type", "perovskite-like", "rare-earth-like" are vague and confusing.
i. The question arises: What is meant by these terms?
ii. Applicants' arguments filed April 11, 1996, January 3, 1996, and

September 29, 1995, paper nos. 53, 50, and 51, as well as the Affidavits filed September 29, 1995 and January 3, 1996, paper nos. 49 and 52, have been fully considered but they are not deemed to be persuasive.

[^31](1) The terms "layer-type" and "perovskite-like" are unclear because the "type" or "like" terms are deemed to be indefinite. Terms such as "like", "similar", and "type" are indefinite. ${ }^{11}$ It is suggested that "layer-type perovskite-like crystal structure" be changed -- a substantially layered perovskite crystal structure --.
(2) The applicants respond that "(a) person of skill in the art would understand (rare earth-like) to mean that a location occupied by a rare earth element can also be occupied by another element which would have chemical properties similar enough to the rare earth elements such that it would fit in to the latter (sic - lattice?) site occupied by the rare earth element." That response does not alleviate the problem, however. Other elements may "fit" into the lattice but they may not necessarily be "rare-earth-like". It is suggested that the same language be changed to -- Group III B --, per p. 7, line 11, of the present specification.
b. Claims $112,113,115,117,118,120,122$, and 123 are found to be indefinite for the reasons that follow.
i. In claim 112, line 5, has the terms "layer-type" and "perovskite-like", both of which are indefinite.
ii. In claim 113, line 5, has the terms "layer-type" and "perovskite-like", both of which are indefinite.
iii. Claim 115, lines 2-4, is indefinite with the language "forming a composition including copper, oxygen and any element selected from the group consisting of at least one Group IIA element and an element selected from the group consisting of a rare earth element and a Group IIIB element" (emphasis added). That language is unclear as to whether the Group IIA element must be present along with either the rare earth or Group IIIB element. It is suggested that "any" be changed to -- an -- in line 2.
iv. In claim 117, line 5, has the terms "layer-type" and "perovskite-like", both of which are indefinite.

[^32]v. In claim 118, line 5, has the terms "layer-type" and "perovskite-like", both of which are indefinite.
vi. Claim 120 is unclear the "copper oxide" of line 5 is the "transition metal" and "oxygen" of line 2.
vii. Claim 120, lines 2-4, is indefinite with the language "any element selected from the group consisting of at least one Group IIA element and an element selected from the group consisting of a rare earth element and a Group IIIB element" (emphasis added). That language is unclear as to whether the Group IIA element must be present along with either the rare earth or Group IIIB element. It is suggested that "any" be changed to -- an -- in line 2 .
viii. In claim 122, line 5, has the terms "layer-type" and "perovskite-like", both of which are indefinite.
ix. In claim 123, line 5, has the terms "layer-type" and "perovskite-like", both of which are indefinite.
x. Claim 123, line 12, has the typographical error of " $\mathrm{T} \mathrm{T}_{\mathrm{c}}$ ".
c. Claims 129-142 are found to be indefinite for the reasons that follow.
i. Claim 129, last two lines, have the phrase "through said composition while exhibiting said superconductivity", which is unclear as to what is exhibiting superconductivity. It is suggested that the same phrase be changed to -- through said composition with said phase exhibiting said superconductivity --.
ii. Claim 130, line 3, is unclear with the term "being". It is suggested that the same term be deleted.
iii. Claim 131, line 2, apparently should have -- maintaining -- instead of "maintaing".
iv. Claim 131, line 4, is unclear with the term "therein". It is suggested that the same term be replaced with -- in said superconducting copper oxide --.
v. Claim 132, line 4, is unclear with the term "superconduting"
vi. Claim 133, line 2, has an apparent misspelling of -- maintianing --.
vii. Claim 133, line 4, is unclear with the language "superconduting current". It is suggested that the same language be changed to -- superconducting electrical current --.
viii. Claim 134 , line 1 , is unclear with the language "superconduting current". It is suggested that the same language be changed to -- superconducting electrical current --.
ix. Claim 135, line 1 , is unclear with the language "superconduting current". It is suggested that the same language be changed to -- superconducting electrical current --.
x. Claim 137, line 1 , is unclear with the language "superconduting current". It is suggested that the same language be changed to -- superconducting electrical current --.
xi. Claim 138, line 1 , is unclear with the language "superconduting current". It is suggested that the same language be changed to -- superconducting electrical current --.
xii. Claim 139 , line 1 , is unclear with the language "superconduting current". It is suggested that the same language be changed to -- superconducting electrical current --.
xiii. Claim 140 , line 1 , is unclear with the language "superconduting current". It is suggested that the same language be changed to -- superconducting electrical current --.
xiv. Claim 141, line 1 , is unclear with the language "superconduting current". It is suggested that the same language be changed to -- superconducting electrical current --.
xv. Claim 142, line 1, is unclear with the language "superconduting current". It is suggested that the same language be changed to -- superconducting electrical current --.
xvi. Claim 142, line 2, apparently should have -- T_{c}--
d. Applicants' arguments filed March 7, 1997 (\#59) have been fully considered but they are not persuasive.
i. The applicants assert "that the Examiner has not responded to applicants' comments which supports applicants' position that a person of skill in the art would understand the terms 'layer-type' and 'perovskite-like' and has just repeated their rejection of the prior Office Action." That assertion is not correct, since April 15, 1996 Office Action, paper no. 54, addressed the applicants' comments at pp. 8 and 9.
ii. The prior Office Action included a proposed amendment to overcome this rejection, which has been repeated above.
e. Applicants' arguments filed May 1, 1998 (\#64) and May 14, 1998 (\#62) have been fully considered but not found to be persuasive. The applicants' arguments have been fully discussed above.

Claim Rejections - 35 USC § 102

8. Claims 24-26, 86-90, 96-135, and 137-142 are rejected under 35 U.S.C. § 102(a) as being anticipated by Asahi Shinbum, International Satellite Edition (London), November 28, 1986 (hereinafter, "the Asahi Shinbum article").
a. As discussed in paper no. 20 of the ancestral application, 07/053,307, it is not fully clear to what exact date applicants are entitled. Based on the record, nonetheless, that date would appear to be no later than around December 13, 1986, the date samples were tested in the US to show superconductivity. See MPEP 715 et seq. The Asahi Shinbum article was published on November 28, 1986.
b. The reference confirms superconductivity in an oxide compound of La and Cu with Ba having a structure of the so-called perovskite structure. Although the reference fails to teach use of the testing of zero resistance for confirming superconductivity, it inherently must have been used because it is one of two methods used for testing for superconductivity (the other being diamagnetism). Accordingly, the burden of proof is upon the applicants to show that the instantly claimed subject matter is different from and unobvious over that taught by this reference. ${ }^{12}$
c. Applicants' arguments filed April 11, 1996, January 3, 1996, and September 29, 1995, paper nos. 53, 50, and 51, as well as the Affidavits filed September 29, 1995 and January 3, 1996, paper nos. 49 and 52, have been fully considered but they are not deemed to be persuasive.
i. The applicants argue that the Sung II Park Affidavit of March 30, 1988 states at para. 4 that measurements were taken of a superconductive sample on or before
[^33]November 9, 1986, to the best of the affiant's recollection, or no later than November 15, 1986. The documentary evidence is not deemed to support that argument, however. See MPEP 715.07.
(1) Plots of those measurements are missing. See the Chang C. Tsuei Affidavit of March 30, 1988, para. 6. A hand-drawn diagram with the indication of vacuum pumping on November 9,1988 also is not deemed to show that the measurements were taken.
(2) Moreover, the other evidence in the record appears to show that high temperature superconductivity was not attained in this country as of November 9 or 15, 1986. The March 30, 1986 Declaration of Richard L. Greene includes a series of cablegrams sent by Dr. Greene to the applicants in Zurich, Switzerland as Exhibit B. On both November 11, 1986 and November 14, 1986, Dr. Greene reports that no indication of superconductivity has been seen in his specific heat measurements for temperatures of $4-35^{\circ} \mathrm{K}$. Exhibit C has pages dated December 1, 1986 on, and Exhibit D, which actually has plots of resistance vs. temperature, has an earliest date of December 3, 1996.
ii. The applicants assert that the Asahi Shinbum article reports a third party's confirmation of their original discovery. That assertion appears to be correct, but the article still is deemed to be prior art under 35 USC 102(a).
(1) It should be noted again, however, that the applicants' discovery was not originally made in this country and that they cank how an earlier date than December 1986 for their invention in this country. The Asahi Shinbum article was published on November 28, 1986.
(2) The applicants cite four decisions ${ }^{13}$ which do not directly apply to the present facts.

[^34](a) The In re Katz ${ }^{14}$ decision held that an applicant may
overcome an article as 35 USC 102(a) prior art by showing that the applicant was a co-author and that the other co-authors were under the direction and control of the applicant. Here, however, the applicants were neither co-authors in the Asahi Shinbum article nor did they exercise direction and control over the work reported in that article.
(b) The Andrews v. Hovey ${ }^{15}$ decision involved a grace period which is now codified in 35 USC 102(b). The present case involves a printed publication as prior art under 35 USC 102(a).
(c) The Ex parte Powell and Davies ${ }^{16}$ decision held that an applicant's own foreign patent which issued within the grace period cannot be used against him or her, and the Ex parte Lemieux ${ }^{17}$ decision applied that reasoning to an applicant's own article published in another country. Again, the present applicants had no part in the writing of the Asahi Shinbum article.
(3) The present facts may raise a novel issue of law. ${ }^{18}$ The applicants were the first to develop the presently claimed invention, but the earliest date they can show for

[^35]that invention in this country is December of $1986 .{ }^{19}$ The Asahi Shinbum article was published in November of 1986 and describes the development of superconductivity with an oxide of La, Ba, and Cu having a perovskite structure by a third party, but that article apparently indicates that the third party was confirming the discovery of the present applicants. Notwithstanding the possible uniqueness of the present facts, however, the Asahi Shinbum article still is deemed to be prior art under 35 USC 102(a), which the applicants have not been able to overcome with a showing of an earlier date in this country or a showing of their direction and control over the work done by that third party.
d. Applicants' arguments filed March 7, 1997 (\#59) have been fully considered but they are not persuasive.
i. The applicants argue that "Praveen Chaudhari brought these samples back to the U.S. when he returned after visiting (the inventors) on or about October 16, 1986. When these samples came into the United States since they were inherently superconductive as claimed, the invention was essentially reduced to practice in the United States on that date." As stated before repeated above, however, the applicants were unable to show the attainment of superconductivity any earlier than December 3, 1986 in this country. Again, the present invention is directed to the method of superconducting electricity. That method apparently was not reduced to practice before December 3, 1986.
ii. The applicants further urge that they have shown clear diligence from before November 28, 1986 until actual reduction at or around December 3, 1986. Nevertheless, the actual reduction in this country is deemed to have occurred on December 3, 1986, which is after the publication date for the reference.
iii. The applicants assert that they should be entitled to a one-year grace period for their own published invention, but this prior art rejection is based on 35 USC 102(a) because the author of that reference is a different inventive entity.

[^36]iv. . The applicants argue: "If one would follow the rationale of the Examiner, if an applicant publishes an article and some other third party reports that same result prior to applicant's filing of a patent application which is subsequently filed within one year of applicant's own publication (, the) reporting of applicant's work by the third party would be prior art against applicant's application. Such a result would deny (the applicant) the one year grace period provided under 35 USC 102(b)." The applicants' argument is duly noted, but again, it is further noted that the reference is prior art under 35 USC 102(a). The reference is not just a republication of the applicants' article. Instead, the reference is the reporting of someone else's work which confirms the applicants' work. The applicants also are not able to show a priority date which pre-dates the publication of that reference. Usually, an applicant can establish an earlier priority date with an earlier foreign filing, but the EPO priority document in this case was filed on January 23, 1987, or by earlier conception and diligent reduction to practice, but in this case the invention was made outside of this country.
v. This Office Action is deemed to be a complete discussion of all relevant issues raised by the applicants.
e. Applicants' arguments filed May 1, 1998 (\#64) and May 14, 1998 (\#62) have been fully considered but not found to be persuasive. The applicants argue that the presently claimed invention is novel and non-obvious over the prior art, but for the reasons of record, however, the aforementioned reference is found to constitute prior art. The applicants' arguments have been fully discussed above.

Claim Rejections-35 USC § 103

9. Claims 24-26, 86-90, 96-135, and 137-142 are rejected under 35 U.S.C. $\S 103$ as being unpatentable over the Asahi Shinbum article.
a. The reference is relied upon as set forth in the previous rejection. This reference may differ from the present claims in that it may fail to disclose the presently claimed method of "causing an electric current to flow in the superconductor element". It was notoriously wellknown in the art of superconductors that a method of utilizing superconductive materials was to cause an electric current to flow in the material while it is cooled below its transition temperature.

See MPEP 706.02(a). Accordingly, it would have been well within the purview of one of ordinary skill to use the present claimed method with the materials disclosed by the reference. One would have been motivated to cool the material of the reference to below the transition temperature and cause electric current to flow in the material to provide electricity without resistance. Accordingly, the present claims are unpatentable in view of the prior art of record.
b. Applicants' arguments filed April 11, 1996, January 3, 1996, and September 29, 1995, paper nos. 53, 50, and 51, as well as the Affidavits filed September 29, 1995 and January 3, 1996, paper nos. 49 and 52, have been fully considered but they are not deemed to be persuasive. The Asahi Shinbum article is deemed to be prior art under 35 USC 102(a) for the reasons discussed above.
c. Applicants' arguments filed March 7, 1997 (\#59) have been fully considered but not found to be persuasive. The applicants' arguments have been fully discussed above.
d. Applicants' arguments filed May 1, 1998 (\#64) and May 14, 1998 (\#62) have been fully considered but not found to be persuasive. The applicants' arguments have been fully discussed above.

Allowable Subject Matter

10. Claim 136 is allowable.
11. The following is an Examiner's statement of reasons for the indication of allowable subject matter:
a. The Asahi Shinbum article teaches in general that perovskite-like compounds of La, Cu, and Ba have a T_{c} of $30^{\circ} \mathrm{K}$, but that article apparently does not teach the particular formula in the amendment suggested above. The examples in the present specification are deemed to show criticality for that formula as recited in claim 136.
b. Support for the proposed amendment is found at p. 20, line 1, through p. 25, line 5, and in Figure 3.
c. This indication of allowable subject matter is subject to further consideration and review.

Conclusion

12. All claims are drawn to the same invention claimed in the application prior to the entry of the submission under 37 CFR 1.129 (a) and could have been finally rejected on the grounds and art of record in the next Office action if they had been entered in the application prior to entry under 37 CFR 1.129(a).
a. Accordingly, THIS ACTION IS MADE FINAL even though it is a first action after the submission under 37 CFR 1.129 (a). See MPEP $\S 706.07$ (b). Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).
b. A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the mailing date of this final action.
13. Any inquiry concerning this communication or earlier communications from the examiner should be directed to Douglas J. McGinty, whose telephone number is (703) 308-3805. The examiner normally can be reached on Monday through Friday from 8:30 A.M. to 5:00 P.M., Eastern time. If reasonable attempts to reach the examiner by telephone are unsuccessful, however, the examiner's supervisor, Mr. Paul Lieberman, can be reached at (703) 308-2523. Any inquiry of a general nature or relating to the status of this application should be directed to the Group receptionist whose telephone number is (703) 308-0661. The fax number for this Group is (703) 305-3600.

June 24, 1998
303561.5

Dobs 1, Mm
Douglas J. McGinty
Primary Examiner
Group 1100

FACSIMILE

DATE: $\quad 5 / 14 / 98$ No. of PAGES to follow: 21

TO:

FROM:
Name: Daniel P.Moris

CLASSIFICATION:
\qquad IBM CONFIDENTIAL
\qquad PERSONAL
\qquad IBM INTERNAL USE ONLY
\qquad UNCLASSIFIED

MESSAGE: \qquad
\qquad
\qquad

THIS MESSAGE IS INTENDED ONLY FOR THE USE OF THE INDIVIDUAL OR ENTITY TO WHICH IT IS ADDRESSED, AND MAY CONTAIN INFORMATION THAT IS PRIVILEGED, CONFIDENTIAL AND EXEMPT FROM DISCLOSURE UNDER APPLICABLE LAW. IF THE READER OF THIS MESSAGE IS NOT THE INTENDED RECIPIENT, OR THE EMPLOYEE OR AGENT RESPONSIBLE FOR DELIVERING THE MESSAGE TO THE INTENDED RECIPIENT, YOU ARE HEREBY NOTIFIED THAT ANY DISSEMINATION, DISTRIBUTION OR COPYING OF THIS COMMUNICATION IS STRICTLY PROHIBITED. IF YOU HAVE RECEIVED THIS COMMUNICATION IN ERROR, PLEASE NOTIFY US IMMEDIATELY BY TELEPHONE AND RETURN THE ORIGINAL MESSAGE TO US AT THE ADDRESS ABOVE VIA THE USS. POSTAL SERVICE.

AS OF MAY 14 :98 15: 14 FAGE. 01

	DATE	TIME	TO/FROM	MUDE	MIN/SEC	PGS	CMDH	STATIUS
09	05/14	14:52	917033053599	EC--S	07.32 "	022		OK

IN THE UNITED STATES PATENTS AND TRADEMARK OFFICE

Applicants: J. Bednorz et al.
Serial No.: 08/303,561
Filed: June 7, 1995
For: NEW SUPERCONDUCTOR COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, AND METHODS FOR THEIR USE AND PREPARATION

The Commissioner of Patents and Trademarks
Washington, D.C. 20231

CERTIFICATION OF TRANSMISSION

PURSUANT TO 37 CFR 1.8

I hereby certify that this paper is being facsimile transmitted under Rule CFR 1.6(d) to the U.S. Patent and Trademark Office on May 14, 1998.

IBM CORPORATION
Intellectual Property Law Dept.
P.O. Box 218

Yorktown Heights, NY 10598
(914) 945-3217

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: J. Bednorz et al.
Serial No.: 08/303,561
Filed: June 7, 1995

Date: May 14, 1998
Group Art Unit: 1105
Examiner: D. McGinty

For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH
TRANSITION TEMPERATURE, AND METHODS FOR THEIR USE AND PREPARATION

The Commissioner of Patents and Trademarks
Washington, D.C. 20231

SUPPLEMENTARY AMENDMENT

Sir:

In response to the Office Action dated Sedtember 27. 1997 please consider the following:

In the prosecution of this application applicants have referred to the book "Copper Oxide Superconductors" by Charles P. Poole, Jr., Timir Datta and Horacio A. Farach, John Wiley \& Sons (1988). This book shall be referred to herein as Poole et al.. The preface of this book says " $[t]$ his volume reviews the experimental aspects of the field of oxide superconductivity with transition temperatures from 30 K to above 123 K , from the time of its discovery by Bednorz and Muller in April 1986 until a few months after the award of the Nobel Prize to them in October, 1987. " This passage is referring to applicants and their paper referred to at page 6 of applicants' specification. This book acknowledges that applicants are the discovers of the field of high temperature superconductivity. (See Attachment A)

Applicants note that it is generally recognized that it is note difficult to fabricate transition metal oxides and in particular copper metal oxides that are superconductive after the discovery by applicants that transition metal oxides are high Tc superconductors. Chapter 5 of the Poole et al. book entitled Preparation and Characterization of Samples" states at page 59 "[c]opper oxide superconductors with a purity sufficient to exhibit zero resistivity or to demonstrate levitation (Early) are not difficult to synthesize. We believe that this is at least partially responsible for the explosive worldwide growth in these materials. " Poole et al. further states at page 61 "[i]n this section three methods of preparation will be described, namely, the solid state, the coprecipitation, and the sol-gel techniques (Hatfi). The widely used solid-state technique permits off-the-shelf chemicals to be directly calcined into superconductors,
and it requires little familiarity with the subtle physicochemical process involved in the transformation of a mixture of compounds into a superconductor." Poole et al. further states at pages 61-62 "[i]n the solid state reaction technique one starts with oxygenrich compounds of the desired components such as oxides, nitrates or carbonates of $\mathrm{Ba}, \mathrm{Bi}, \mathrm{La} \mathrm{Sr}, \mathrm{TI}, \mathrm{Y}$, or other elements. ... These compounds are mixed in the desired atomic ratios and ground to a fine powder to facilitate the calcination process. Then these room-temperature-stabile salts are reacted by calcination for an extended period $(\sim 20 \mathrm{hr})$ at elevated temperatures $\left(\sim 900^{\circ} \mathrm{C}\right)$. This process may be repeated several times, with pulverizing and mixing of the partially calcined material at each step." This is generally the same as the specific examples provided by applicants and as generally described at pages 8 , line 19 , to page 9 , line 5 , of applicants' specification which states "The methods by which these superconductive compositions can be made can use known principles of ceramic fabrication, including the mixing of powders containing the rare earth or rare earth-like, alkaline earth, and transition metal elements, coprecipitation of these materials, and heating steps in oxygen or air. A particularly suitable superconducting material in accordance with this invention is one containing copper as the transition metal." (See Attachment A)

Consequently, applicants have fully enabled high TC transition metal oxides and their claims.

In view of the changes to the claims and the remarks herein, the Examiner is respectfully requested to reconsider the above-identified application. If the Examiner
wishes to discuss the application further, or if additional information would be required, the undersigned will cooperate fully to assist in the prosecution of this application.

Please charge any fee necessary to enter this paper to deposit account 09-0468.

If the above-identified Examiner's Action is a final Action, and if the above-identified application will be abandoned without further action by applicants, applicants file a Notice of Appeal to the Board of Appeals and Interferences appealing the final rejection of the claims in the above-identified Examiner's Action. Please charge deposit account 09-0468 any fee necessary to enter such Notice of Appeal.

IBM Corporation
Intellectual Property Law Dept.
P.O. Box 218

Yorktown Heights, N.Y. 10598
(914) 945-3216

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of
J. Bednorz et al. : Date: May 14, 1998

Serial No.: 08/303,561 : Group Art Unit: 1105
Filed: September 9, 1994
Examiner: D. McGinty
For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, AND METHODS FOR THEIR USE AND PREPARATION

AFFIDAVIT UNDER 37 C.F.R. 1.132

Commissioner of Patents and Trademarks
Washington, D. C. 20231

Sir:
I, Chang C. Tsuei, being duly sworn, do hereby depose and state

That I received a B. S. degree in Mechanical Engineering from National Taiwan University (1960) and M. S. and PhD. degrees, in Material Science $(1963,1966)$ respectively from California Institute of Technology.

That I have worked as a research staff member and manager in the physics of superconducting, amorphous and structured materials at the Thomas Watson Research Center of the International Business Machines Corporation in Yorktown Heights, New York from 1973 to the present. (See attached Exhibit A for other professional employment history.)

That I have worked in the fabrication of and characterization of superconductors and related materials from 1973 to the present.

That I have reviewed the above-identified patent application and acknowledge that it represents the work of Bednorz and Muller, which is generally recognized as the first discovery of YO987-074BY
superconductivity above $26^{\circ} \mathrm{K}$ and that subsequent developments in this field have been based on this work.

That all the high temperature superconductors which have been developed based on the work of Bednorz and Muller behave in a similar manner, conduct current in a similar manner and have similar magnetic properties.

That once a person of skill in the art knows of a specific transition metal oxide composition which is superconducting above $26^{\circ} \mathrm{K}$, such a person of skill in the art, using the techniques described in the above-identified patent application, which includes all known principles of ceramic fabrication known at the time the application was filed, can make the transition metal oxide compositions encomposed by the claims in the above identified application, without undue experimentation or without requiring ingenuity beyond that expected of a person of skill in the art. This is why the work of Bednorz and Muller was reproduced so quickly after their discovery and why so much additional work was done in this field within a short period of their discovery.

Sworn to before me this $12^{-t h}$ day of May. 1998°

Notary Public

Education

California Institute of Technology, M.S. (1963), Ph.D. (1966)
National Taiwan University, B.S. (1960)

Professional Employment

1993 - present - Research Staff Member
1983-1993 - Manager, Physics of Structured Materials
1979-1983 - Manager, Physics of Amorphous Materials
1974-1975 - Acting Manager, Superconductivity
1973-1979 - Research Staff Member

Harvard University: 1980 (Summer)
Visiting Scholar in Applied Physics

Stanford University: 1982 (Sept.) - 1983 (April)
Visiting Scholar in Applied Physics

California Institute of Technology
1972-1973 - Senior Research Associate in Applied Physics
1969-1972 - Senior Research Fellow in Materials Science
1966-1969 - Research Fellow in Materials Science

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of J. Bednorz et al. Date: May 14, 1998
Serial No.: $\quad 08 / 303,561$ Group Art Unit: 1105
Filed: September 9, 1994

Examiner: D. McGinty

For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, AND METHODS FOR THEIR USE AND PREPARATION

AFFIDAVIT UNDER 37 C.F.R. 1.132

Commissioner of Patents and Trademarks
Washington, D. C. 20231

Sir:
I, Timothy Dinger, being duly sworn, do hereby depose and state:

That I received a B. S. degree in Ceramic Engineering (1981) from New York State College of Ceramics, Alfred University, an M. S. degree (1983) and a PhD. degree (1986), both in Material Science from the University of California at Berkley.

That I have worked as a research staff member in Material Science at the Thomas Watson Research Center of the International Business Machines Corporation in Yorktown Heights, NY from 1986 to the present.

That I have worked in the fabrication of and characterization of superconductors and related materials from 1987 to 1991.

That I have reviewed the above-identified patent application and acknowledge that it represents the work of Bednorz and Muller, which is generally recognized as the first discovery of
superconductivity above $26^{\circ} \mathrm{K}$ and that subsequent developments in this field have been based on this work

That all the high temperature superconductors which have been developed based on the work of Bednorz and Muller behave in a similar way, conduct current in a similar manner and have similar magnetic properties.

That once a person of skill in the art knows of a specific transition metal oxide composition which is superconducting above $26^{\circ} \mathrm{K}$, such a person of skill in the art, using the techniques described in the above-identified patent application, which includes all known principles of ceramic fabrication known at the time the application was filed, can make the transition metal oxide compositions encomposed by the claims in the above identified application, without undue experimentation or without requiring ingenuity beyond that expected of a person of skill in the art. This is why the work of Bednorz and Muller was reproduced so quickly after their discovery and why so much additional work was done in this field within a short period of their discovery.

Sworn to before me this
 day of \qquad 1998

[^37]SANDRA M. EMMA
Notary Public, State of Now York
No. O1PO4936290
In Westchester County of 98
Commission Expires July 5,19 /

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of
 J. Bednorz et al. : Date: May 14, 1998
 Serial No.: 08/303,561 : Group Art Unit: 1105
 Filed: September 9, 1994 : Examiner: D. McGinty
 For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, AND METHODS FOR THEIR USE AND PREPARATION

AFFIDAVIT UNDER 37 C.F.R. 1.132

Commissioner of Patents and Trademarks
Washington, D. C. 20231

Sir:
I, David B. Mitzi, being duly sworn, do hereby depose and state:

That I received a B. S. E. degree in Electrical Engineering/Engineering Physics (1985) from Princeton University and a PhD. degree, in Applied Physics (1990) from Stanford University, California.

That I have worked as a research staff member in Solid State Chemistry at the Thomas Watson Research Center of the International Business Machines Corporation in Yorktown Heights, NY from 1990 to the present.

That I have worked in the fabrication of and characterization of superconductors and related materials from 1990 to the present.

That I have reviewed the above-identified patent application and that I have reviewed the above-identified patent application and acknowledge that it represents the work of Bednorz and

Muller, which is generally recognized as the first discovery of superconductivity above $26^{\circ} \mathrm{K}$ and that subsequent developments in this field have been based on this work.

That all the high temperature superconductors which have been developed based on the work of Bednorz and Muller behave in a similar manner, conduct current in a similar manner and have similar magnetic properties.

That once a person of skill in the art knows of a specific transition metal oxide composition which is superconducting above $26^{\circ} \mathrm{K}$, such a person of skill in the art, using the techniques described in the above-identified patent application, which includes all know/ principles of ceramic fabrication known at the time the application was filed, can make the transition metal oxide compositions encomposed by the claims in the above identified application, without undue experimentation or without requiring ingenuity beyond that expected of a person of skill in the art. This is why the work of Bednorz and Muller was reproduced so quickly after their discovery and why so much additional work was done in this field within a short period of their discovery.

By:

Sworn to before me this
 day of \qquad May

Notary Public
SANDRA M. EMMA
Notary Public. State of New York
No. 01PO4935290
Commission Expires July 5.19-

ATTACHMENT A

COPPER OXIDE SUPERCONDUCTORS

Charles P. Poole, Jr.
Timir Datta
Horacio A. Farach
with help from
M. M. Rigney
C. R. Sanders
Department of Physics and Astronomy
University of South Carolina
Columbia. South Carolina

WILEY
A Wiley-Interscience Publication
JOHN WILEY \& SONS
New York - Chichester - Brisbane - Toronto - Singapore

PREFACE

The unprecedented worldwide effort in superconductivity research -that has taken place over the past two years has produced an enormous amount of experimental data on the properties of the copper oxide type materials that exhibit superconductivity above the temperature of liquid nitrogen. The time is now ripe to bring together in one place the results of this research effort so that scientists working in this field can better acquire an overall perspective, and at the same time have available in one place a collection of detailed experimental data. This volume reviews the experimental aspects of the field of oxide superconductivity with transition temperatures from 30 K to above 120 K . from the time of its discovery by Bednorz and Müller in April 1986 until a few months after the award of the Nobel Prize to them in October 1987. During this period a consistent experimental description of many of the properties of the principal superconducting compounds such as $\mathrm{BiSrCaCuO}, \mathrm{LaSrCuO}, \mathrm{TIBaCaCuO}$, and $\mathrm{YBa}-$ CuO has emerged. At the same time there has been a continual debate on the extent to which the BCS theory and the electron-phonon interaction mechanism apply to the new materials, and new theoretical models are periodically proposed. We discuss these matters and, when appropriate, make comparisons with transition metal and other previously known superconductors. Many of the experimental results are summarized in figures and tables.

The field of high-temperature superconductivity is still evolving, and some ideas and explanations may be changed by the time these notes appear in print. Nevertheless, it is helpful to discuss them here to give insights into work now in progress, to give coherence to the present work, and to provide guidance for future work. It is hoped that in the not too distant future the field will settle down enough to permit a more definitive monograph to be written.

The literature has been covered almost to the end of 1987, and some 1988 work has been discussed. This has been an enormous task, and we apologize for any omissions in the citing and discussion of articles.

We wish to thank the following for giving us some advanced notice about their work: R. Barrio, B. Battlogg, L. A. Boatener, G. Burns, J. Drumheller, H. Enomoto, P. K. Gallagher, R. Goldfarb, J. E. Graebner, R. L. Greene, J. Heremans, T. C. Johnson, J. K. Karamas, M. Levy, J. W. Lynn, A. Malozemoff, K. A. Maller, T. Nishino, N. Nucker, J. C. Phillips, R. M. Silver, G. Shirane, J. Stankowski, B. Stridzker, S. Tanigawa, G. A. Thomas, and W. H. Weber. We appreciate comments on the manuscript from S. Alterowitz, C. L. Chien, D. K. Finnamore, J. Goodenough, J. R. Morton, and C. Uher, and helpful discussions with J. Budnick, M. H. Cohen, M. L. Cohen, R. Creswick, S. Deb, M. Fluss, A. Freeman, D. U. Gubser, A. M. Hermann, V. Z. Kresin, H. Ledbetter, W. E. Pickett, M. Tinkham, C. E. Violet, and S. A. Wolf. Support from the University of South Carolina, the Naval Research Laboratory, and the National Science Foundation Grant ISP 8011451 is gratefully acknowledged.

Michael A. Poole helped to develop the computer data storage techniques that were used. Jesse S. Cook is thanked for editorial comments on the manuscript. C. Almasan, S. Atkas, J. Estrada, N. Hong, O. Lopez, M. Mesa, T. Mouzghi, and T. Usher are thanked for their interest in this project.

Charles P. Poole, Jr.
Timir Datta
Horacio A. Farach

Columbia. South Carolina
July 1988

A. INTRODUCTION

Copper oxide superconductors with a purity sufficient to exhibit zero resistivity or to demonstrate levitation (Early) are not difficult to synthesize. We believe that this is at least partially responsible for the explosive worldwide growth in these materials. Nevertheless, it should be emphasized that the preparation of these samples does involve some risks since the procedures are carried out at quite high temperatures, often in oxygen atmospheres. In addition, some of the chemicals are toxic, and in the case of thallium compounds the degree of toxicity is extremely high so ingestion, inhalation, and contact with the skin must be prevented.

The superconducting properties of the copper oxide compounds are quite sensitive to the method of preparation and annealing. Multiphase samples containing fractions with T_{c} above liquid nitrogen temperature (Monec) can be synthesized using rather crude techniques, but really high-grade single-phase specimens require careful attention to such factors as temperature control, oxygen content of the surrounding gas, annealing cycles, grain sizes, and pelletizing procedures. The ratio of cations in the final sample is important, but even more critical and more difficult to control is the oxygen content. However, in the case of the Bi - and Tl -based compounds, the superconducting properties are less sensitive to the oxygen content.

Figure V-1 illustrates how preparation conditions can influence superconducting properties. It shows how the calcination temperature, the annealing time, and the quenching conditions affect the resistivity drop at T_{c} of a $\mathrm{BiSrCa}-$ CuO pellet, a related copper-enriched specimen, and an aluminum-doped coun-

60
PREPARATION AND CHARACTERIZATION OF SAMPLES

Fig. V-1. Effects of heat treatments on the resistivity transition of $\mathrm{BiSrCaCuO}_{7 \downarrow}$ b) calcined at $860^{\circ} \mathrm{C},(b)$ calcined at $885^{\circ} \mathrm{C}$, (c) calcined at $901^{\circ} \mathrm{C},(d)$ aluminum-dopod sample calcined at $875^{\circ} \mathrm{C}$, prolonged annealing, (e) copper-rich sample calcined a $860^{\circ} \mathrm{C},(f)$ aluminum-doped sample calcined at $885^{\circ} \mathrm{C}$, slow quenching and (g) calined at $885^{\circ} \mathrm{C}$, prolonged annealing, and slow quenching (ChuzS).
terpart (Chuz5). These samples were all calcined and annealed in the same temperature range and air-quenched to room temperature.

Polycrystalline samples are the easiest to prepare, and much of the early wotk was carried out with them. Of greater significance is work carried out with thim films and single crystals, and these require more specialized preparation teth niques. More and more of the recent work has been done with such samples.

Many authors have provided sample preparation information, and other have detailed heat treatments and oxygen control. Some representative toct niques will be discussed.

The beginning of this chapter will treat methods of preparing bulk superoosducting samples in general, and then samples of special types such as thin funs and single crystals. The remainder of the chapter will discuss ways of checking the composition and quality of the samples. The thermodynamic or subsolidus phase diagram of the ternary Y-Ba-Cu oxide system illustrated in Fig. V-2 $200-$ tains several stable stoichiometric compounds such as the end-point orides $\mathrm{Y}_{2} \mathrm{O}_{3}, \mathrm{BaO}$, and CuO at the apices, the binary oxides stable at 950°, ($\mathrm{Ba} 3 \mathrm{CuO}, 4$. $\mathrm{Ba}_{2} \mathrm{CuO}_{3}, \mathrm{BaCuO}_{2}, \mathrm{Y}_{2} \mathrm{Cu}_{2} \mathrm{O}_{5}, \mathrm{Y}_{4} \mathrm{Ba}_{3} \mathrm{O}_{9}, \mathrm{Y}_{2} \mathrm{BaO}_{4}$, and $\left(\mathrm{Y}_{2} \mathrm{Ba}_{4} \mathrm{O}_{7}\right)$, along the edges, and ternary oxides such as ($\mathrm{YBa}_{3} \mathrm{Cu}_{2} \mathrm{O}_{7}$), the semiconducting green phase $\mathrm{Y}_{2} \mathrm{BaCuO}_{5}$, and the superconducting black solid $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7-6}$ in the interio (Beye2, Bour3, Capo1, Eag11, Frase, Hosoy, Jone1, Kaise, Kurth. Kumu. Leez3, Lian1, Mali1, Schni, Schn1, Schu1, Takay, Torra, Wagne). Compounds in parentheses are not on the figure, but are reported by other workers. The existence of a narrow range of solid solution was reported (Panso), and thee argued against (Wagne) by the same group.

ransition of $\mathrm{BiSrCaCuO}_{7-\delta}$ (a) t $901^{\circ} \mathrm{C}$, (d) aluminum-doped 'pper-rich sample calcined at ow quenching and (g) calcined 125).
annealed in the same temre.
ind much of the early work work carried out with thin :cialized preparation techdone with such samples. 1 information, and others Some representative tech-
preparing bulk superconial types such as thin films I discuss ways of checking modynamic or subsolidus Ilustrated in Fig. V-2 conas the end-point oxides itable at $950^{\circ},\left(\mathrm{Ba}_{3} \mathrm{CuO}_{4}\right)$, nd ($\mathrm{Y}_{2} \mathrm{Ba}_{4} \mathrm{O}_{7}$), along the miconducting green phase $3 \mathrm{a}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7-8}$ in the interior 1, Kaise, Kurth, Kuzzz, rra, Wagne). Compounds :d by other workers. The sorted (Panso), and then

METHODS OF PREPARATION
61

Compound	Slowly cooled to room temperature
$123 \cdot \mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{65+\delta}$	O_{7}
$143-\mathrm{YBa}_{6} \mathrm{Cu}_{3} \mathrm{O}_{8.5+\delta}$	O_{9}
$385-\mathrm{Y}_{3} \mathrm{Ba}_{8} \mathrm{Cu}_{5} \mathrm{O}_{175+\delta}$	O_{18}
$152 \cdot \mathrm{YBa}_{5} \mathrm{Cu}_{2} \mathrm{O}_{8.5+\delta}$	O_{9}
$211-\mathrm{Y}_{2} \mathrm{BaCuO}_{5}$	
$\mathrm{Ba}_{2} \mathrm{CuO}_{3+\delta}$	O_{33}

Fig. V-2. Ternary phase diagram of the $\mathrm{Y}_{2} \mathrm{O}_{3}-\mathrm{BaO}-\mathrm{CuO}$ system at $950^{\circ} \mathrm{C}$. The green phase $\left[\mathrm{Y}_{2} \mathrm{BaCuO}_{5}\right.$, (211)] the superconducting phase $\left[\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7-\delta}\right.$, (123)], and three other compounds are shown in the interior of the diagram (DeLee).

B. METHODS OF PREPARATION

In this section three methods of preparation will be described, namely, the solid state, the coprecipitation, and the sol-gel techniques (Hatfi). The widely used solid-state technique permits off-the-shelf chemicals to be directly calcined into superconductors, and it requires little familiarity with the subtle physicochemical processes involved in the transformation of a mixture of compounds into a superconductor. The coprecipitation technique mixes the constituents on an atomic scale and forms fine powders, but it requires careful control of the pH and some familiarity with analytical chemistry. The sol-gel procedure requires more competence in analytical procedures.

In the solid-state reaction technique one starts with oxygen-rich compounds of the desired components such as oxides, nitrates, or carbonates of $\mathrm{Ba}, \mathrm{Bi}, \mathrm{La}$, $\mathrm{Sr}, \mathrm{TI}, \mathrm{Y}$, or other elements. Sometimes nitrates are formed first by dissolving oxides in nitric acid and decomposing the solution at $500^{\circ} \mathrm{C}$ before calcination
(e.g., Davis, Holla, Kelle). These compounds are mixed in the desired atomic ratios and ground to a fine powder to facilitate the calcination process. Then these room-temperature-stable salts are reacted by calcining for an extended pe$\operatorname{riod}\left(\approx 20 \mathrm{hr}\right.$) at elevated temperatures ($\approx 900^{\circ} \mathrm{C}$). This process may be repeated several times, with pulverizing and mixing of the partially calcined material at each step. As the reaction proceeds, the color of the charge changes. The process usually ends with a final oxygen anneal followed by a slow cool down to room temperature of the powder, or pellets made from the powder, by sintering in a cold or hot press. Sintering is not essential for the chemical process, but for transport and other measurements it is convenient to have the material pelletized. A number of researchers have provided information on this solid-state reaction approach (e.g., Allge, Finez, Galla, Garla, Gopal, Gubse, Hajk1, Hatan, Herrm, Hika1, Hirab, Jayar, Maenl, Mood1, Mood2, Neume, Poepp, Polle, Qadri, Rhyne, Ruzic, Saito, Sait1, Sawa1, Shamo, Takit, Tothz, Wuzz3).

Some of the earlier works on foils, thick films, wires, or coatings employed a suspension of the calcined powder in a suitable organic binder, and the desired product was obtained by conventional industrial processes such as extruding, spraying, or coating.

In the second or coprecipitation process the starting materials for calcination are produced by precipitating them together from solution (e.g., Asela, Bedno, Leez7, Wang2). This has the advantage of mixing the constituents on an atomic scale. In addition the precipitates may form fine powders whose uniformity can be controlled, which can eliminate some of the labor. Once the precipitate has been dried, calcining can begin as in the solid-state reaction procedure. A disadvantage of this method, at least as far as the average physicist or materials scientist is concerned, is that it requires considerable skill in chemical procedures.

Another procedure for obtaining the start-up powder is the sol-gel technique in which an aqueous solution containing the proper ratios of Ba, Cu, and Y nitrates is emulsified in an organic phase and the resulting droplets are gelled by the addition of a high-molecular-weight primary amine which extracts the nitric acid. This process was initially applied to the La materials, but has been perfected for YBaCuO as well (Cimaz, Hatfi).

When using commercial chemical supplies to facilitate the calcination process a dry or wet (acetone) pregrinding with an agate mortar and pestle or a ball mill is recommended. Gravimetric amounts of the powdered precursor materials are thoroughly mixed and placed in a platinum or ceramic crucible. Care must be taken to ensure the compatibility of the ceramic crucible with the chemicals to obviate reaction and corrosion problems.

Complete recipes for the YBa* material have been described (e.g., Gran2). Typically, the mixture of unreacted oxides is calcined in air or oxygen around $900^{\circ} \mathrm{C}$ for 15 hr . During this time the YBaCuO mixture changes color from the green $\mathrm{Y}_{2} \mathrm{BaCuO}_{5}$ phase to the dark gray $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7-\delta}$ compound. Then the charge is taken out, crushed, and scanned with X rays to determine its purity. If warranted by the powder pattern X-ray scan, the calcination process is repeated. Often, at this stage the material is very oxygen poor, and electrically it is semi-

Filing: \boldsymbol{p}^{2} and Amendment Under Rule 37CFR 1.129(a), Certificate of Mailing

PLEASE STAMP \& RETURN TO US

in re applioation of:...J. Bednorz et al.
For: NEW SUPERCONDUCTOR COMPOUNDS HAVING HIGH TRANSITION ...
Cerial NoQ8/303,561 ; Docket No.:Y0987-074BY Atty.: DPM
Received in the U.S. Patent \& Trademark Office: \qquad
No. of pages of specifleation \qquad : No. of pagea of clailat
Wo. Di shasta of drawlngs: \qquad
Declarazion is attached to enocification.
all fees are charged to our Account No. 09-0468

Filing: $\boldsymbol{R}^{\text {Patation }}$ and Amendment Under Rule 37CFR 1.129(a), Certificate of Mailing

In re application of: J. Bednorz et al.
For: NEW SUPERCONDUCTOR COMPOUNDS HAVING HIGH TRANSITION ...
©orial NoQ8/303,561 : Docket No.: Y0987-074BY Atty.: DPM
Received in thefJ. S. Patent \& Trademark Office: \qquad
No. of pasesfor specitiostion__ No. of pages of claing -

No. of soests of drawings: \qquad
Declararisa is attached to enecification.
all fees are charged to our Acoount No. 09-0468

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of:
J. Bednorz et al.

Serial No.: 08/303,561
Filed: September 9, 1994
For: NEW SUPERCONDUCTOR COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, AND METHODS FOR THEIR USE AND PREPARATION

Commissioner of Patents and Trademarks
Washington, D.C. 20231

CERTIFICATE OF MAILING UNDER 37 CFR 1.8(a)

I hereby certify that the attached correspondence comprising:

Petition and Amendment Under Rule 37 CFR 1.129(a) Acknowledgement Card
is being deposited with the United States Postal Service as first class mail in an envelope addressed to:

Commissioner of Patents and Trademarks Washington, DC 20231
\qquad
on April 27, 1998

Daniel P. Morris

(Signature of person mailing paper)

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: J. Bednorz et al.
Serial No.: 08/303,561
Filed: September 9, 1994

Date: November 28, 1997
Group Art Unit: 1105

Examiner: D. McGinty

For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, AND METHODS FOR THEIR USE AND PREPARATION

The Commissioner of Patents and Trademarks
Washington, D.C. 20231

Submission after final rejection under 37 CFR 1.129 (a)

In response to the final rejection dated August 27, 1997 please consider the fillowing:
 amendment attached herewith.

Registration No. 32, 053

AMENDMENT

Sir:

In response to the Office Action dated September 27, 1997 please consider the following:

IN THE CLAIMS

129. (Added) A method comprising providing a composition having a transition temperature greater than $26^{\circ} \mathrm{K}$, the composition including a rare earth or alkaline earth element, a transition metal element capable of exhibiting multivalent states and oxygen, including at least one phase that exhibits superconductivity at temperature in excess of $26^{\circ} \mathrm{K}$, maintaining said composition at said temperature to exhibit said superconductivity and passing an electrical superconducting current through said composition while exhibiting said superconductivity.
130. (Added) A method comprising providing a superconducting transition metal oxide having a superconductive onset temperature greater than $26^{\circ} \mathrm{K}$, maintaining said superconducting transition metal oxide being at a temperature less than said superconducting onset temperature and flowing a superconduting current therein.
131. (Added) A method comprising providing a superconducting copper oxide having a superconductive onset temperature greater than $26^{\circ} \mathrm{K}$, maintaing said superconducting copper oxide at a temperature less than said superconducting onset temperature and flowing a superconduting current therein.
132. (Added) A method comprising providing a superconducting oxide composition having a superconductive onset temperature greater than $26^{\circ} \mathrm{K}$, maintaining said superconducting copper oxide at a temperature less than said superconducting onset temperature and flowing a superconduting current therein, said composition comprising at least one each of rare earth, an alkaline earth, and copper.
133. (Added) A method comprising providing a superconducting oxide composition having a superconductive onset temperature greater than $26^{\circ} \mathrm{K}$, maintianing said superconducting copper oxide at a temperature less than said superconducting onset temperature and flowing a superconduting current therein, said composition comprising at least one each of a group IIIB element, an alkaline earth, and copper.
134. (Added) A method comprising flowing a superconducting current in a transition metal oxide having a T_{c} greater than $26^{\circ} \mathrm{K}$.
135. (Added) A method comprising flowing a superconducting current in a copper oxide having a T_{c} greater than $26^{\circ} \mathrm{K}$.

136(Added). A method comprising the steps of:
forming a composition of the formula $\mathrm{Ba}_{\mathrm{x}} \mathrm{La} \mathrm{a}_{\mathrm{x}, 5}, \mathrm{Cu} 50 \mathrm{Y}$, wherein x is from about 0.75 to about 1 and y is the oxygen deficiency resulting from annealing said composition at temperatures from about $540^{\circ} \mathrm{C}$ to about $950^{\circ} \mathrm{C}$ and for times of about 15 minutes to about 12 hours, said composition having a metal oxide phase which exhibits a superconducting state at a critical temperature in excess of $26^{\circ} \mathrm{K}$; maintaining the temperature of said composition at a temperature less than said critical temperature to induce said superconducting state in said metal oxide phase; and passing an electrical current through said composition while said metal oxide phase is in said superconducting state.
137. (Added) A method comprising flowing a superconducting current in a composition of matter having a T_{c} greater than $26^{\circ} \mathrm{K}$, said composition comprising at least one each of a IIIB element, an alkaline earth, and copper oxide.
138. (Added) A method comprising flowing a superconducting current in a composition of matter having a T_{c} greater than $26^{\circ} \mathrm{K}$, said composition comprising at least one each of a rare earth, an alkaline earth, and copper oxide.
139. (Added) A method comprising flowing a superconducting current in a composition of matter having a T_{C} greater than $26^{\circ} \mathrm{K}$, said composition comprising at least one each of a rare earth, and copper oxide.
140. (Added) A method comprising flowing a superconducting current in a composition of matter having a T_{c} greater than $26^{\circ} \mathrm{K}$ carrying, said composition comprising at least one each of a IIIB element, and copper oxide.
141. (Added) A method comprising flowing a superconducting current in a transition metal oxide comprising a $T_{c}>26^{\circ} \mathrm{K}$.
142. (Added) A method comprising flowing a superconducting current in a copper oxide comprising a $\mathrm{TC}>26^{\circ} \mathrm{K}$.

REMARKS

Claim 129-142 are added.

Claim Rejections - 35 USC § 112

The specification has been objected to under 35 U.S.C. § 112, first paragraph, as failing to provide an enabling disclosure commensurate with the scope of the claims.

Applicants respectfully disagree for the reasons given below.

The Examiner states that "[t]he present specification is deemed to be enabled only for compositions compositions comprising $\mathrm{Ba}_{\mathrm{x}} \mathrm{La}_{5-\mathrm{x}} \mathrm{Cu5O}_{y}$." Applicants respectfully disagree. Applicants are not claiming a composition of matter or a method of forming a composition of matter. Applicants are claiming a method of flowing or passing a superconducting current through a high Tc superconducting material.

The Examiner further states that "[t]he art of high temperature (above $30^{\circ} \mathrm{K}$) superconductors is an extremely unpredictable one. Small changes in composition can result in dramatic changes in or loss of superconducting properties." Applicants' claims are not directed to a composition of matter. Applicatnts' claims are directed to an a superconducting current flowing therein or caarying a superconducting current. The superconducting component is a transition metal oxide. Applicants discovered that transition metal oxides have superconducting onset or transition temperatures greater than $26^{\circ} \mathrm{K}$. Applicants have enabled what they have discovered and claimed. The

Examiner's statement that "[s]mall changes in composition can result in dramatic changes in or loss of superconducting properties." has not been supported by any evidence not contained within applicants' teaching. Any teaching by applicants about the amounts of constituent and processing steps is part of applicants' enabling discolosure.

The Examiner further states that " $[t]$ he amount and type of examples necessary to support broad claims increases as the predictability of the art decreases." Once applicants discovered that transition metal oxides were superconducting at temperatures greater than $26^{\circ} \mathrm{K}$.; it was within the skill of the art to apply applicants teaching to use other specific examples of transition metal oxide compounds for the methods claimed. The Examiner has not shown by evidence not contained within applicants teaching that the art of high TC superconductors is unprdictable in view of applicants' teaching.

The Examiner further states that "[c]laims broad enough to cover a large number of compositions that do not exhibit the desired properties fail to satisfy the requirements of 35 USC 112." The Examiner has not shown that the claims are broad enough to cover a large number of compositions that fail. Again the Examiner is applying an incorrect standard. The Examiner is applying a standard applicable to composition of matter. Applicants are not claiming a composition of matter. As shown by applicants prior comments applicants have in fact fully enabled the composition of matter. Therefore,
applicants have provided excess enablement for the claimed invention. The standard of enablement for a method of use is not the same as the standard of enablement for a composition of matter. Notwithstanding, it is well settled law that claims to a composition of matter can encompass a number of inoperable species. Applicants' claims do not cover inoperable species. The claims only encompass methods of flowing a superconducting current in transition metal oxides that are superconducting at temperatures in excess of $26^{\circ} \mathrm{K}$. Those transition metal oxides that are not superconducting at temperatures in excess of $26^{\circ} \mathrm{K}$ are not encompassed by applicants claims reciting these limitations. Applicants note that a claim to a composition of matter is dominant to any use of that composition of matter and claims directed to a method of use of a composition of matter are necessarily of narrower scope than claims to the composition of matter. Applicants' claims do not encompass uses other than those to which the claims are limited to by the use limitations recited in the claims. Applicants' claims are directed to what they have discovered. Therefore, applicants' claims fully satisfy the requirements of 35 USC 112.

The Examiner further states that "[m]erely reciting a desired result does not overcome this failure." Applicants' claims do not "merely recite a desired result". Some claims recite flowing or passing passing a superconducting current through the material.

Other claims recite "a superconducting current flowing " or "carrying a superconducting current" . This is not " a desired result", but an actual action occuring. If an apparatus, structure, device or invention is made with material that is not superconducting at temperatures in excess of $26^{\circ} \mathrm{K}$, such mehtods, apparatus,
structure, device or invention will not be encompassed by the method claims reciting this limitation. Again applicants' claims are not directed to a chemical composition.

The Examiner further states "[i]n particular, the question arises: Will any layered perovskite material containing copper exhibit superconductivity?" The claims do not cover "any layered perovskite". The claims do not cover a material. The claims cover a method of using a material. Only those method, apparatuses, structurers, devices or inventions using the recited methods of the claims are covered by the claims. The Examiner is again applying an incorrect standard, a standard applicable to a chemical composition which is dominant to all uses of the chemical composition. Applicants' note, hovever, that they have fully enabled the compositions.

The Examiner further states "[i]t should be noted that at the time the invention was made, the theoretical mechanism of superconductivity in these materials was not well understood. That mechanism still is not understood." Whether or not this statement is true or not true is of no relevance to applicants claims which are directed to methods usong the compostions. The mechanism does not have to be understood to use the material as claimed by applicants. Applicants have discovered that transition metal oxides are useful passing or flowing superconducting currents therein at temperatures in excess of $26^{\circ} \mathrm{K}$. The Examiners comments, if applicable, are applicable to claims directed to specific chemical compounds but not to applicants claims. Nor would they be applicable to gereric composition claims .

The Examiner further states "[a]ccordingly, there appears to be little factual or theoretical basis for extending the scope of the claims much beyond the proportions and materials actually demonstrated to exhibit high temperature superconductivity." Again this comment is not applicable to claims directed to methods of passing or flowing superconducting currents as claimed. Applicants have discovered that transition metal oxides are superconducting at temperatures in excess of $26^{\circ} \mathrm{K}$ are useful for mehtods as claimed.

The Examiner further states "[a] 'patent is not a hunting license. It is not a reward for the search, but a reward for its successful conclusion' ". Applicants are not claiming specific compounds that they have not described. Applicants are generically and specifically claiming what they have discovered. Thus applicants are not "hunting" for anything. Applicants successful conclusion is their discovery that transition metal oxides are superconducting at temperatures in excess of $26^{\circ} \mathrm{K}$ and can thus be used for methods of passing superconducting currents therein as claimed.

In the discussion in the prosecution of this application applicants have frequently refered to the book "Copper Oxide Superconductors" by Charles P. Poole, Jr., Timir Datta and Horacio A. Farach, John Wiley \& Sons (1988). This book shall be referred to herein as Poole et al.. The preface of this book says " $[t]$ his volume reviews the experimental aspects of the field of oxide superconductivity with transition
temperatures from 30 K to above 123 K , from the time of its discovery by Bednorz and Muller in April 1986 until a few months after the award of the Nobel Prize to them in October, 1987." This passage is referring to applicants and their paper referred to at page 6 of applicants' specification. This book acknowledges that applicants are the discovers of the field of high temperature superconductivity. (See Attachment A)

Applicants note that it is generally recognized that it is not difficult to fabricate transition metal oxides and in particular copper metal oxides that are superconductive after the discovery by applicants that transition metal oxides are high Tc superconductors. Chapter 5 of the Poole et al. book entitled Preparation and Characterization of Samples" states at page 59 "[c]opper oxide superconductors with a purity sufficient to exhibit zero resistivity or to demonstrate levitation (Early) are not difficult to synthesize. We believe that this is at least partially responsible for the explosive worldwide growth in these materials. " Poole et al. further states at page 61 " $[i] n$ this section three methods of preparation will be described, namely, the solid state, the coprecipitation , and the sol-gel techniques (Hatfi). The widely used solid-state technique permits off-the-shelf chemicals to be directly calcined into superconductors, and it requires little familiarity with the subtle physicochemical process involved in the transformation of a mixture of compounds into a superconductor." Poole et al. further states at pages 61-62 "[i]n the solid state reaction technique one starts with oxygen- rich compounds of the desired components such as oxides, nitrates or carbonates of $\mathrm{Ba}, \mathrm{Bi}, \mathrm{La} \mathrm{Sr}, \mathrm{TI}, \mathrm{Y}$, or other elements. ... These compounds are mixed in the desired atomic ratios and
ground to a fine powder to facilitate the calcination process. Then these room-temperature-stabile salts are reacted by calcination for an extended period (~ 20 $\mathrm{hr})$ at elevated temperatures $\left(\sim 900^{\circ} \mathrm{C}\right)$. This process may be repeated several times, with pulverizing and mixing of the partially calcined material at each step." This is generally the same as the specific examples provided by applicants and as generally described at pages 8 , line 19 , to page 9 , line 5 , of applicants' specification which states "The methods by which these superconductive compositions can be made can use known principles of ceramic fabrication, including the mixing of powders containing the rare earth or rare earth-like, alkaline earth, and transition metal elements, coprecipitation of these materials, and heating steps in oxygen or air. A particularly suitable superconducting material in accordance with this invention is one containing copper as the transition metal." (See Attachment A)

Consequently, applicants have fully enabled high T_{C} transition metal oxides and their claims.

In view of the changes to the claims and the remarks herein, the Examiner is respectfully requested to reconsider the above-identified application. If the Examiner wishes to discuss the application further, or if additional information would be required, the undersigned will cooperate fully to assist in the prosecution of this application.

Please charge any fee necessary to enter this paper to deposit account 09-0468.

If the above-identified Examiner's Action is a final Action, and if the above-identified application will be abandoned without further action by applicants, applicants file a Notice of Appeal to the Board of Appeals and Interferences appealing the final rejection of the claims in the above-identified Examiner's Action. Please charge deposit account 09-0468 any fee necessary to enter such Notice of Appeal.

IBM Corporation
Intellectual Property Law Dept.
P.O. Box 218

Yorktown Heights, N.Y. 10598
(914) 945-3216
\bullet

ATTACHMENT A

COPPER OXIDE SUPERCONDUCTORS

Charles P. Poole, Jr.
Timir Datta
Horacio A. Farach

with help from
M. M. Rigney
C. R. Sanders

Department of Physics and Astronomy
University of South Carolina
Columbia, South Carolina

WILEY
A Wiley-Interscience Publication JOHN WILEY \& SONS
New York - Chichester - Brisbane - Toronto - Singapore

PREFACE

The unprecedented worldwide effort in superconductivity research-that has taken place over the past two years has produced an enormous amount of experimental data on the properties of the copper oxide type materials that exhibit superconductivity above the temperature of liquid nitrogen. The time is now ripe to bring together in one place the results of this research effort so that scientists working in this field can better acquire an overall perspective, and at the same time have available in one place a collection of detailed experimental data. This volume reviews the experimental aspects of the field of oxide superconductivity with transition temperatures from 30 K to above 120 K , from the time of its discovery by Bednorz and Müller in April 1986 until a few months after the award of the Nobel Prize to them in October 1987. During this period a consistent experimental description of many of the properties of the principal superconducting compounds such as $\mathrm{BiSrCaCuO}, \mathrm{LaSrCuO}, \mathrm{TiBaCaCuO}$, and YBa CuO has emerged. At the same time there has been a continual debate on the extent to which the BCS theory and the electron-phonon interaction mechanism apply to the new materials, and new theoretical models are periodically proposed. We discuss these matters and, when appropriate, make comparisons with transition metal and other previously known superconductors. Many of the experimental results are summarized in figures and tables.

The field of high-temperature superconductivity is still evolving, and some ideas and explanations may be changed by the time these notes appear in print. Nevertheless, it is heipful to discuss them here to give insights into work now in progress, to give coherence to the present work, and to provide guidance for future work. It is hoped that in the not too distant future the field will settle down enough to permit a more definitive monograph to be written.

The literature has been covered almost to the end of 1987, and some 1988 work has been discussed. This has been an enormous task, and we apologize for any omissions in the citing and discussion of articles.

We wish to thank the following for giving us some advanced notice about their work: R. Barrio, B. Battlogg, L. A. Boatener, G. Burns, J. Drumheller, H. Enomoto, P. K. Gallagher, R. Goldfarb, J. E. Graebner, R. L. Greene, J. Heremans, T. C. Johnson, J. K. Karamas, M. Levy, J. W. Lynn, A. Malozemoff, K. A. Müller, T. Nishino, N. Nucker, J. C. Phillips, R. M. Silver, G. Shirane, J. Stankowski, B. Stridzker, S. Tanigawa, G. A. Thomas, and W. H. Weber. We appreciate comments on the manuscript from S. Alterowitz, C. L. Chien, D. K. Finnamore, J. Goodenough, J. R. Morton, and C. Uher, and helpful discussions with J. Budnick, M. H. Cohen, M. L. Cohen, R. Creswick, S. Deb, M. Fluss, A. Freeman, D. U. Gubser, A. M. Hermann, V. Z. Kresin, H. Ledbetter, W. E. Pickett, M. Tinkham, C. E. Violet, and S. A. Wolf. Support from the University of South Carolina, the Naval Research Laboratory, and the National Science Foundation Grant ISP 8011451 is gratefully acknowledged.

Michael A. Poole helped to develop the computer data storage techniques that were used. Jesse S. Cook is thanked for editorial comments on the manuscript. C. Almasan, S. Atkas, J. Estrada, N. Hong, O. Lopez, M. Mesa, T. Mouzghi, and T. Usher are thanked for their interest in this project.

Charles P. Poole, Jr.
Timir Datta
Horacio A. Farach

Columbia. South Carolina
July 1988

PREPARATION AND CHARACTERIZATION OF SAMPLES

A. INTRODUCTION

Copper oxide superconductors with a purity sufficient to exhibit zero resistivity or to demonstrate levitation (Early) are not difficult to synthesize. We believe that this is at least partially responsible for the explosive worldwide growth in these materials. Nevertheless, it should be emphasized that the preparation of these samples does involve some risks since the procedures are carried out at quite high temperatures, often in oxygen atmospheres. In addition, some of the chemicals are toxic, and in the case of thallium compounds the degree of toxicity is extremely high so ingestion, inhalation, and contact with the skin must be prevented.

The superconducting properties of the copper oxide compounds are quite sensitive to the method of preparation and annealing. Multiphase samples containing fractions with T_{c} above liquid nitrogen temperature (Monec) can be synthesized using rather crude techniques, but really high-grade single-phase specimens require careful attention to such factors as temperature control, oxygen content of the surrounding gas, annealing cycles, grain sizes, and pelletizing procedures. The ratio of cations in the final sample is important, but even more critical and more difficult to control is the oxygen content. However, in the case of the Bi - and Tl -based compounds, the superconducting properties are less sensitive to the oxygen content.

Figure V-1 illustrates how preparation conditions can influence superconducting properties. It shows how the calcination temperature, the annealing time, and the quenching conditions affect the resistivity drop at T_{c} of a $\mathrm{BiSrCa}-$ CuO pellet, a related copper-enriched specimen, and an aluminum-doped coun-

MPLES rra, Wagne). Compounds :d by other workers. The sorted (Panso), and then
:ansition of $\mathrm{BiSrCaCuO}_{7-\delta}$ (a) i $901^{\circ} \mathrm{C}$, (d) aluminum-doped 'pper-rich sample calcined at ow quenching and (g) calcined :z5).
annealed in the same temre.
ind much of the early work work carried out with thin cialized preparation techcialized preparation tech
done with such samples.
1 information, and others
I information, and others
Some representative tech-
preparing bulk superconial types such as thin films 1 discuss ways of checking
modynamic or subsolidus 1 discuss ways of checking
modynamic or subsolidus llustrated in Fig. V-2 con-
as the end-point oxides itable at $950^{\circ},\left(\mathrm{Ba}_{3} \mathrm{CuO}_{4}\right)$, nd $\left(\mathrm{Y}_{2} \mathrm{Ba}_{4} \mathrm{O}_{7}\right)$, along the niconducting green phase
$\mathrm{sa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7-8}$ in the interior niconducting green phase
$\mathrm{sa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7-8}$ in the interior 1, Kaise, Kurth, Kuzzz,

Compound	Slowty cooled to room temperature
$123-\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{65+8}$	O_{7}
$143-\mathrm{YBa}_{4} \mathrm{Cu}_{3} \mathrm{O}_{85+8}$	O_{9}
$385-\mathrm{Y}_{3} \mathrm{Ba}_{8} \mathrm{Cu}_{5} \mathrm{O}_{175+8}$	O_{18}
$152-\mathrm{YBa}_{5} \mathrm{Cu}_{2} \mathrm{O}_{85+8}$	O_{9}
$211-\mathrm{Y}_{2} \mathrm{BaCuO}_{5}$	
$\mathrm{Ba}_{2} \mathrm{CuO}_{3+6}$	O_{33}

Fig. V-2. Ternary phase diagram of the $\mathrm{Y}_{2} \mathrm{O}_{3}-\mathrm{BaO}-\mathrm{CuO}$ system at $950^{\circ} \mathrm{C}$. The green phase $\left[\mathrm{Y}_{2} \mathrm{BaCuO}_{5}\right.$, (211)] the superconducting phase $\left[\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7-6}\right.$, (123)], and three other compounds are shown in the interior of the diagram (DeLee).

B. METHODS OF PREPARATION

In this section three methods of preparation will be described, namely, the solid state, the coprecipitation, and the sol-gel techniques (Hatfi). The widely used solid-state technique permits off-the-shelf chemicals to be directly calcined into superconductors, and it requires little familiarity with the subtle physicochemical processes involved in the transformation of a mixture of compounds into a superconductor. The coprecipitation technique mixes the constituents on an atomic scale and forms fine powders, but it requires careful control of the pH and some familiarity with analytical chemistry. The sol-gel procedure requires more competence in analytical procedures.

In the solid-state reaction technique one starts with oxygen-rich compounds of the desired components such as oxides, nitrates, or carbonates of $\mathrm{Ba}, \mathrm{Bi}, \mathrm{La}$, $\mathrm{Sr}, \mathrm{Tl}, \mathrm{Y}$, or other elements. Sometimes nitrates are formed first by dissolving oxides in nitric acid and decomposing the solution at $500^{\circ} \mathrm{C}$ before calcination

(e.g., Davis, Mola, Kelle). These compounds are mixed in the desired atomic ratios and ground to a fine powder to facilitate the calcination process. Then these room-temperature-stable salts are reacted by calcining for an extended perood ($\approx 20 \mathrm{hr}$) at elevated temperatures ($\approx 900^{\circ} \mathrm{C}$). This process may be repeated several times, with pulverizing and mixing of the partially calcined material at each step. As the reaction proceeds, the color of the charge changes. The process usually ends with a final oxygen anneal followed by a slow cool down to room temperature of the powder, or pellets made from the powder, by sintering in a cold or hot press. Sintering is not essential for the chemical process, but for transport and other measurements it is convenient to have the material pelletized. A number of researchers have provided information on this solid-state reaction approach (e.g., Allie, Fines, Galla, Garla, Copal, Gubse, Hajk1, Hatan, Herm, Hika1, Hirab, Jayar, Maen1, Mood, Mood, Neume, Poepp, Bole, Qadri, Rhyme, Ruzic, Saito, Sait1, Sawa1, Shamo, Takit, Tothz, Wuzz3).

Some of the earlier works on foils, thick films, wires, or coatings employed a suspension of the calcined powder in a suitable organic binder, and the desired product was obtained by conventional industrial processes such as extruding, spraying, or coating.
In the second or coprecipitation process the starting materials for calcination are produced by precipitating them together from solution (e.g., Asela, Bedno, Leez7, Wang). This has the advantage of mixing the constituents on an atomic scale. In addition the precipitates may form fine powders whose uniformity can be controlled, which can eliminate some of the labor. Once the precipitate has been dried, calcining can begin as in the solid-state reaction procedure. A disadvantage of this method, at least as far as the average physicist or materials scientist is concerned, is that it requires considerable skill in chemical procedures.

Another procedure for obtaining the start-up powder is the sol-gel technique in which an aqueous solution containing the proper ratios of Ba, Cu, and Y nitrates is emulsified in an organic phase and the resulting droplets are gelled by the addition of a high-molecular-weight primary amine which extracts the nitric acid. This process was initially applied to the La materials, but has been perfeted for YBaCuO as well (Cimaz, Hatfi).

When using commercial chemical supplies to facilitate the calcination process a dry or wet (acetone) pregrinding with an agate mortar and pestle or a ball mill is recommended. Gravimetric amounts of the powdered precursor materials are thoroughly mixed and placed in a platinum or ceramic crucible. Care must be taken to ensure the compatibility of the ceramic crucible with the chemicals to obviate reaction and corrosion problems.

Complete recipes for the YBa * material have been described (e.g., Gran). Typically, the mixture of unreacted oxides is calcined in air or oxygen around $900^{\circ} \mathrm{C}$ for 15 hr . During this time the YBaCuO mixture changes color from the green $\mathrm{Y}_{2} \mathrm{BaCuO}_{5}$ phase to the dark gray $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7-\delta}$ compound. Then the charge is taken out, crushed, and scanned with X rays to determine its purity. If warranted by the powder pattern X-ray scan, the calcination process is repeated. Often, at this stage the material is very oxygen poor, and electrically it is semi-

(1) Application number: 67100961.9
(1) InI CI. H01L 39/12
(3) Dale of flling: 23.01 .87
(1) Oato ol publication of application:
27.07.88 Bulletin 88/30
(4) Designated Contracting States: AT BIC CH OIES FR OB OR IT LILUNL SE

Applicant: International Bualness Machines Corporation Old Orcherd 月oad
Armonk. N.Y. 10604(U8)
(3) Inventor: Bednorz, Johannes Oeorg. Dr.
Sonnenbergstrasee 47
CH-8134 AdHawll(CH)
Inventor: Muller, Carl Alexander, Prot.Dr..
Haldenstasse 84
CH-8008 Hedingen(CH)
Invontor: Takashlge, Masaakl, Dr.
Rottarbweg 1
CH. 6803 RUschilikon(CH)
(3) Represontative: Rudack, Qunter O., Olpl.-Ing.
IBM Corporation syumerstrasse 4
$\mathrm{CH}-8003$ RUschilikon(CH)

(5) Now superconductive compounds of the K2NIF4 structural type having a high transition temperature, and method for fabricating same.

[^38]
NIW SUPIRCONDUCTIVI COMPOUNDS OP THE K.NIF, STRUCTI'RAL TVPE HAVINO A HIOH TRANSITION TIMPERATURE, ANO METHOD FON FAORICATINO 8AME

Fiold of the invention
Tho invontion relates to now class of supor. conductors. in particular to components of the K_NiF, lype ol structure having superconductor propertios bolow a relatively high transition comperature. and to a mothod for manulacturing those compounde.

Bs-l yround of the Invention
Superconductivity is usually defined as the complete loss of electrical resistance of a matorial at a well-detinod temperziure. It is known to occur in many materials: About a quarter of the elements and over 1000 alloys and components have been lound to be superconductors. Superconductivily is considered a property of the melallic state of the materal, in that all known superconductors are motellic under the conditions that cause them to uperconduct. A low normally non-metalic matorials. for example, becomo superconductive under very high pressure. the pressure converting them to motals belore they become superconductors.

Superconductors are very attractive for the generation and enorgy-saving transport ol elecirical power over long distances. as materials for forming the coils of strong magnets for use in plasma and nuclear physics. in nuclear resonance modical diagnosis, and in connoction with the magnetic levitation of last trans. Power generation by thermonuclear lusion. for axample. will require very large magnetic fields which can only be provided by superconducting magnets. Cortainly, superconductors will also find application in computers and high-spoed signal processing and dala communication.

While the advantages of superconductors are quite obvious. the common disadvantage of all superconductive materials so far known lies in their very low transition temperature (usually called the critical temperature r_{c}) which is typically on the order of a few degrees Kelvin. The element with the highest T_{c} is niobium (9.2 K), and the highest known T_{c} is about 23 K for $\mathrm{NB}_{3} \mathrm{Ge}$ at ambient pressure.

Accordingly. most known superconductors require liquid hetium for cooling and this. in turn. requires an elaborate technology and as a matter of principle involves a considerable investment in cost and energy.

It is, therelore, an object of the present inven-
tion to propose compositions for high. $T_{\text {B }}$ supercon. ductors and a manulaciuring mothod for producing compounds which exhibit such a high critical tompersture that cooling with liquid hollum is obvieted
s so as to considerably reduce the cost involved and to save eneroy.

The present invention proposes to uso com. pounds having a lajer-type structure of the kind known from potasalum nickel lluoride KiNiFs. This

Iusily. the T_{8} of LadCuO ary with Sr^{2} is higher and is superconductivity-induced diamagnolism largor than that lound with Ba^{2} and Ca

As a matter of lact. only a sinall number of oxides is known to exhibit superconductivily. among them the L.Ti.O system with onsols of superconducivity as high as 13.7 K . as reported by OC. Johnston. H. Prakash. W.H. Zachariason and A. Visvanathan in Mal. Res. Butl 8 (1973) 777 Other known superconduclive oxides include Nb dopod SrTiO_{3} and $\mathrm{BaPb}_{1,[\mathrm{Bl}}^{4} \mathrm{O}$, reported rospec. livoly by A. Baralot and Q Binnig in Physics 1088 (1981) 1'j35. and by A.W. Sloight. J.L. Gilison and FE. Bierstodt in Solid State Commun. 17 (1975) 27.

Tho X-ray analysis conducted wy Johnston of al. revealed the presence in their LI-TH-L zystom of three different crystallographic phases. ons of them, with a spinel struclure, showing the high eritical temperature. The Ba-La-Cu-O systom. 100. exhibits a number of crystallographic phases. namely with mixed-valent copper consttuents which have itinorant oloclionic stales between non-Jahn- Toller Cu^{3} and Jann-Tollor Cu^{2} ions.

This applies likewise to systems where nickel is used in place of copper. with Ni^{3} being ine Jahn-Teller constituent. and Ni^{2} being the non-Jahn-Teller constituent.

The existence of Jahn-Teller polarons is conducting crystals was postulatod theorelically by K.H. Hoock. H. Nickisch and H. Thomas in Helv. Phys. Acta 56 (1983) 237. Polarons have largo electron-phonon interactions and, therefore, are lavorable to the occurrance of superconductivity at high critical lemperatures.

Generally. the Ba-La-Cu-O system. when subfocted to X-ray analysis reveales threo individual crystallographic phases. viz.

- a lirst layer-lype perovskito-like phase, related to the K_NiF\& structure. with the general composition $\mathrm{La}_{2} \mathrm{Ba}_{n} \mathrm{CuO}_{4}$. with $\mathrm{X} \ll 1$ and $\mathrm{y} \geq 0$:
- a second. non-conducting CuO phase; and
- a third, nearly cubic perovskite phase of the general composition $\mathrm{La}_{1 .,} \mathrm{Ba}_{\mathrm{n}} \mathrm{CuO}_{3 . \gamma}$ which appears to be independent of the exact starting composilion.
as has been reported in the paper by J.G. Bednorz and K.A. Müller in Z. Phys. B - Condensed Matter 64 (1986) 189-193. Of these three phases the first one appears to be responsible for the high- T_{s} superconductivity, the critical temperature showing a dependence on the barium concentration in that phase. Obviously. the Ba^{2} substitution causes a mixed-valent state of Cu^{2} and Cu^{3} to preserve charge neutrality. It is assumed that the oxygen deficiency. y. is the same in the doped and undoped crystallites.

Both $\mathrm{La}_{2} \mathrm{CuO}$ and LaCuO_{3} are metallic conduc.
fors at high tomporaturos in the absence of barium. Actually, both are motaie like LaNiO. Dospile their inotatic charscter. the Ba-La-Cu-O tyoo matonals are ceramics. as are the other compounds of the
s AEsTMO. type. and their manulacture more or less follows the known peinciples of coramic tabricalion. The proparation of a Ba-La-Cu-O compound. for example. in accorfance with the prepent invention lypically involvos the following manufacturing

10 sieps:

- Preparing aquoous solulliont of the respective nitrates of bartism. lanthanum and copper and coprecipitation therof in ingir appropriate ratios.
- Aduling the coprecipitate to orallis scid and for-
is ming an intimate mixiure of the respective oxalates.
- Decomposing the procipitato and causing a solid. state reaction by heating the precipitate to a temperature between 500 and $1200^{\circ} \mathrm{C}$ for one 10 aight hours.
30 - Prossing the resulting product at a prossure of about 4 kbar to form pellots.
- Re-heating the pellets to a lemperature betwean 500 and $900^{\circ} \mathrm{C}$ for one half 10 three hours for sintering.

It will be ovident to those skilled in the art that If the partial substitution of the lanthanum by stronflum or catcium is desired, the particular nitrate thereol will have to bo used in place of the bartum nitrate of the example described above. Also. It the copper of this example is to be replaced by another transition metal. the nitrate thereof will obviously have to to employed.

Experiments have shown that the partial contents of tho individual compounds in the starting there is no superconductivity.

With $x=0.1$ at the same $1: 1$ ratio. there is a resistivity drop at the very high critical temperature of 35 K .

With a , (Ba.La) versus Cu ratio of $2: 1$ in tho starting composition. thi composition of the LajCuO, Ba phase, which was assumod to bo rosponsible for the serconductivity. is imitated. with the result that now only two phases are prosont. the CuO phase not existing. With a bartum content of $x=0.15$. the resistivily drop occises at T_{n} - 26 K.

The mothod for proparing the Ba-La-Cu-O complex involves two hoat frestments for the procipilate at an olevatod temperature for several hours. In the experiments carried out in connection with the presert invention it was lound that bost rosulls were oblainod al $900^{\circ} \mathrm{C}$ for a decomposition and reaction period of 3 hours. and sgaln al $900^{\circ} \mathrm{C}$ for a sintering period of one hour. These values apply to a ralio $1: 1$ compssition as well as 10 a $2: 1$ composition.

For the ratio $2: 1$ composition. a somowhat higher tomperature is permissible owing to the melting puint of the composition being higher in the absence of excess copper oxide. Yot it is not possible by high-temperature treatment to obtain a one-phase compound.

Messurements of the de conducivity were conducted betweon 300 and 4.2 K . For barium-doped samples. for example. with $x<0.3$. at current densities of $0.5 \mathrm{NCm}^{2}$. a high-fomperature motallic behavior with an increase in resistivily at low temperatures was found. At stilt lower temperatures, a sharp drop in resistivity ($>00 \%$) occurred which for higher current densities became partially suppressed. This characteristic drop was studied as a lunction of the annealing conditions, l.e. temperature and oxygen partial pressure. For samples annealed in air, the transition from itinerant to tocalized behavior was not found to bo very pronounced. annealing in a slightly reducing almosphere. however, led to an increase in resistivity and a more pronounced localization effect. At the same lime. the onset of the resistivity drop was shifted towards higher values of the criticat ternperature. Longer annealing limes. however. completely destroy the superconductivity.

Cooling the samples from room temperature. the resistivity data first show a metal-like decrease. At low temperatures. a change to an increase occurs in the case of Ca compounds and for the Basubstituted samples. This increase is followed by a resistivity drop. showing the onset of superconduclivity at $22 \pm 2 \mathrm{~K}$ and $33 \pm 2 \mathrm{~K}$ for the Ca and Ba compounds. respectively. In the Sr compound. the resistivity remains metallic down to the resistivity drop at $40 \leq 1 \mathrm{~K}$. The presence of localization eflects. however. depends strongly on alkaline-earth ion concentration and sample preparation. that is to say. annealing conditions and also on the density which have to be optimized. All samples with low
concontiations of Ca. Sr , and Ba show a strong iendency ; focalization betor the resistivity drop occur.

Apparently. the onsel of the superconduclivity.多e to the orthorhombic-ijtragonal structural phase transition which may be related to the substantial electron-phonon interaction enhanced by the substitution. The alkaline-earth substitution of
the rare oarth motal is closily important, and quito likely creates TM ions with no 0_{0} Jahn- Tollor orbitals. Therefore. The absence of those J.-T. Orbitale. that 1s. J.-T. holes near the Fermi onergy probably plays an important role lor the T_{0} ennancemont.

Claims

1) Superconduclive compound of the RE $_{2}$ TM.O4 type having a transition temperalure above 20 K . wherein the raro earth (RE) is partially substituted by one of more mombers of the alkaline oarth groups of elements (AE). and wherein the oxygen content is adjustod such that the reaulting crystal structure is distortod and comprises a phase of tho general composition RE $_{3 . m} \mathrm{AE}_{4}$ TM. $\mathrm{O}_{4 . y}$, wherein $T M$ represents a transition motal, and $x<0.3$ and $y<$ 0.5 .
2) Compound in accordance with claim 1 . wherein the rare oarth (RE) is lanthanum and the tranarion motal (TM) is copper.
3) Compound in accordance with claim 1. wherein the rare oarth is corium and the transition metal is nickel.
4) Compound in accordance with claim 1. wherein the rare earth is lanthanum and the transition metal is nickel.
5) Compound in accordance with claim 1 . wherein barium is used as partial substitute for the rare earth. with $x<0.3$ and $0.1 \leq y \leq 0.5$.
6) Compound in accordance with claim 1. wheroin calcium is used as a partial substitute for the rare earth. with $x<0.3$ and $0.1 \leq y \leq 0.5$.
7) Compound in accordance with claim 1. wherein strontium is used as a partial substitute tor the rare oarth, with $x<0.3$ and $0.1 \leq y \leq 0.5$.
8) Compound in accordance with claim 1. wherein the rare earth is lanthanum and the transltion motal is chromium.
9) Compound is accordance with claim 1. wherein the rare earth is neodymium and the transition motal is copper.
10) Mothod for making superconductive compounds of the RE I_{3} TM. Os type, with RE being a rare earth. TM being a transition metal, the compounds having a transition temperature above 26 K . comprising the steps of:

- preparing aqueous solutions of the nitrates of the rare earth and transition metal constituents and of one or more of the alkaline earth metals and coprecipitation thereol in their appropriate ratios: - adding the coprecipitate to oxalic acid and forming an intimate mixture of the respective oxalates: - decomposing the precipitate and causing a solidstate reaction by heating the precipitate to a temperature between 500 and $1200^{\circ} \mathrm{C}$ for a period of
time between one and eight hours:
- allowing the resultant powder product to cool:
- proszing the powder it a pressure ol botwoen 2 and 10 kbar to form pellets:
s - re-adjusting the temperature of the pellets to a value berween 500 and $1000^{\circ} \mathrm{C}$ for a period of time between one halt and three hours for sintoring:
- subjecting the pellets to an additional annealing treatment at a lomperature between 500 and 3 hours in a protecied atmosphere permitting the adjusiment of the oxygen content of the final proouct which has a final composition of the form REs. ${ }_{4}$ TM.O4. ${ }_{\text {ary }}$ wheroin $x<0.3$ and $0.1<y<0.5$.
(i) Method in accordance with claim 10. wherein the prolected atmosphere is pure oxygon.

12) Method in accordance with claim 10. wherein the protected almosphere is a reducing azmosphere with an oxygen partial pressure be. tween 10^{\prime} and 10^{5} bur.
13) Method in accordance with claim 10. wherein the decomposition step is performed at a temperature o! $900^{\circ} \mathrm{C}$ for 5 hours, and wherein the annealing stop is pertormed at a temperature of $800^{\circ} \mathrm{C}$ lor one hour in a reducing atmosphere with an oxygen partial pressure between 10^{\prime} and 10^{5} oar.
14) Method in accordance with claim 10. wherein lanihanum is used as the rare oarth and copper is used as the transition meial, and wherein berium to used to partially substifute for the lanthanum, with $x<0.2$, wherein the decomposition step is pertormed at a temperature of $800^{\circ} \mathrm{C}$ for 5 hours. and wherein the annealing step is performed
33^{\prime} in a reducing almosphere with an oxygon partial pressure on the order of 10^{3} bar and al a lemperature of $800^{\circ} \mathrm{C}$ for one hour.
15) Mothod in accordance with claim 10. wherein lanthanum is used as the raro oarth and nickel is used as the transition metal. and wherein barium is used to partially substituto for the tanthanum. with $x<0.2$. wherein the decomposition step is performed at a temperature of $900^{\circ} \mathrm{C}$ for 5 hours, and wherein the annealing step is pertormed in a reducing atmosphere with an oxygen partial pressure on the order of 10^{3} bar and at a temperature of $900^{\circ} \mathrm{C}$ for one hour.
16) Method in accordance with claim 10. wherein lanthanum is used as the rare earth and copper is used as the transition metal. and wherein caicium is used to partially substitute for the lanthanum, with $x<0.2$. wherein the decomposition step is performed at a temperature of $900^{\circ} \mathrm{C}$ for 5 hours. and wherein the annealing step is performed in a reducing atmosphere with an oxygen partial pressure on the order of 10^{3} bar and at a tem. perature of $900^{\circ} \mathrm{C}$ tor one hour.
17) Mothod in accordance with clam 10. wheroin ianthanum is used as the rare oarth and copper is used as the transition metal, and wherein strontlum is used to partially subatituto for the Ianthanum, with $\times<0.2$, wherein the decomposition stop is pertormed at a iemperature of $900^{\circ} \mathrm{C}$ for 3 hours. and wheroin the annealing step is performed in a reducing atmosphere with an oxygen partial pressure on the order of 10^{3} bar and at a lem. perature of $900^{\circ} \mathrm{C}$ for one hour.
18) Mothod in accordance with claim 10. wherein corlum is used as the rare oarth and nickel is used as the transition motal, and wheroin barium is used to partially substliute for the certum, with x < 0.2. wherein the decomposition step is per18 lormed at a iemperature of $900^{\circ} \mathrm{C}$ for 5 hours, and wherein the annealirg stop is performod in a roducing atmosphere with an oxygon partial prossure on the order of 10^{3} bar and at a temperature of $900^{\circ} \mathrm{C}$ for one hour.

40

45

50

Solid State Physics
 Neil W. Ashcroft
 N. David Mermin
 Cornell University

Theory of SUPERCONDUCTIVITY

 By
M. von Laue

Kaiser-Wilhelm-Institut für physikalische und Elektro-Chemie
Berlin-Dahlem

Translated by
LOTHAR MEYER
University of Chicago, Chicago, Illinois
and
WILlilam Band
The State College of Washington, Pullman, Washington

ACADEMIC PRESS INC., PUBLISHERS
New York, 1952

$$
\therefore \quad \partial p \mu c Q_{4} D
$$

COPPER OXIDE SUPERCONDUCTORS

Charles P. Poole, Jr. Timir Datta Horacio A. Farach

with help from

M. M. Rigney

C. R. Sanders

Department of Physics and Astronomy
University of South Carolina
Columbia, South Carolina

WILEY
A Wiley-Interscience Publication
JOHN WHEY \& SONS
New York - Chichester - Brisbane - Toronto - Singapore

PREFACE

The unprecedented worldwide effort in superconductivity research that has taken place over the past two years has produced an enormous amount of experimental data on the properties of the copper oxide type materials that exhibit superconductivity above the temperature of liquid nitrogen. The time is now ripe to bring together in one place the results of this research effort so that scientists working in this field can better acquire an overall perspective, and at the same time have available in one place a collection of detailed experimental data. This volume reviews the experimental aspects of the field of oxide superconductivity with transition temperatures from 30 K to above 120 K , from the time of its discovery by Bednorz and Müller in April 1986 until a few months after the award of the Nobel Prize to them in October 1987. During this period a consistent experimental description of many of the properties of the principal superconducting compounds such as $\mathrm{BiSrCaCuO}, \mathrm{LaSrCuO}, \mathrm{TIBaCaCuO}$, and $\mathrm{YBa}-$ CuO has emerged. At the same time there has been a continual debate on the extent to which the BCS theory and the electron-phonon interaction mechanism apply to the new materials, and new theoretical models are periodically proposed. We discuss these matters and, when appropriate, make comparisons with transition metal and other previously known superconductors. Many of the experimental results are summarized in figures and tables.

The field of high-temperature superconductivity is still evolving, and some ideas and explanations may be changed by the time these notes appear in print. Nevertheless, it is helpful to discuss them here to give insights into work now in progress, to give coherence to the present work, and to provide guidance for future work. It is hoped that in the not too distant future the field will settle down enough to permit a more definitive monograph to be written.
in the bulk state, and also some that only become superconducting in thin films, under pressure, or after irradiation. This figure gives the transition temperature T_{c}, the Debye temperature θ_{D}, the Sommerfeld constant or normal state electronic specific heat constant γ from the expression $C_{\mathrm{n}}=\gamma \mathrm{T}$, the electronphonon coupling constant λ (cf. Section IV-B-1), and the density of states $N\left(E_{\mathrm{F}}\right)$ at the Fermi level (cf. Sections IV-G and IX-C) for the various superconductors. The columns of the periodic table are labeled with the number of (valence) electrons N_{c} outside of closed shells. Table II-1 lists various properties of some of the transition elements. Figure II-2, which illustrates how T_{c} depends on N_{c}, has two peaks, one near $N_{\mathrm{e}}=5$ and the other near $N_{\mathrm{e}}=7$ (Matt2). Graphs of the specific heat constant γ, the magnetic susceptibility $\chi=M / B$ and the inverse Debye temperature squared $1 / \theta_{\mathrm{D}}{ }^{2}$ exhibit the same dependence on N_{c}, with the $N_{\mathrm{c}}=7$ peak somewhat suppressed in the Debye case (Glads, Vonso).

Among the elements niobium has the highest transition temperature, and perhaps not coincidently it also is a constitutent of higher T_{c} compounds like $\mathrm{Nb}_{3} \mathrm{Ge}$. Niobium has not appeared prominently in the newer oxide superconductors.

Of the transition elements most commonly found in the newer ceramic type superconductors lanthanum is superconducting with a moderately high T_{c} (4.88 K for the α or fcc form and 6.3 for the β or hep form), yttrium becomes superconducting only under pressure ($T_{\mathrm{c}}=2 \mathrm{~K}$ for $110 \leq P \leq 160 \mathrm{kbar}$) and copper is not known to superconduct. Studies of the transition temperature of copper alloys as a function of the copper content have provided an extrapolated value of $T_{c}=6 \times 10^{-10} \mathrm{~K}$ for Cu , which is extremely low. The nontransition elements oxygen and strontium in these compounds do not superconduct, barium only does so under pressure ($T_{\mathrm{c}}=1-5.4 \mathrm{~K}$ for pressures from 55 to 190 kbar), bismuth likewise superconducts only under pressure, and thallium is a superconductor with $T_{c}=2.4 \mathrm{~K}$. Thus the superconducting properties of the elements are not always indicative of the properties of their compounds, although niobium seems to be an exception, as was mentioned above.

C. ALLOYS AND COMPOUNDS

Transition elements combine with a number of other elements to form superconducting materials that sometimes have higher transition temperatures than any of their constituents. These materials may be classified into alloys with the subdivisions solid solutions (with randorn atomic ordering) and intermetallic compounds or intermetallides (ordered crystallographically), and chemical compounds with the subdivisions ordinary compounds, semiconductors, layered compounds, and polymers. The intermetallides and ordinary compounds provide the highest transition temperatures, with solid solutions and layered compounds also moderately high.

These materials tend to be stoichiometric, and T_{c} is often sensitive to it. For example, the gradual approach of $\mathrm{Nb}_{3} \mathrm{Ge}$ to stoichiometry raised its measured T_{c}
$\because \cdot \because$

Fig. II-2. The dependence of T_{c} on the number of valence electrons N_{c} in elements and solid solutions formed by neighboring transition metals. (From Glads, p. 736; see also Hamil and Vonso, pp. 184, 239.)
from 6 to 17 K and finally to 23.2 K . In contrast, there are cases such as $\mathrm{Cr}_{3} \mathrm{Os}$, $\mathrm{Cr}_{3} \mathrm{Ir}, \mathrm{Mo}_{3} \mathrm{Ir}, \mathrm{Mo}_{3} \mathrm{Pt}$, and $\mathrm{V}_{3} \mathrm{Ir}$ in which T_{c} is less composition dependent and the highest value does not occur at the stoichiometric composition. This latter case is quite common among the newer superconductors.

Systematic studies of mixed alloys of neighboring transition elements produce a graph similar to Fig. II-2 with intermediate points filled in and the same two maxima. Matthias interpreted these results in terms of the presence of favorable and unfavorable regions of N_{c} (Matt1). Amorphous alloys only exhibit one maximum for each series. Other properties such as the electronic specific heat factor γ, the magnetic susceptibility χ, the Debye temperature θ_{D}, and the electronphonon coupling constant λ have dependencies on electron concentration quite similar to the T_{c} versus N_{e} graph of Fig. II-2.

The highest transition temperatures of the older superconductors were ob-

78 CRYSTALLOGRAPHIC STRUCTURES

tetragonal phase, and the metal-to-insulator transition occurs at the tetragonal-to-orthorhombic phase boundary $x \approx 0.35$ (Matt7, Sleil).

D. PEROVSKITE-TYPE SUPERCONDUCTING STRUCTURES

In their first report on high-temperature superconductors Bednorz and Müller referred to their samples as "metallic, oxygen deficient . . . perovskite like mixed valent copper compounds." Subsequent work has confirmed that the new superconductors do indeed have these characteristics. In this section we will comment on their perovskite-like aspects.

1. Atom Sizes

In the oxide superconductors Cu replaces the Ti^{4+} ions ($0.68 \dot{\mathrm{~A}}$) of perovskite, and in most cases retains the CuO_{2} layering with two oxygens per copper in the layer. Other cationic replacements tend to be $\mathrm{Bi}, \mathrm{Ca}, \mathrm{La}, \mathrm{Sr}, \mathrm{Tl}$, and Y for the larger Ba , forming "layers" containing only one oxygen or none per cation. We see from the following list of ionic radii

Cu^{2+}	0.72 A
Bi^{5+}	0.74 A
Y^{3+}	$0.94 \dot{\text { A }}$
Tl^{3+}	0.95 A
Bi^{3+}	0.96 A
Ca^{2+}	0.99 A
Sr^{2+}	$1.12 \AA$
La^{3+}	1.14 £
Ba^{2+}	$1.34 \AA$
O^{2-}	$1.32 \AA$

that there are four size groups, with all other cations significantly smaller then the Ba of perovskite. The common feature of CuO_{2} layers that are planar or close to planar establishes a fairly uniform lattice size in the a, b plane. The parameters of the compounds $\mathrm{LaSrCuO}(a=b=3.77 \dot{\mathrm{~A}}), \mathrm{YBaCuO}(a=3.83 \dot{\mathrm{~A}}, b=$ $3.89 \dot{\mathrm{~A}}), \mathrm{BiSrCaCuO}(a=b=3.82 \dot{\mathrm{~A}})$, and $\mathrm{TIBaCaCuO}(a=b=3.86 \dot{\mathrm{~A}})$ are all between the ideal fcc oxygen lattice value of $3.73 \dot{A}$ and the perovskite one of $4.01 \dot{\mathrm{~A}}$.

Table VI-2 gives the ionic radii of the positively charged ions of various elements of the periodic table. These radii are useful for estimating changes in lattice constant when ionic substitutions are made in existing structures. They also provide some insight into which types of substitutions will be most favorable.
bic, superconducting, and spin-density wave (SDW) regions for the barium compound (Fujit), and data points for the strontium compound (Moret, More8). An alternate phase diagram has been proposed (Ahar1). Alkaline metal contents much larger than those shown on the figure (e.g., $x \approx 0.5$) can be nonsuperconducting. The SDW region occurs below the minimum concentration for the onset of superconductivity. Another work (Geise) showed that $\mathrm{LaSr}(0.04)$ undergoes a structural phase transition between 180 and 300 K .

5. Generation of LaSrCuO Structures

The LaSrCuO tetragonal structures may be visualized as being derived from four LaCuO_{3} perovskite unit cells of the type illustrated in Fig. VI-1 stacked one above the other along the z or c axis. To generate $\mathrm{La}_{2} \mathrm{CuO}_{4}$ in the $\mathrm{K}_{2} \mathrm{NiF}_{4}$ structure the layers of CuO_{2} atoms on the $z=\frac{1}{4}$ and $z=\frac{3}{4}$ levels of this four-cell stacking are removed, La and O are interchanged on two other layers, and the middle layer Cu atom is shifted from the edge to the center point $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ of the unit cell. Then the cell is compressed vertically from 14.9 to $13.2 \dot{A}$ (Table VI-4) to take up the space formerly occupied by the removed CuO_{2} layers. Finally, the lanthanums along the c axis and the oxygens along the side edges are shifted vertically to accommodate the new atom arrangement.

To generate $\mathrm{La}_{2} \mathrm{CuO}_{4}$ with the $\mathrm{Nd}_{2} \mathrm{CuO}_{4}$ arrangement from this same four-cell stacking all of the oxygens on the vertical edges are removed, and two lanthanums are moved to edge sites. Copper is handled the same way as before, so in both cases the generated structure lacks two CuO_{2} layers.

6. Layering Scheme of LaSrCuO

When we described the LaSrCuO structures we left out what is perhaps their most important characteristic, namely, their layered aspect. Lanthanum copper oxide may be looked upon as consisting of $\mathrm{Cu}-\mathrm{O}$ layers of square-planar coordinated copper ions with lanthanum and $O(2)$-type oxygen ions populating the spaces between the layers. These $\mathrm{Cu}-\mathrm{O}$ layers are stacked equally spaced, perpendicular to the c axis, as shown in Fig. VI-7, and their oxygens are aligned along the c axis, as indicated by the vertical dotted line on the left side of the figure. The copper ions, on the other hand, are not aligned vertically, but rather alternate between (000) and ($\frac{1}{2} \frac{1}{2} \frac{1}{2}$) sites in adjacent layers, as illustrated in Figs. VI-S and VI-7.

The copper is actually octahedrally coordinated with oxygen, but the $\mathrm{Cu}-\mathrm{O}$ distance of $1.9 \AA$ in the CuO_{2} planes is much less than the vertical distance of $2.4 \AA$ between copper and the oxygens above and below, as shown in Fig. VI-8. When the structure is distorted orthorhombically the $\mathrm{Cu}-\mathrm{O}$ spacings in both the planes and the c direction remain quite close to their tetragonal counterparts.

The copper ions and the $O(1)$-type oxygens in the planes are both in special sites in the tetragonal and orthorhombic forms, in accordance with Eqs. (VI-6) and (VI-9), and as a result the plane is perfectly flat in both cases. When the
 pound (Moret, . Alkaline metal).5) can be nononcentration for that $\mathrm{LaSr}(0.04)$
erived from four I-1 stacked one ie $\mathrm{K}_{2} \mathrm{NiF}_{4}$ strucof this four-cell layers, and the at $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ of the $\dot{\text { A }}$ (Table VI-4) ers. Finally, the dges are shifted
is same four-cell 1 , and two lanrav as before, so
is perhaps their thanum copper e-planar coordi-- populating the illy spaced, perzens are aligned a left side of the cally, but rather ustrated in Figs.

1, but the $\mathrm{Cu}-\mathrm{O}$ tical distance of wn in Fig. VI-8. cings in both the d counterparts.
a both in special with Eqs. (VI-6) ases. When the

Fig. VI-7. Layering scheme of the LaStCuO superconducting structure. The layers are perpendicular to the c axis.
structure is tetragonal the square-planar arrangement is also perfect, and of course the planes are perfectly parallel to each other. These characteristics of the planes could influence the superconducting properties.

The copper-oxygen planes are bound together by $\mathrm{Cu}-\mathrm{O}$ and $\mathrm{La}-\mathrm{O}$ bonds, as indicated on Fig. VI-5, and Fig. VI-8 shows the spacial arrangement of the CuO_{6} octahedra. This figure also makes clear how the copper ions alternate along the c axis. The superconducting properties are probably less influenced by the way the planes are bound together than by the internal characteristics of the planes themselves.

F. YTTRIUM-BARIUM-COPPER OXIDE

The YBaCuO compounds such as $\mathrm{Y}_{1-x} \mathrm{Ba}_{2-y} \mathrm{Cu}_{3} \mathrm{O}_{7-\delta}$, like their LaSrCuO counterparts, come in tetragonal and orthorhombic varieties, and both will be described in turn. Then we will show how to generate the structures from their perovskite prototypes, we will explain the layering scheme, and finally related defect structures will be discussed.

| APPLICATION NO. | FILING DATE | FIRST NAMED INVENTOR | ATTORNEY DOCKET NO. |
| :---: | :---: | :---: | :---: | :---: | :---: |

Γ
and ar

ART UNIT \quad PAPER NUMBER
$1 \square$
DATE MAILED:
a! \because \%

Please find below and/or attached an Office communication concerning this application or proceeding.

1:
Office Action Summary

| Application No．
 $08 / 303,561$ | Applicant（s） | |
| :---: | :---: | :---: | :---: | :---: |
| Examiner
 Douglas J．McGinty | Group Art Unit
 1105 | |

\triangle Responsive to communication（s）filed on 2－18－97 and 3－7－97
【】 This action is FINAL．Since this application is in condition for allowance except for formal matters，prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle， 1935 C．D．11； 453 0．G． 213.

A shortened statutory period for response to this action is set to expire \qquad month（s），or thirty days，whichever is longer，from the mailing date of this communication．Failure to respond within the period for response will cause the application to become abandoned．（35 U．S．C．§ 133）．Extensions of time may be obtained under the provisions of 37 CFR 1．136（a）．

Disposition of Claims

\boxtimes Claim（s）24－26，86－90，and 96－128 is／are pending in the application．

Of the above，claim（s） \qquad is／are withdrawn from consideration．
\square Claim（s） \qquad is／are allowed．

X Claim（s）24－26，86－90，and 96－128 is／are rejected．Claim（s） \qquad is／are objected to．Claims \qquad are subject to restriction or election requirement．

Application Papers

See the attached Notice of Draftsperson＇s Patent Drawing Review，PTO－948．\square The drawing（s）filed on \qquad is／are objected to by the Examiner．The proposed drawing correction，filed on \qquad isapproveddisapproved．The specification is objected to by the Examiner．The oath or declaration is objected to by the Examiner．
Priority under 35 U．S．C．§ 119
区 Acknowledgement is made of a claim for foreign priority under 35 U．S．C．§ 119 （a）－（d）．
\triangle All \square Some＊\square None of the CERTIFIED copies of the priority documents have beenreceived．

X received in Application No．（Series Code／Serial Number） \qquad 08／053，307 \qquad ．
\square received in this national stage application from the International Bureau（PCT Rule 17．2（a））．
＊Certified copies not received： \qquad －
\square Acknowledgement is made of a claim for domestic priority under 35 U．S．C．§ 119 （e）．

Attachment（s）

Notice of References Cited，PTO－892\square Information Disclosure Statement（s），PTO－1449，Paper No（s）．Interview Summary，PTO－413Notice of Draftsperson＇s Patent Drawing Review，PTO－948Notice of Informal Patent Application，PTO－152

DETALLED ACTION

1. The text of those sections of Title 35, U.S. Code not included in this action can be found in a prior Office action. The rejections and objections, if any, from the previous Office Action have been withdrawn if not repeated in this Office Action.
2. It is requested that this Examiner be notified of all pending, related applications. ${ }^{1}$ That notice need not be in a PTO form - 1449, however. ${ }^{2}$

Status of the Claims

3. Claims 24-26, 86-90, and 96-128 are pending. Claims 109-113 were filed on October 17, 1996 (\#57) but were found to be non-responsive in the January 8, 1997 Office Action (\#58). The applicants filed a fully responsive amendment with newly added claims 114-128 on February 18, 1997 and a Substitute Amendment on March 7, 1997 (\#59). This Office Action addresses the amendments and remarks made in that March 7, 1997 Substitute Amendment.

Priority

4. Acknowledgment is made of applicant's claim for priority under 35 U.S.C. § 119. The certified copy has been filed in parent application, Serial No. 08/053,307, filed on April 23, 1993 as paper no. 28 .
a. However, a review of that certified copy, which is in English, indicates that it does not support the present assertion of priority. Support is not found in that certified copy for the invention as presently claimed. See MPEP 201.13 et seq. and 201.14 et seq.
b. Applicants' arguments filed April 11, 1996, January 3, 1996, and September 29, 1995, paper nos. 53, 50, and 51, as well as the Affidavits filed September 29, 1995 and January 3, 1996, paper nos. 49 and 52 , have been fully considered but they are not deemed to be persuasive. The applicants quote some passages out of the priority document and argue that the present

[^39]claims are fully based that document. Nevertheless, that priority document is not deemed to provide basis for the following limitations found in the present claims:
i. The limitations "a composition including a transition metal, a rare earth or rare earth-like element, an alkaline earth element, and oxygen", as found in claim 86 (lines 2-4). The certified priority document may provide basis for the formula RE_{2} TM. O_{4} at p. 2, para. 4, but the claimed composition is deemed to be much broader than that formula.
ii. The limitation "non-stoichiometric amount of oxygen", as found in claim 86 (line 6). Basis may be seen for an oxygen deficit at p. 2, para. 4, but no such basis is seen for the more general limitation of "a nonstoichiometric amount of oxygen".
iii. The limitation "a composition exhibiting a superconductive state", as found in claim 88 (line 2), wherein the composition is a "(transition) metal oxide", as found in claims 24 (lines 1 and 2), 89 and 90. The certified priority document may provide basis for compositions of the formula $\mathrm{RE}_{2} \mathrm{TM} . \mathrm{O}_{4}$, as discussed above, but "a composition", "metal oxide", or "transition metal oxide" is deemed to be much broader than the formula RE_{2} TM. O_{4}.
iv. The limitation "a copper-oxide compound", as recited in claim 96 (line 6). The certified priority document may provide basis for compositions of the formula RE_{2} TM. O_{4}, as discussed above, but "a copper-oxide compound" is not deemed to be equivalent to a composition of the formula $\mathrm{RE}_{2} \mathrm{TM} . \mathrm{O}_{4}$. Basis is not seen in the certified priority document for "a copperoxide compound" with the breadth of the present claims.
v. The limitation to the effect that "the copper oxide compound includes (including) at least one rare-earth or rare-earth-like element and at least one alkaline-earth element", as recited in claim 97 (lines 3 and 4) and claim 103 (lines 6-8). The certified priority document may provide basis for compositions of the formula $\mathrm{RE}_{2} \mathrm{TM} . \mathrm{O}_{4}$, as discussed above, but basis is not seen for the more general limitation of "a copper-oxide compound" with a rare-earth (like) element and an alkaline earth element.
vi. The limitation to the effect that "the copper-oxide compound includes at least one element (oxygen) in a nonstoichiometric atomic proportion", as found in claim 101 (lines 2 and 3), 102 (lines 2 and 3), 107 (lines 2 and 3), and 108 (lines 2 and 3). Basis may be seen for
an oxygen deficit as discussed above, but no such basis is seen for the more general limitation of "a nonstoichiometric atomic proportion".
vii. The limitation as to "the effectively-zero-bulk-resistivity intercept temperature $T_{p=0}$ ", as found in claim 103 (lines 13,16 , and 17). The critical temperature, T_{c}, is discussed throughout that certified priority document, but not $\mathrm{T}_{\mathrm{p}=0}$.
c. Applicants' arguments filed March 7, 1997 (\#59) have been fully considered but they are not persuasive.
i. The applicants quote portions out of the priority document and assert that those quoted sections "clearly (support) a much broader composition than the Examiner is claiming it does, and that the priority document, in fact, does support applicant's (sic) claim 86." The fact remains, nevertheless, that the priority document refers to the general formula $\mathrm{RE}_{2} \mathrm{TM} . \mathrm{O}_{4}$ in which the rare earth element (RE) may be partially substituted with a Group IIA metal. That disclosure in the priority document does not provide support for the broader limitations of the present claims, which do not limit the invention to that general formula.
ii. The applicants argue that the disclosure of varying amounts of oxygen in the priority document provides support for earlier priority for the term "non-stoichiometric amount of oxygen". Again, however, that disclosure in the priority document does not provide support for the broader limitations of the present claims, which do not limit the invention to those varying amounts.
iii. The applicants urge that the disclosure in the priority document of the formula $\mathrm{RE}_{2} \mathrm{TM} . \mathrm{O}_{4}$ provides support for their limitations of "transition metal", "copper-oxide compounds", "rare earth or rare earth-like elements", and "alkaline earth element". Again, however, that disclosure in the priority document does not provide support for the broader limitations of the present claims, which do not limit the invention to that formula.
iv. The applicants further "assume that the Examiner agrees with applicant's (sic) statements in their prior response in that the concept of the intercept temperature is well known in the prior art and can be included in claim 103." No basis is seen for that assumption.

As noted in the previous Office Action and repeated above, the term " $\mathrm{T}_{\mathrm{p}=0}$ " is not found in the priority document. Well known or not, there is no basis for that term in the priority document.

Claim Rejections - 35 USC § 112

5. The specification is objected to under 35 U.S.C. § 112 , first paragraph, as failing to provide an enabling disclosure commensurate with the scope of the claims.
a. The present specification is deemed to be enabled only for compositions comprising $\mathrm{Ba}_{x} \mathrm{La}_{5-\mathrm{x}} \mathrm{Cu}_{5} \mathrm{O}_{y}$. The art of high temperature (above $30^{\circ} \mathrm{K}$) superconductors is an extremely unpredictable one. Small changes in composition can result in dramatic changes in or loss of superconducting properties. The amount and type of examples necessary to support broad claims increases as the predictability of the art decreases. ${ }^{3}$ Claims broad enough to cover a large number of compositions that do not exhibit the desired properties fail to satisfy the requirements of 35 USC $112 .{ }^{4}$ Merely reciting a desired result does not overcome this failure. ${ }^{5}$ In particular, the question arises: Will any layered perovskite material containing copper exhibit superconductivity? Also, does any stoichiometric combination of rare earth, an alkaline earth, and copper elements result in an oxide superconductor?
b. It should be noted that at the time the invention was made, the theoretical mechanism of superconductivity in these materials was not well understood. That mechanism still is not understood. Accordingly, there appears to be little factual or theoretical basis for extending the scope of the claims much beyond the proportions and materials actually demonstrated to exhibit high temperature superconductivity. A "patent is not a hunting license. It is not a reward for the search, but a reward for its successful conclusion". ${ }^{6}$
[^40]Art Unit: 1105
c. Claims 24-26, 86-90, and 96-113 are rejected under 35 U.S.C. § 112, first paragraph, for the reasons set forth in the objection to the specification.
d. Applicants' arguments filed April 11, 1996, January 3, 1996, and September 29, 1995, paper nos. 53, 50, and 51, as well as the Affidavits filed September 29, 1995 and January 3, 1996, paper nos. 49 and 52, have been fully considered but they are not deemed to be persuasive.
i. The additional caselaw and arguments by the applicants have been duly noted. For the reasons that follow, however, the record as a whole is deemed to support the initial determination that the originally filed disclosure would not have enabled one skilled in the art to make and use the invention to the scope that it is presently claimed.
ii. The applicants quote several passages from their specification at pp. 13-15 of their September 29, 1995 Amendment, but the issue is the scope of enablement, not support. The present disclosure may or may not provide support for particular embodiments, but the issue here is the scope to which that disclosure would have taught one skilled in the art how to make and use a composition which shows the onset of superconductivity at above $26^{\circ} \mathrm{K}$.
iii. Construed in light of that issue, the invention is not deemed to have been fully enabled by the disclosure to the extent presently claimed.
(1) In their September 29, 1995 Amendment, the applicants argue that their disclosure refers to "the composition represented by the formula RE-TM-O, where RE is a rare earth or rare earth-like element, TM is a nonmagnetic transition metal, and O is oxygen", and list several species such as ${ } \mathrm{La}_{2-x} \mathrm{Ba}_{\mathrm{x}} \mathrm{CuO}_{4-y}$ " which they indicate are found in the present disclosure.
(2) Notwithstanding that argument, it still does not follow that the invention is fully enabled for the scope presently claimed. The claims include formulae which are much broader than the RE-TM-O formula cited in the disclosure. Claim 24 recites "a transition metal oxide", claim 88 "a composition", and claim 96 "a copper-oxide compound".
(a) The present specification actually shows that known forms of "a transition metal oxide", "a composition", and "a copper-oxide compound" do not show the
onset of superconductivity at above $26^{\circ} \mathrm{K}$. At p. 3 , line 20 , through p. 4 , line 9 , of their disclosure, the applicants state that the prior art includes a "Li-Ti-O system with superconducting onsets as high as $13.7^{\circ} \mathrm{K}$." Official Notice is taken of the well-known fact that Ti is a transition metal. That disclosure also refers to "a second, non-conducting CuO phase" at p .14 , line 18.
(b) Accordingly, the present disclosure is not deemed to have been fully enabling with respect to the "transition metal oxide" of claim 24, the "composition" of claim 88, or the "copper-oxide compound" of claim 96.
(3) The examples at p. 18, lines $1-20$, of the present specification further substantiates the finding that the invention is not fully enabled for the scope presently claimed.
(a) With a $1: 1$ ratio of $(\mathrm{Ba}, \mathrm{La})$ to Cu and an x value of 0.02 , the La-Ba-Cu-O form (i.e., "RE-AE-TM-O", per p. 8, line 11) shows "no superconductivity".
(b) With a $2: 1$ ratio of $(\mathrm{Ba}, \mathrm{La})$ to Cu and an x value of 0.15 , the La-Ba-Cu-O form shows an onset of superconductivity at " $\mathrm{T}_{\mathrm{c}}=26^{\circ} \mathrm{K}$ ". It should be noted, however, that all of the claims in this application require the critical temperature $\left(\mathrm{T}_{\mathrm{c}}\right)$ to be "in excess of $26^{\circ} \mathrm{K}$ " or "greater than $26^{\circ} \mathrm{K}$ ".
(c) Consequently, the present disclosure is not deemed to adequately enable the full scope of the present claims. Independent claims 86 and 103 may require the presence of rare earth, alkaline earth, and transition metals, but the aforementioned examples show that superconductivity is still very unpredictable. Those claims cannot be deemed to be fully enabled.
iv. The applicants also have submitted three affidavits attesting to the applicants' status as the discoverers of materials that superconduct $>26^{\circ} \mathrm{K}$. Each of the affidavits further states that "all the high temperature superconductors which have been developed based on the work of Bednorz and Muller behave in a similar manner (way)". Each of the affidavits add "(t)hat once a person of skill in the art knows of a specific transition metal oxide composition which is superconducting above $26^{\circ} \mathrm{K}$, such a person of skill in the art, using the techniques described in the (present) application, which includes all known principles of ceramic fabrication,

Serial Number: 08/303,561
Page 8
Art Unit: 1105
can make the transition metal oxide compositions encompassed by (the present) claims ... without undue experimentation or without requiring ingenuity beyond that expected of a person of skill in the art." All three affiants apparently are the employees of the assignee of the present application.
(1) Those affidavits do not set forth particular facts to support the conclusions that all superconductors based on the applicants' work behave in the same way and that one skilled in the art can make those superconductors without undue experimentation. Conclusory statements in an affidavit or specification do not provide the factual evidence needed for patentability. ${ }^{7}$
(2) Those affidavits do not overcome the non-enablement rejection. The present specification discloses on its face that only certain oxide compositions of rare earth, alkaline earth, and transition metals made according to certain steps will superconduct at $>26^{\circ} \mathrm{K}$.
(3) Those affidavits are not deemed to shed light on the state of the art and enablement at the time the invention was made. One may know now of a material that superconducts at more than $26^{\circ} \mathrm{K}$, but the affidavits do not establish the existence of that knowledge on the filing date for the present application. Even if the present application "includes all known principles of ceramic fabrication", those affidavits do not establish the level of skill in the ceramic art as of the filing date of that application.
(4) It is fully understood that the applicants are the pioneers in high temperature metal oxide superconductivity. The finding remains, nonetheless, that the disclosure is not fully enabling for the scope of the present claims.
e. Applicants' arguments filed March 7, 1997 (\#59) have been fully considered but they are not persuasive.
i. The applicants quote a statement from part of the previous Office Action and asserts that the "Examiner does not support this statement with any case law citations."

[^41]Serial Number: 08/303,561
Page 9
Art Unit: 1105
(1) That assertion is incorrect. Seven decisions have been cited as providing the legal basis for this determination of non-enablement. ${ }^{8}$
(2) The applicants further "note that the Examiner seemed to have specifically avoided applying (sic) the case law and, consequently, ... applicants take the Examiner's silence as concurrence in the manner that applicants have applied this case law." Apparently, the applicants are referring to their discussion ${ }^{9}$ of the caselaw previously cited by this Examiner. Notwithstanding the applicants' commentary on caselaw, the April 15, 1997 Office Action, paper no. 54, sets forth the factual basis for the determination of non-enablement at pp .5 10.
(3) The applicants still further argues "that the Examiner does not rebut the case law and argument provided by applicants on (pages) 15-25 of their September 29, 1995 amendment which addresses (these issues) in detail." The point remains, nevertheless, that there appears to be a concurrence as to the applicable caselaw. That caselaw speaks for itself. What has been fully addressed in the previous Office Action and repeated above is the factual basis for the determination of non-enablement for the scope of the present invention.
ii. The applicants urge that "their disclosure supports a substantially broader scope than (particular) species." With respect to transition metals, the applicants point to the support in their disclosure and argue that they were enabled for transition metals other than just copper. Again, however, it is noted that high temperature superconductivity is a highly unpredictable art. In view of the record as a whole, it is again determined that one skilled in the art would not have been enabled to practice the presently disclosed invention with transition metals other than copper.

[^42]iii. The applicants argue that their own examples do not support the determination of non-enabling scope of the invention. Nevertheless, the record is viewed as a whole. If the applicants could not show superconductivity with a $\mathrm{T}_{\mathrm{c}}>26^{\circ} \mathrm{K}$ for certain compositions falling within the scope of the present claims, it is unclear how someone else skilled in the art would have been enabled to do so at the time the invention was made.
iv. The applicants assert that "(b)y the Examiner's statement that these (statements in the affidavits) are conclusionary (sic) the Examiner appears to be placing himself up as an expert in the field of superconductivity" and "respectfully request that the Examiner submit an affidavit in the present application rebutting the position taken by applicants' 3 affiants." Notwithstanding those assertions, this Examiner has determined that those affidavits were insufficient because they were conclusory only, i.e., they lacked particular facts to support the conclusions reached.
v. The applicants argue that the "Examiner has provided no substantial evidence to support this assertion (of non-enabling scope of the invention). It is respectfully requested that the Examiner support (his) assertion with factual evidence and not unsupported statements." Nevertheless, the determination of non-enabling scope is maintained for the reasons of record. This Office Action is deemed to be a complete discussion of all relevant issues raised by the applicants.
6. Claims $86-87,96-108,115,118,120,122$, and 123 are rejected under 35 U.S.C. § 112, second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which applicant regards as the invention.
a. With respect to claims 86-87 and 96-108, the terms "layer-type", "perovskite-like", "rare-earth-like" are vague and confusing.
i. The question arises: What is meant by these terms?
ii. Applicants' arguments filed April 11, 1996, January 3, 1996, and

September 29, 1995, paper nos. 53, 50, and 51, as well as the Affidavits filed September 29, 1995 and January 3, 1996, paper nos. 49 and 52, have been fully considered but they are not deemed to be persuasive.
(1) The terms "layer-type" and "perovskite-like" are unclear because the "type" or "like" terms are deemed to be indefinite. Terms such as "like", "similar", and "type" are indefinite. ${ }^{10}$ It is suggested that "layer-type perovskite-like crystal structure" be changed -- a substantially layered perovskite crystal structure --.
(2) The applicants respond that "(a) person of skill in the art would understand (rare earth-like) to mean that a location occupied by a rare earth element can also be occupied by another element which would have chemical properties similar enough to the rare earth elements such that it would fit in to the latter (sic - lattice?) site occupied by the rare earth element." That response does not alleviate the problem, however. Other elements may "fit" into the lattice but they may not necessarily be "rare-earth-like". It is suggested that the same language be changed to -- Group III B --, per p. 7, line 11, of the present specification.
b. Newly added claims $112,113,115,117,118,120,122$, and 123 are found to be indefinite for the reasons that follow.
i. In claim 112, line 5, has the terms "layer-type" and "perovskite-like", both of which are indefinite.
ii. In claim 113, line 5, has the terms "layer-type" and "perovskite-like", both of which are indefinite.
iii. New claim 115, lines 2-4, is indefinite with the language "forming a composition including copper, oxygen and any element selected from the group consisting of at least one Group IIA element and an element selected from the group consisting of a rare earth element and a Group IIIB element" (emphasis added). That language is unclear as to whether the Group IIA element must be present along with either the rare earth or Group IIIB element. It is suggested that "any" be changed to -- an -- in line 2.

[^43]iv. In claim 117, line 5, has the terms "layer-type" and "perovskite-like", both of which are indefinite.
v. In claim 118, line 5, has the terms "layer-type" and "perovskite-like", both of which are indefinite.
vi. Claim 120 is unclear the "copper oxide" of line 5 is the "transition metal" and "oxygen" of line 2 .
vii. Claim 120, lines 2-4, is indefinite with the language "any element selected from the group consisting of at least one Group IIA element and an element selected from the group consisting of a rare earth element and a Group IIIB element" (emphasis added). That language is unclear as to whether the Group IIA element must be present along with either the rare earth or Group IIIB element. It is suggested that "any" be changed to -- an -- in line 2 .
viii. In claim 122, line 5, has the terms "layer-type" and "perovskite-like", both of which are indefinite.
ix. In claim 123, line 5, has the terms "layer-type" and "perovskite-like", both of which are indefinite.
x. Claim 123, line 12, has the typographical error of "T T ${ }_{c}$ ".
c. Applicants' arguments filed March 7, 1997 (\#59) have been fully considered but they are not persuasive.
i. The applicants assert "that the Examiner has not responded to applicants' comments which supports applicants' position that a person of skill in the art would understand the terms 'layer-type' and 'perovskite-like' and has just repeated their rejection of the prior Office Action." That assertion is not correct, since April 15, 1996 Office Action, paper no. 54, addressed the applicants' comments at pp. 8 and 9.
ii. The prior Office Action included a proposed amendment to overcome this rejection, which has been repeated above.

Claim Rejections - 35 USC § 102
7. Claims 24-26, 86-90, and 96-128 are rejected under 35 U.S.C. $\S 102(a)$ as being anticipated by Asahi Shinbum, International Satellite Edition (London), November 28, 1986 (hereinafter, "the Asahi Shinbum article").
a. As discussed in paper no. 20 of the ancestral application, 07/053,307, it is not fully clear to what exact date applicants are entitled. Based on the record, nonetheless, that date would appear to be no later than around December 13, 1986, the date samples were tested in the US to show superconductivity. See MPEP 715 et seq. The Asahi Shinbum article was published on November 28, 1986.
b. The reference confirms superconductivity in an oxide compound of La and Cu with Ba having a structure of the so-called perovskite structure. Although the reference fails to teach use of the testing of zero resistance for confirming superconductivity, it inherently must have been used because it is one of two methods used for testing for superconductivity (the other being diamagnetism). Accordingly, the burden of proof is upon the applicants to show that the instantly claimed subject matter is different from and unobvious over that taught by this reference. ${ }^{11}$
c. Applicants' arguments filed April 11, 1996, January 3, 1996, and September 29, 1995, paper nos. 53, 50, and 51, as well as the Affidavits filed September 29, 1995 and January 3, 1996, paper nos. 49 and 52, have been fully considered but they are not deemed to be persuasive.
i. The applicants argue that the Sung II Park Affidavit of March 30, 1988 states at para. 4 that measurements were taken of a superconductive sample on or before November 9, 1986, to the best of the affiant's recollection, or no later than November 15, 1986. The documentary evidence is not deemed to support that argument, however. See MPEP 715.07.

[^44](1) Plots of those measurements are missing. See the Chang C. Tsuei Affidavit of March 30, 1988, para. 6. A hand-drawn diagram with the indication of vacuum pumping on November 9, 1988 also is not deemed to show that the measurements were taken.
(2) Moreover, the other evidence in the record appears to show that high temperature superconductivity was not attained in this country as of November 9 or 15 , 1986. The March 30, 1986 Declaration of Richard L. Greene includes a series of cablegrams sent by Dr. Greene to the applicants in Zurich, Switzerland as Exhibit B. On both November 11, 1986 and November 14, 1986, Dr. Greene reports that no indication of superconductivity has been seen in his specific heat measurements for temperatures of $4-35^{\circ} \mathrm{K}$. Exhibit C has pages dated December 1, 1986 on, and Exhibit D, which actually has plots of resistance vs. temperature, has an earliest date of December 3, 1996.
ii. The applicants assert that the Asahi Shinbum article reports a third party's confirmation of their original discovery. That assertion appears to be correct, but the article still is deemed to be prior art under 35 USC 102(a).
(1) It should be noted again, however, that the applicants' discovery was not originally made in this country and that they cannot show an earlier date than December 1986 for their invention in this country. The Asahi Shinbum article was published on November 28, 1986.
(2) The applicants cite four decisions ${ }^{12}$ which do not directly apply to the present facts.

[^45](a) The In re Katz ${ }^{13}$ decision held that an applicant may overcome an article as 35 USC 102(a) prior art by showing that the applicant was a co-author and that the other co-authors were under the direction and control of the applicant. Here, however, the applicants were neither co-authors in the Asahi Shinbum article nor did they exercise direction and control over the work reported in that article.
(b) The Andrews v. Hovey ${ }^{14}$ decision involved a grace period which is now codified in 35 USC 102(b). The present case involves a printed publication as prior art under 35 USC 102(a).
(c) The Ex parte Powell and Davies ${ }^{15}$ decision held that an applicant's own foreign patent which issued within the grace period cannot be used against him or her, and the Exparte Lemieux ${ }^{16}$ decision applied that reasoning to an applicant's own article published in another country. Again, the present applicants had no part in the writing of the Asahi Shinbum article.
(3) The present facts may raise a novel issue of law. ${ }^{17}$ The applicants were the first to develop the presently claimed invention, but the earliest date they can show for

[^46]that invention in this country is December of $1986 .^{18}$ The Asahi Shinbum article was published in November of 1986 and describes the development of superconductivity with an oxide of La, Ba, and Cu having a perovskite structure by a third party, but that article apparently indicates that the third party was confirming the discovery of the present applicants. Notwithstanding the possible uniqueness of the present facts, however, the Asahi Shinbum article still is deemed to be prior art under 35 USC 102(a), which the applicants have not been able to overcome with a showing of an earlier date in this country or a showing of their direction and control over the work done by that third party.
d. Applicants' arguments filed March 7, 1997 (\#59) have been fully considered but they are not persuasive.
i. The applicants argue that "Praveen Chaudhari brought these samples back to the U.S. when he returned after visiting (the inventors) on or about October 16, 1986. When these samples came into the United States since they were inherently superconductive as claimed, the invention was essentially reduced to practice in the United States on that date." As stated before repeated above, however, the applicants were unable to show the attainment of superconductivity any earlier than December 3, 1986 in this country. Again, the present invention is directed to the method of superconducting electricity. That method apparently was not reduced to practice before December 3, 1986.
ii. The applicants further urge that they have shown clear diligence from before November 28, 1986 until actual reduction at or around December 3, 1986. Nevertheless, the actual reduction in this country is deemed to have occurred on December 3, 1986, which is after the publication date for the reference.
iii. The applicants assert that they should be entitled to a one-year grace period for their own published invention, but this prior art rejection is based on 35 USC 102(a) because the author of that reference is a different inventive entity.

[^47]iv. The applicants argue: "If one would follow the rationale of the Examiner, if an applicant publishes an article and some other third party reports that same result prior to applicant's filing of a patent application which is subsequently filed within one year of applicant's own publication (, the) reporting of applicant's work by the third party would be prior art against applicant's application. Such a result would deny (the applicant) the one year grace period provided under 35 USC 102(b)." The applicants' argument is duly noted, but again, it is further noted that the reference is prior art under 35 USC 102(a). The reference is not just a republication of the applicants' article. Instead, the reference is the reporting of someone else's work which confirms the applicants' work. The applicants also are not able to show a priority date which pre-dates the publication of that reference. Usually, an applicant can establish an earlier priority date with an earlier foreign filing, but the EPO priority document in this case was filed on January 23, 1987, or by earlier conception and diligent reduction to practice, but in this case the invention was made outside of this country.
v. This Office Action is deemed to be a complete discussion of all relevant issues raised by the applicants.

Claim Rejections - 35 USC § 103

8. Claims 24-26, 86-90, and 96-128 are rejected under 35 U.S.C. § 103 as being unpatentable over the Asahi Shinbum article.

a. The reference is relied upon as set forth in the previous rejection. This reference may differ from the present claims in that it may fail to disclose the presently claimed method of "causing an electric current to flow in the superconductor element". It was notoriously wellknown in the art of superconductors that a method of utilizing superconductive materials was to cause an electric current to flow in the material while it is cooled below its transition temperature. See MPEP 706.02(a). Accordingly, it would have been well within the purview of one of ordinary skill to use the present claimed method with the materials disclosed by the reference. One would have been motivated to cool the material of the reference to below the transition temperature and cause electric current to flow in the material to provide electricity without resistance. Accordingly, the present claims are unpatentable in view of the prior art of record.
b. Applicants' arguments filed April 11, 1996, January 3, 1996, and September 29, 1995, paper nos. 53, 50, and 51, as well as the Affidavits filed September 29, 1995 and January 3, 1996, paper nos. 49 and 52 , have been fully considered but they are not deemed to be persuasive. The Asahi Shinbum article is deemed to be prior art under 35 USC 102(a) for the reasons discussed above.
c. Applicants' arguments filed March 7, 1997 (\#59) have been fully considered but they are not persuasive. The applicants' arguments have been fully discussed above.

Possibly Allowable Subject Matter
9. It is noted that the applicants were awarded the Nobel Prize for their work in this area. The record is not deemed to indicate, however, that the Asahi Shinbum article was predated by the applicants' earlier conception and/or reduction to practice in this country. The presently claimed invention also is non-enabling and indefinite for the reasons set forth above.
10. To possibly overcome the above rejections, the following amendments are suggested:
a. $\quad 129$ (New). A method comprising the steps of:
forming a composition of the formula $\mathrm{Ba}_{\mathrm{x}} \mathrm{La}_{5-\mathrm{x}} \mathrm{Cu}_{5} \mathrm{O}_{\mathrm{y}}$, wherein x is from about 0.75 to about 1 and y is the oxygen deficiency resulting from annealing said composition at temperatures from about $540^{\circ} \mathrm{C}$ to about $950^{\circ} \mathrm{C}$ and for times of about 15 minutes to about 12 hours, said composition having a metal oxide phase which exhibits a superconducting state at a critical temperature in excess of $26^{\circ} \mathrm{K}$;
maintaining the temperature of said composition at a temperature less than said critical temperature to induce said superconducting state in said metal oxide phase; and
passing an electrical current through said composition while said metal oxide phase is in said superconducting state.
b. Cancel claims 24-26, 86-90, and 96-128.
11. The following is an Examiner's statement of reasons for the indication of possibly allowable subject matter:
a. The Asahi Shinbum article teaches in general that perovskite-like compounds of La, Cu, and Ba have a T_{c} of $30^{\circ} \mathrm{K}$, but that article apparently does not teach the particular formula

Serial Number: 08/303,561
Page 19
Art Unit: 1105
in the amendment suggested above. The examples in the present specification are deemed to show criticality for that formula in that suggested amendment.
b. Support for the proposed amendment is found at p. 20, line 1, through p. 25, line 5, and in Figure 3.
c. This indication of possibly allowable subject matter is subject to further consideration and review.

Conclusion

12. THIS ACTION IS MADE FINAL. The new grounds of rejection, if any, were necessitated by an Amendment. ${ }^{19}$ Applicant is reminded of the extension of time policy as set forth in 37 C.F.R. § 1.136(a).

A SHORTENED STATUTORY PERIOD FOR RESPONSE TO THIS FINAL ACTION IS SET TO EXPIRE THREE MONTHS FROM THE DATE OF THIS ACTION. IN THE EVENT A FIRST RESPONSE IS FILED WITHIN TWO MONTHS OF THE MAILING DATE OF THIS FINAL ACTION AND THE ADVISORY ACTION IS NOT MAILED UNTIL AFTER THE END OF THE THREE-MONTH SHORTENED STATUTORY PERIOD, THEN THE SHORTENED STATUTORY PERIOD WILL EXPIRE ON THE DATE THE ADVISORY ACTION IS MAILED, AND ANY EXTENSION FEE PURSUANT TO 37 C.F.R. § 1.136(a) WILL BE CALCULATED FROM THE MAILING DATE OF THE ADVISORY ACTION. IN NO EVENT WILL THE STATUTORY PERIOD FOR RESPONSE EXPIRE LATER THAN SIX MONTHS FROM THE DATE OF THIS FINAL ACTION.
13. All of the references cited in this application indicate the level of skill in the relevant art at the time the invention was made.
14. Any inquiry concerning this communication or earlier communications from the examiner should be directed to Douglas J. McGinty, whose telephone number is (703) 308-3805. The examiner normally can be reached on Monday through Friday from 8:30 A.M. to 5:00 P.M., Eastern time. If reasonable attempts to reach the examiner by telephone are unsuccessful, however, the examiner's supervisor, Mr. Paul Lieberman, can be reached at (703) 308-2523. Any inquiry of a general nature or relating to the status of this application should be directed to the

[^48]Serial Number: 08/303,561
Page 20
Art Unit: 1105

Group receptionist whose telephone number is (703) 308-0661. The fax number for this Group is (703) 305-3600.

May 27, 1997
303561.4

Primary Examiner
Group 1100

Filing: Amendment, Amendment/Response Transmittal Sheet, Certificate of Mailing

PLEASE STAMP \& RETURN TO US
in re application of: J. Bednorz et al.
For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION... Serial No.: $08 / 303,561$ Docket no.: Y0987-074BY Atty.: DPM Received in the U.S. Patent of majemark ofetco: No. of pages of spectifeation \qquad : No. of Nov. or sheets of drawings: \qquad Declaration if attached to specification.

11上 foes are charged to our Account No. 09-0468
 2/10/97

Filing: Amendment, Amendment/Response Transmittal Sheet, Certificate of Mailing

PLEASE STAMP \& RETURN TO US

in re application of: J. Bednorz et al.
For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION...
Serial No. :08/303,561 Docket No. : Y0987-074BY in Ct ty . : PPM
Received in the U.S. Fatent"o mademart Office
No. of pages of spectiseation \qquad : Ho of masc

No. of sheets of drawings: \qquad
Declaration is act/ached to speotacation.
211 fees are charged to our Account No. 09-.0468

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: J. Bednorz et al.
Date: March 6, 1997

Serial No.: 08/303,561
Group Art Unit: 1105
Filed: September 9, 1994
Examiner: D. McGinty
For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, AND METHODS FOR THEIR USE AND PREPARATION

The Commissioner of Patents and Trademarks
Washington, D.C.

SUBSTITUTE AMENDMENT

Sir:
In response to the Office Letter dated January 8, 1997, please consider the following:

IN THE CLAIMS

Add claims 114-128.
114. (Added) A method including the steps of forming copper oxide having a phase therein which exhibits a superconducting state at a critical temperature in excess of $26^{\circ} \mathrm{K}$;
maintaining the temperature of said material at a temperature less than said critical temperature to produce said superconducting state in said phase;
passing an electrical supercurrent through said copper oxide while it is in said

Ser. No. 08/303,561
superconducting state;
said copper oxide includes at least one element selected from the group consisting of a Group II A element and at least one element selected from the group consisting of a rare earth element and a Group III B element.
115. (Added) A method comprising the steps of:
forming a composition including copper, oxygen and an element selected from the group consisting of at least one Group II A element and at least one element selected from the group consisting of a rare earth element and a Group III B element, where said composition is a mixed copper oxide having a non-stoichiometric amount of oxygen therein and exhibiting a superconducting state at a temperature greater than $26^{\circ} \mathrm{K}$;
maintaining said composition in said superconducting state at a temperature greater than $26^{\circ} \mathrm{K}$; and
passing an electrical current through said composition while said composition is in said superconducting state.
116. (Added) A method including the steps of:
forming a composition exhibiting a superconductive state at a temperature in excess of $26^{\circ} \mathrm{K}$;
maintaining said composition at a temperature in excess of $26^{\circ} \mathrm{K}$ at which temperature

Ser. No. 08/303,561
said composition exhibits said superconductive state;
passing an electrical current through said composition while said composition is in said superconductive state; and
said composition including a copper oxide and at least one element selected from the group consisting of Group II A element and at least one element selected from the group consisting of a rare earth eiement and a Group III B element.
117. (Added) A superconductive method for causing electric-current flow in a superconductive state at a temperature in excess of $26^{\circ} \mathrm{K}$, comprising:
(a) providing a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound having a layer-type perovskite-like crystal structure, the composition having a superconductive transition temperature T_{c} of greater than $26^{\circ} \mathrm{K}$, said superconductive composition includes at least one element selected from the group consisting of a Group II A element and at least one element selected from the group consisting of a rare earth element and a Group III B element;
(b) maintaining the superconductor element at a temperature above $26^{\circ} \mathrm{K}$ and below the superconductor transition temperature T_{c} of the superconductive composition; and
(c) causing an electric current to flow in the superconductor element.

Ser. No. 08/303,561
118. (Added) A superconductive method for conducting an electric current essentially without resistive losses, comprising:
(a) providing a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound having a layer-type perovskite-like crystal structure, the copper-oxide compound including at least one element selected from the group consisting of a group II A element and at least one element selected from the group consisting of a rare earth element and a Group III B element, the composition having a superconductive/resistive transition defining a superconductive/resistive-transition temperature range between an upper limit defined by a transition-onset temperature T_{c} and a lower limit defined by an effectively-zero-bulk-resistivity intercept temperature $T_{\rho=0}$, the transition-onset temperature T_{c} being greater than $26^{\circ} \mathrm{K}$;
(b) maintaining the superconductor element at a temperature below the effectively-zero-bulk-resistivity intercept temperature $T_{\rho=0}$ of the superconductive composition; and
(c) causing an electric current to flow in the superconductor element.
119. (Added) A method including the steps of forming a transition metal oxide having a phase therein which exhibits a superconducting state at a critical temperature in excess of $26^{\circ} \mathrm{K}$;
maintaining the temperature of said material at a temperature less than said critical

Ser. No. 08/303,561
temperature to produce said superconducting state in said phase;
passing an electrical supercurrent through said copper oxide while it is in said superconducting state;
said transitional metal oxide includes at least one element selected from the group consisting of a Group II A element and at least one element selected from the group consisting of a rare earth element and a Group III B element.
120. (Added) A method comprising the steps of:
forming a composition including a transition metal, oxygen and an element selected from the group consisting of at least one Group II A element and at least one element selected from the group consisting of a rare earth element and a Group III B element, where said composition is a mixed transitional metal oxide having a non-stoichiometric amount of oxygen therein and exhibiting a superconducting state at a temperature greater than $26^{\circ} \mathrm{K}$;
maintaining said composition in said superconducting state at a temperature greater than $26^{\circ} \mathrm{K}$; and
passing an electrical current through said composition while said composition is in said superconducting state.
121. (Added) A method including the steps of:
forming a composition exhibiting a superconductive state at a temperature in excess of

Ser. No. 08/303,561
$26^{\circ} \mathrm{K}$;
maintaining said composition at a temperature in excess of $26^{\circ} \mathrm{K}$ at which temperature said composition exhibits said superconductive state;
passing an electrical current through said composition while said composition is in said superconductive state; and
said composition including a transitional metal oxide and at least one element selected from the group consisting of Group II A element and at least one element selected from the group consisting of a rare earth element and a Group III B element.
122. (Added) A superconductive method for causing electric-current flow in a superconductive state at a temperature in excess of $26^{\circ} \mathrm{K}$, comprising:
(a) providing a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a transition metal oxide compound having a layer-type perovskite-like crystal structure, the composition having a superconductive transition temperature T_{c} of greater than $26^{\circ} \mathrm{K}$, said superconductive composition includes at least one element selected from the group consisting of a Group II A element and at least one element selected from the group consisting of a rare earth element and a Group III B element;
(b) maintaining the superconductor element at a temperature above $26^{\circ} \mathrm{K}$ and below the superconductor transition temperature T_{c} of the superconductive composition; and

Ser. No. 08/303,561
(c) causing an electric current to flow in the superconductor element.
123. (Added) A superconductive method for conducting an electric current essentially without resistive losses, comprising:
(a) providing a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a transition metal-oxide compound having a layer-type perovskite-like crystal structure, the transition metal-oxide compound including at least one element selected from the group consisting of a Group II A element and at least one element selected from the group consisting of a rare earth element and a Group III B element, the composition having a superconductive/resistive transition defining a superconductive/resistive-transition temperature range between an upper limit defined by a transition-onset temperature T_{c} and a lower limit defined by an effectively-zero-bulk-resistivity intercept temperature $T_{\rho=0}$, the transition-onset temperature T_{c} being greater than $26^{\circ} \mathrm{K}$;
(b) maintaining the superconductor element at a temperature below the effectively-zero-bulk-resistivity intercept temperature $T_{p=0}$ of the superconductive composition; and
(c) causing an electric current to flow in the superconductor element.
124. (Added) A method including the steps of forming copper oxide having a phase therein which exhibits a superconducting state at a critical temperature in excess of $26^{\circ} \mathrm{K}$;
maintaining the temperature of said material at a temperature less than said critical temperature to produce said superconducting state in said phase;
passing an electrical supercurrent through said copper oxide while it is in said superconducting state;
said copper oxide includes at least one element selected from the group consisting of a Group II A element, at least one element selected from the group consisting of a rare earth element and at least one element selected from the group consisting of a Group III B element.
125. (Added) A method comprising the steps of:
forming a composition including copper, oxygen and any element selected from the group consisting of at least one Group II A element and at least one element selected from the group consisting of a rare earth element and at least one element selected from the group consisting of a Group III B element, where said composition is a mixed copper oxide having a non-stoichiometric amount of oxygen therein and exhibiting a superconducting state at a temperature greater than $26^{\circ} \mathrm{K}$;
maintaining said composition in said superconducting state at a temperature greater than $26^{\circ} \mathrm{K}$; and
passing an electrical current through said composition while said composition is in said superconducting state.
126. (Added) A method including the steps of:
forming a composition exhibiting a superconductive state at a temperature in excess of

Ser. No. 08/303,561
$26^{\circ} \mathrm{K}$;
maintaining said composition at a temperature in excess of $26^{\circ} \mathrm{K}$ at which temperature said composition exhibits said superconductive state;
passing an electrical current through said composition while said composition is in said superconductive state; and
said composition including a copper oxide and at least one element selected from the group consisting of Group II A element, at least one element selected from the group consisting of a rare earth element and at least one element selected from the group consisting of a Group III B element.
127. (Added) A superconductive method for causing electric-current flow in a superconductive state at a temperature in excess of $26^{\circ} \mathrm{K}$, comprising:
(a) providing a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound having a layer-type perovskite-like crystal structure, the composition having a superconductive transition temperature T_{c} of greater than $26^{\circ} \mathrm{K}$, said superconductive composition includes at least one element selected from the group consisting of a Group II A element, at least one element selected from the group consisting of a rare earth element and at least one element selected from the group consisting of a Group III B element;
(b) maintaining the superconductor element at a temperature above

Ser. No. 08/303,561
$26^{\circ} \mathrm{K}$ and beiow the superconductor transition temperature T_{c} of the superconductive composition; and
(c) causing an electric current to flow in the superconductor element.
128. (Added) A superconductive method for conducting an electric current essentially without resistive losses, comprising:
(a) providing a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound having a layer-type perovskite-like crystal structure, the copper-oxide compound including at least one element selected from the group consisting of a group II A element, at least one element selected from the group consisting of a rare earth element and at least one element selected from the group consisting of a Group III B element, the composition having a superconductive/resistive transition defining a superconductive/resistive-transition temperature range between an upper limit defined by a transition-onset temperature T_{c} and a lower limit defined by an effectively-zero-bulk-resistivity intercept temperature
$T_{\rho=0}$, the transition-onset temperature T_{c} being greater than $26^{\circ} \mathrm{K}$;
(b) maintaining the superconductor element at a temperature below the effectively-zero-bulk-resistivity intercept temperature $T_{\rho=0}$ of the superconductive composition; and
(c) causing an electric current to flow in the superconductor element.

REMARKS

Claims 24-26, 86-90 and 96 to 128 are in the application.

Claims 113-128 are added by this amendment.

Herein, EA will refer to the Examiner's Action's dated April 15, 1996.

In regard to applicant's claim of priority, in EA paragraphs 3.b.i, 3.b.iii, 3.b.iv and $3 . v$ the Examiner states "the certified priority document may provide basis for compositions of the formula $R E_{2} \mathrm{TM} . \mathrm{O}_{4}$ ". It is noted that the Abstract of the priority document refers to "the general formula $R E_{2-x} A E_{x} T M O_{4-y}$, wherein $R E$ is a rare earth, $A E$ is a member of the group of alkaline earths or a combination of at least two members of that group, and TM is a transition metal, and wherein $x<0.3$ and $0.1 \leq$ $y \leq 0.5$." This formula permits no alkaline earth and a varying amount of alkaline earth and rare earths and a varying amount of oxygen. At column 3, lines 20 and 35, there is recited "the Ba-La-Cu-O system" and at line 41 " $\mathrm{La}_{2-\mathrm{x}} \mathrm{Ba}_{\mathrm{x}} \mathrm{DuO}_{4-\mathrm{y}} \mathrm{x}<1$ and $\mathrm{y} \leq$ 0 and at line 44 teaches $\mathrm{La}_{1-x} \mathrm{Ba}_{x} \mathrm{CuO}_{3-y}$."

The Examiner at page 2 of PA at paragraph 3.b.i states that the priority document does not provide support for "the limitations a composition including a transition metal, a rare earth or rare earth-like elements, an alkaline earth element, an oxygen as found in claim 86 ". It is noted that in the priority document at column 2 , lines $13-19$ it is stated that "it is a characteristic of the present invention that in the compounds in question that the RE portion is partially substituted by one member of the alkaline earth group of metals, or by a combination of the members of this alkaline
earth group and that the oxygen content is at a deficit." It is further noted that at column 2, lines 20-23 it states that "for example, one such compound that meets the description given by this lanthanum copper oxide $\mathrm{La}_{2} \mathrm{CuO}_{4}$ in which the tantalum which belongs to the IIIB group of the elements is in part substituted by one member of the neighboring IIIA group of elements." In the sentence bridging pages 2 and 3 of EA, the Examiner states that "the certified priority document may provide a basis for formula $R E_{2} T M . O_{4}$ at P.2, para. 4, but the claimed composition is deemed to be much broader than that formula." It is clear from the quoted sections of the priority document that the priority document clearly supports a much broader composition than the Examiner is stating that the priority document supports, and that the priority document, in fact, does support applicants' claim 86.

At page 3, paragraph ii of EA, the Examiner states there is no support for "the limitation 'non-stoichiometric amount of oxygen', as found in claim 86". Applicants submit that the use of the term oxygen deficit is noted by the Examiner at P.2, para. 4 of the priority document and the varying amount of oxygen given in both formulas is sufficient and adequate support for the limitation 'non-stoichiometric' amount of oxygen." In regards to paragraph iii of page 3 of EA, the Examiner states there is no support for "transition metal oxides" as found in claim 24. Claim 24 recites transition metal oxide which is explicitly recited in the priority document, as stated above. Claim 88 is directed to the superconducting material having a transition temperature in excess of $26^{\circ} \mathrm{K}$. Claim 89 depends from claim 88 and recites that "said composition is comprised of a metal oxide." The priority document supports superconducting material containing or comprising a metal oxide. Claim 90 depends from claim 88 and recites "where said composition is comprised of a transition metal oxide, a copper oxide is a transition metal oxide." The published patent application corresponding to the priority document (EPO 0274343 A1, 7-27-88) at column 3, line 6 recites Ti as a transition
metal. It is noted that in claim 1 of the EPO published patent application corresponding to the priority document, claim 1 recites the structure $\mathrm{RE}_{2-x} A E_{x} T M . O_{4-y}$ wherein TM is a transition metal. Claim 2 therein recites copper as the transition metal. Claim 3 therein recites nickel as the transition metal. Claim 8 therein recites chromium as the transition metal. Consequently, a broader class of transition metals other than copper is supported by the priority document.

At paragraph iv, on page 3 of PA, the Examiner states that "the limitation of 'copper-oxide compounds', as recited in claim 96" is not supported by the priority document with regards to which the Examiner states "the certified priority document may provide basis for compositions of the formula RE_{2} TM. O_{4}." As noted above, the general formula recited by the Examiner is incorrectly stated and should be stated wherein the quantity of oxygen, of the rare earth element and of an alkaline element is variable. Consequently, the term "a copper-oxide compound" is adequately supported by the priority document.

In paragraph v on page 3 of EA, the Examiner states that "the limitation to the effect that the 'copper-oxide compound' includes (including) at least one rare earth, rare-earth-like element and at least one alkaline-earth element 'as recited in claim 97... at claim 103...' is not supported by the priority document." The Examiner further states "the certified priority document may provide basis for compositions of the formula $\mathrm{RE}_{2} \mathrm{TM} . \mathrm{O}_{4}$ ". Applicants as stated above respectfully submit the priority document refers throughout and, in particular, in the Abstract to "the general formula $R E_{2-x} A E_{x} E M . O_{4-y}$ as stated above which includes a copper-oxide as stated above. The Examiner further states "but basis is not seen for the more general limitation of 'a copper-oxide compound' with a rare-earth (like) element and in alkaline earth element." It is noted that in the priority document, claim 2 refers to lanthanum as the
rare earth; claim 3 refers to cerium as the rare earth; claim 5 refers to barium as a partial substitute for the rare earth; claim 6 refers to calcium as a partial substitute for the rare earth; claim 7 refers to strontium as a partial substitute for the rare earth and claim 9 refers to neodymium as the rare earth. Clearly, priority document teaches barium, calcium, strontium. Consequently, the priority document supports the term rare earth-like since there are other elements other than those commonly referred to as the rare earth which are elements 57-71 which satisfy the teaching of the priority document and of the present application. The Abstract of the priority document refers to "AE as a member of the alkaline earth or a combination of at least two members of that group". Consequently, the priority document clearly supports an alkaline earth element.

At paragraph vi of page 4 of EA, the Examiner asserts that the priority document does not support "a non-stoichiometric atomic proportion" as found in claims 101, 102, 107 and 108. The exemplary general formula recited above which is recited in the priority document clearly shows the oxygen has a variable content and, consequently, is not in stoichiometric proportion. Consequently, the priority document clearly supports the term "non-stoichiometric atomic proportion".

At paragraph vii of page 4 of EA, the Examiner states that the priority document does not support "the limitation as to 'the effectively-zero-bulk resistivity intercept temperature $T_{0}{ }^{\prime}$, as found in claim 103." Applicants responded to this same comment at page 6 of their response dated September 26, 1995 at pages 4-6 thereof. The Examiner has not commented upon applicant's remarks and has merely repeated what was said in the Examiner's prior Office Action. Applicant's assume that the Examiner agrees with applicant's statements in their prior response in that the concept of the intercept temperature is well known in the prior art and can be included in claim

Ser. No. 08/303,561
103.

In view of the remarks herein, the Examiner is respectfully requested to withdraw the objection to applicant's claim for priority under 35 USC 119 based on applicant's priority document.

In paragraph 4 of EA at page 4 thereof, the specification has been objected to under 35 USC 112, first paragraph, as failing to provide an enabling disclosure commensurate with the scope of the claims. Paragraphs 4.A, 4.B and 4.C on pages 4-5 of the PA are identical to the Examiner's comments in the previous Office Action.

Paragraph 4-C on page 5 of EA rejects claims 24-26, 86-90 and 96-108 under 35 USC 112, first paragraph, for the same reasons set forth in the objection to the specification which is the same as in the Examiner's prior Office Action.

In paragraph 4-D at page 5 of EA, the Examiner states that he has considered applicant's arguments in response to the Examiner's prior Office Action stating that they "have been fully considered but they are not deemed to be persuasive." At paragraph 4.D.i at page 5 of EA, the Examiner states "the additional case law and arguments by the applicants have been newly noted. For the reasons that follow, however, the record as a whole is deemed to support the initial determination that the originally filed disclosure would not have enabled one skilled in the art to make and use the invention to the scope that it presently claimed." The Examiner does not specifically respond to the specific passage cited from the case law, nor rebut their applicability in the way applicant's have applied them. Consequently, the Examiner's silence is viewed as agreement with applicant's argument.

At paragraph d.ii on page 6 of EA, the Examiner states that "the applicant's quote several passages from their specification at pp. 13-15 of their September 29, 1995 amendment, the issue is the scope of enablement, not support". The Examiner further states "the issue here is the scope to which that disclosure would have taught one skilled in the art how to make and use the composition which shows the onset of superconductivity above $26^{\circ} \mathrm{K}$." Applicant's respectfully disagree since recitation of examples is part of the support for the scope of enablement. It addition to the examples recited at page 13-15 of applicant's specification, applicants' comments in their September 29, 1995 amendment, at pages 15-25 clearly show that applicant's "disclosure would have taught one skilled in the art how to make and use the composition which shows the onset of superconductivity above $26^{\circ} \mathrm{K}$."

At paragraph d.iii on page 6 of EA, the Examiner states "construed in light of that issue, the invention is not deemed to have been fully enabled by the disclosure to the extent fully claimed." Applicant's respectfully disagree and note that the Examiner has not specifically rebutted applicant's arguments on page 15-25 of applicant's September 29, 1995 amendment. All that the Examiner has said is that "the invention is not deemed to have been fully enabled by the disclosure to the extent fully claimed."

At paragraph d.iii. 1 on page 6 of EA, the Examiner states in regard to applicant's argument in their September 29, 1995 amendment that applicant's states their disclosure "lists several species such as $\mathrm{La}_{2-x} \mathrm{Ba}_{\mathrm{x}} \mathrm{CuO}_{4-y}$ which they indicate are found in the present disclosure." Applicant's disclosure supports a substantially broader scope than this species. In particular, the Examiner is directed to applicant's Summary of Invention on page 6-9 of applicant's application. There is no requirement that applicants list every possible species that could possibly come within the scope of
applicant's claims. Applicant's broadly teach transition metal oxides which can contain rare earth and alkaline earth elements.

At paragraph D.iii.1.a, at page 6 of EA, the Examiner states "notwithstanding that argument it still does not follow that the invention is fully enabled for the scope presently claimed." Applicant's respectfully disagree for the reasons provided by applicants on page 15-25 of their September 29, 1995 amendment.

At paragraph d.iii.1.b at page 6 of EA, the Examiner refers to the paragraph bridging pages 3 and 4 of applicant's specification. The Examiner states "the present specification actually shows that known forms of 'transition metal oxide' and 'a copper-oxide compound' do not show the onset of superconductivity above 26°. The Examiner then states that "applicants state that the prior art includes a Li-Ti-O system with superconducting onsets as high as $13.7^{\circ} \mathrm{K}$." Applicants do not see the relevance of the Examiner's statements. Such a composition would not be included within the claims since applicant's claim covers only compositions having superconductivity above $26^{\circ} \mathrm{K}$. Applicant's acknowledge that Ti is a transition metal. The Examiner notes "that disclosure also refers to 'a second non-conducting CuO phase at p. 14, line 18." Applicant's do not understand the significance of this quoted passage is to the Examiner's argument.

At paragraph d.iii.1.c at page 7 of EA, the Examiner states "accordingly, the present disclosure is not deemed to have been fully enabling with respect to the 'transition metal oxide' of claim 24, the 'composition' of claim 88 or the 'copper-oxide compound' of claim 98." Again, applicant's note applicant's arguments on page 15-25 of their September 29, 1995 amendment. Applicant's, at page 5, line 3 of their specification, refer to transition metal oxides and the sentence bridging pages 5 and 6
to superconducting composition at a T_{c} greater than $26^{\circ} \mathrm{K}$.

At paragraph d.iii. 2 of page 7 of EA, the Examiner states that "the examples of p. 18, lines $1-20$, of the present specification further substantiate the finding that the invention is not fully enabled for the scope presently claimed." Applicant's respectfully disagree.

At paragraph diii.2.a at page 7 of EA, the Examiner refers to an example in the first paragraph of page 18 of their specification which says at line 10 "and there is no superconductivity." The Examiner appears to be using this paragraph to support the Examiner's assertion that applicant's claims are not enabled by their disclosure. Quite to the contrary, this paragraph supports applicant's assertion that their claims are enabled. Applicant's are providing a broad teaching of how these compositions can be fabricated, by providing a teaching which has not resulted in superconductivity, applicant's are providing a teaching of methods which do lead to examples showing superconductivity. Even if the claims encompass some inoperative examples, this does not render the claims unenabled. Moreover, the claims specifically refer to compounds which are superconducting. Consequently, a sample which is not superconducting is not within the scope of the claim. Applicant's submit that the Examiner is citing fragments of statements from their specification out of context resulting in a misunderstanding of applicant's teaching.

At paragraph d.iii.2.b, at page 7 of EA, the Examiner refers to applicant's example which appears to be in the third paragraph of page 18 of applicant's specification which at line 20 recites $T_{c}=26^{\circ} \mathrm{K}$. The Examiner then says that applicant's claims require T_{c} to be greater than $26^{\circ} \mathrm{K}$ in what appears to be an attempt to show that applicant's claims are not enabled. Applicants do not believe the

Ser. No. 08/303,561
recitation of $26^{\circ} \mathrm{K}$ in the specification and $>26^{\circ} \mathrm{K}$ in the claims has any significance to this argument. Applicant's can amend their claims to say $\geq 26^{\circ}$ if that's what the Examiner would prefer. Clearly, the temperature consistent with applicant's claims can be infinitesimally close to $26^{\circ} \mathrm{K}$.

At paragraph d.ii.2.c at page 7 of EA, the Examiner states "consequently, the present disclosure is not deemed to adequately enable the full scope of the present claims." The Examiner further states "independent claims 86 and 103 may require the presence of rare earth, alkaline earth, and transition metals, but the aforementioned examples show that superconductivity is still very unpredictable." Applicant's respectfully disagree that the aforementioned examples show that superconductivity is still very unpredictable. The Examiner has taken applicant's examples out of context. These examples are provided as part of the teaching on how to fabricate the claimed invention.

The Examiner further states "those claims cannot be deemed to be fully enabled." Applicants respectfully disagree. It is also noted again that the Examiner has not addressed applicants arguments on page 15-25 of applicants September 29, 1995 amendment.

At paragraph div on page 7 of EA, the Examiner refers to 3 affidavits submitted by applicants. Applicants acknowledge that the 3 affiants are employees of the assignee of the present application. At paragraph d.IV. 1 at page 8 of EA the Examiner states "those affidavits do not set forth particular facts to support the conclusions that all superconductors based on applicants' work behave in the same way and that one of skill in the art can make those superconductors without undue experimentation. Conclusionary statements in an affidavit or specification do not
provide the facts or evidence needed for patentability." The referred to affidavits are dated after August 19, 1995 a period of more than 8 years after the present application was filed. Those affidavits refer to developments in the field after the publication of applicants which was cited on page 6 of applicants specification. The statements in the affidavits are not conclusionary but are statements of fact. By the Examiners statement that these are conclusionary the Examiner appears to be placing himself up as an expert in the field of superconductivity. Applicants respectfully request that the Examiner submit an affidavit in the present application rebutting the position taken by applicants 3 affiants.

At paragraph div.2, at page 8 of PA, the Examiner states "those affidavits do not overcome the non-enablement rejection. The present specification discloses on its face that only certain oxides compositions of rare earth, alkaline earth and transition metals made according to the certain steps will superconduct at greater than $26^{\circ} \mathrm{K}$." Applicants respectfully disagree with this statement. Applicants' specifications discloses substantially more as applicants have indicated above and as applicants have indicated in their amendment of September 29, 1995. Applicants work clearly started the field of high-temperature superconductivity. Consequently, applicants teaching has enabled this entire field. The Examiners statements to the contrary have no basis in fact.

At paragraph d.iv. 3 of page 8 of PA, the Examiner states "those affidavits are not deemed to shed light on the state of the art and enablement at the time the invention was made." Applicant's respectfully disagree. The Examiner has not shown any reason contrary to applicants assertion that the superconducting materials can be made by the methods disclosed by applicant's and as stated by applicant's 3 affiants. Applicant's have objectively enabled their application and their claims. Applicant's
have pointed to copious locations in their specification which do provide support for applicant's claims.

At paragraph div. 4 at page 8 of EA, the Examiner states that "it is fully understood that the applicant's are the pioneers in high temperature metal-oxide superconductivity. The finding remains, nonetheless, that the disclosure is not fully enabling for the scope of the present claims." Applicant's respectfully disagree. The Examiner has provided no substantial evidence to support this assertion. It is respectfully requested that the Examiner support their assertion with factual evidence and not unsupported statements.

In view of the remarks herein, the Examiner is respectfully requested to withdraw the objection to the specification under 35 USC 112, first paragraph, and the rejection of claims 24-26, 86-90 and 96-108 under 35 USC 112, first paragraph.

Claims 86-87 and 96-108 have been rejected under 35 USC 112, second paragraph as being indefinite for failing to particularly point out and distinctly claim the subject matter which applicant's regard as their invention. Applicant's note that the Examiner has not responded to applicant's comments which supports applicants position that a person of skill in the art would understand the terms "layer-type" and "perovskite-like" and has just repeated their rejection of the prior Office Action. Applicant's respectfully request the Examiner to comment on applicant's prior remarks.

In view of the remarks herein, the Examiner is respectfully requested to withdraw the rejection of claims 86-87 and 96-108 under 35 USC 112, second paragraph.

Claims 24-26, 86-90 and 96-108 have been rejected under 35 USC 102(a) as being anticipated by Asahi Shinbum Int'l. Satellite Edition (London) November 11, 1986. The Examiner incorrectly gives a date of November 11, 1986 for this article. It is November 28, 1986.

Paragraph 6.a and 6.b of page 10 of EA are essentially the same as in the Examiner's prior action. Applicant's have responded to these paragraphs in their prior response.

In paragraph 6-C at page 10 of EA, the Examiner notes applicant's prior responses and states that they "have been fully considered but they are not deemed to be persuasive." It is noted that in the declaration of co-inventors J.G. Bednorz and K.A. Mueller dated March 21, 1988, mailed into the patent office on June 22, 1988 at paragraph 3 states "On approximately October 16, 1986, we gave Praveen Chaudhari... six samples of the high temperature superconductive ceramic oxide materials that we had described in our aforementioned Z Physik B. publication. Praveen Chaudhari brought these samples back to the U.S. when he returned after visiting with us on or about October 16, 1986." This is evidence that these samples are brought into the United States on or about October 16, 1986. When these samples came into the United States, since they were inherently superconductive as claimed, the invention was essentially reduced to practice in the United States on that date. It is further noted that the Declaration of Alexis P. Malozenoff signed March 30, 1988 states at paragraph 3, "On or about November 15, 1986, Richard Greene and I travelled to Baltimore for a magnetics conference. During our travel to Baltimore, we discussed Greene's ongoing experiments in high T_{c} superconducting samples which he said had been received from Bednorz and Mueller." This is clear evidence that by November 15, 1986, superconducting samples fabricated by applicant's were being
measured in the United States. These samples were inherently superconducting and, consequently, established the reduction to practice in the United States as of that date. The Declaration of Cheng-Chung John Chi dated March 29, 1988 states at paragraph 2, "At a time prior to approximately the middle of November, 1986, Chang C. Tsuei told me a measurement he made on T_{c} superconducting material which he said were received from Georg Bednorz and K.A. Mueller, two physicists working for IBM Corporation in Zurich, Switzerland... Chang Tsuei said that he had measured resistivity versus temperature of these samples." This is again further evidence that the Mueller Bednorz superconducting samples were in the United States prior to the middle of November 1986."

At page 11 of EA in the paragraph labelled i, the Examiner states "the applicants argue that Sung II Park affidavit of March 30, 1988 states at para. 4 that measurements were taken of a superconductive sample on or before November 9, 1986, to the best of affiants recollection, or no later than November 15, 1986. The document evidence is not deemed to support that argument, however." In the paragraph marked (1) on page 11 of PA, the Examiner states "plots of those measurements are missing. See the Cheng C. Tseui affidavit of March 30, 1988, para. 6." This statement comes directly out of Cheng Tseui's declaration. Notwithstanding, Cheng Tseui's declaration says the measurements were made, that the plots that were taken were missing. The last sentence of this paragraph states "1 believe that they may have been inadvertently thrown away when the laboratory was subsequently extensively cleaned." The Examiner further states "a hand-drawn diagram with the indication of a vacuum pumped down on November 9, 1988 also is not deemed to show that the measurements were taken." The Examiner is referring to paragraph 5 of the Cheng Tseui declaration and exhibit C which contains the handdrawn figure.

At paragraph (2) of page 11 of EA, the Examiner points to cablegrams sent by Dr. Greene to applicants in Zurich which are attached as exhibit B to his declaration. The Examiner states "Dr. Greene reports that no indication of superconductivity has been seen in his specific heat measurements for temperature $4-35^{\circ} \mathrm{K}$." The Examiner fails to note that in the same cablegram dated November 11, 1986, Dr. Greene states "this is not really too surprising given the very broad transition to have found in resistivity and susceptibility." The Examiner acknowledges that "exhibit C has pages dated December 1, 1986 on in exhibit D, which actually has plots and resistance versus temperature dated as early as December 3, 1986." The Examiner is conceding that high T_{c} superconductivity was measured on the samples which the very same set of cablegrams and affidavit say were in the United States in the middle of November 1986. Consequently, by the Examiner's own admission, samples which were in the United States were clearly shown to be superconducting as of December 3, 1986. Consequently, the samples that were in the United States as of November 9 were inherently superconducting. It is clear from the same declarations that applicant's were communicating with Dr. Greene. It is noted that Dr. Greene's cablegram dated November 25, 1986 to applicants states he will resume work on the new superconductor and that not much will happen because of the Thanksgiving holiday until the following week. There are cablegrams dated November 26, December 1, December 2, 1986 related to high T_{c} superconductivity. Dr. Greene's exhibit C has notebook pages dated December 1, 1986 to December 5, 1986. The December 5, 1986 shows T_{c} of $26^{\circ} \mathrm{K}$ and $30^{\circ} \mathrm{K}$. Exhibit D show a plot of R vs. T dated December 8,1986 . Clear reduction to practice is shown and clear diligence is shown from prior to the date of the Asahi Shinbum article. This was clearly done in close correspondence with the applicants. Thus, the facts clearly show applicant's can swear behind the Asahi Shinbum reference.

At paragraph ii on page 11 of EA, the Examiner states "the applicant's assert that the Asahi Shinbum article reports a third parties confirmation of their original discovery. That assertion appears to be correct, but the article is still deemed to be prior art under 35 USC 102(a). At page 12 under paragraph 2, subparagraphs A, B and C , the Examiner made comments in regards to four cases applicant's have cited in support of their position that the Asahi Shinbum article should not be prior art because to hold it as prior art would not afford applicant's the benefit the one year grace period provided them under 35 USC 102(b).

At paragraph 3 on page 13 of EA, applicant's respectfully disagree that the earliest date with which applicant's can show for their invention in this country is December 1986. Numerous affidavits which applicant's have submitted clearly show that applicant's have, in early November 1986, the superconducting compounds which the Examiner admits in applicant's data of December 3, 1986 shown the measurements of critical temperatures. Consequently, the Examiner's statement acknowledges the Examiner's apparent agreement in the fact that the materials were in this country in the middle of November 1986. Applicant's respectfully disagree with the Examiner's statement, "notwithstanding the possible uniqueness of the present facts, however, the Asahi Shinbum article is still deemed to be prior art under 35 USC 102(a), which the applicant's have not been able to overcome with a showing of early date in this country or showing of their direction and control over the work done by the third party." Applicant's note that the Asahi Shinbum article provides no enablement but merely is an assertion of a result achieved which points to applicant's own work which was reported in the article applicant's cite in their application at page 6. Consequently, any description in the Asahi Shinbum article is applicant's own work. If one would follow the rationale of the Examiner, if an applicant publishes an article and

Ser. No. 08/303,561
some other third party reports that same result prior to applicant's filing of a patent application, (which is subsequently filed within one year of applicant's own publication) the reporting of applicant's work by the third party would be prior art against applicant's application. Such a result would deny applicant's the one year grace period provided under 35 USC 102(b).

In view of the changes to the claims and the remarks herein, the Examiner is respectfully requested to reconsider the above-identified application. If the Examiner wishes to discuss the application further, or if additional information would be required, the undersigned will cooperate fully to assist in the prosecution of this application.

Please charge any fee necessary to enter this paper to deposit account 09-0468.

If the above-identified Examiner's Action is a final Action, and if the above-identified application will be abandoned without further action by applicants, applicants file a Notice of Appeal to the Board of Appeals and Interferences appealing the final rejection of the claims in the above-identified Examiner's Action. Please charge deposit account 09-0468 any fee necessary to enter such Notice of Appeal.

Reg. No. 32,053
IBM Corporation
Intellectual Property Law Dept.
P.O. Box 218

Yorktown Heights, N.Y. 10598
(914) 945-3216

Enter amendment was pent.
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: J. Bednorz et al.
Serial No.: 08/303,561
Filed: September 9, 1994

Date: February 10, 1997

Group Art Unit: 1105
Examiner: D. McGinty

For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, AND METHODS FOR THEIR USE AND PREPARATION

The Commissioner of Patents and Trademarks Washington, D.C.

AMENDMENT
Sir:
In response to the Office Letter dated January 8, 1997, please consider the following:

IN THE CLAIMS

Add claims 114-122.
114. (Added) A method including the steps of forming col therein which exhibits a superconducting state at a critica $26^{\circ} \mathrm{K}$;

maintaining the temperature of said material at a tempers temperature to produce said superconducting state in said phase;
passing an electrical supercurrent through said copper oxide while it is in said

Filing: Amendment, Amendment/Response Trap ittal Sheet, Certificate of Mailing
rakhis stane \% RETURN TO US
in $r e$ application of: J, Bednorz et al.
For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION...
Sertal No.:08/303, 561 Docket No. : Y0987-074BY Atさy.: DPM
Received in the U.S. Fatert is mademerk 0rece: \qquad
No. of peges of specisication : Ho. of reser on cioibe...
No. of sheets of drawings: \qquad
Doclarabion ta actached to apecification,
311 fees are charged to our Acoount No. 09-0468
2/10/97
\qquad

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Amendment/Response Transmittal

In re application of: J. Bednorz et al.
Serial No.: 08/303,561
Filed: September 9, 1994
For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH
TRANSITION TEMPERATURE, AND METHODS FOR THEIR USE AND PREPARATION

Commissioner of Patents and Trademarks
Washington, D.C. 20231
Sir:
Transmitted herewith for filing is an Amendment/Response in the above-identified Application.
\square No additional fee is required.
The fee has been calculated as shown below:
(Col. 1)

CLAIMS REMAINING AFTER AMENDMENT		HIGHEST NO. PREVIOUSLY PAID FOR	PRESENT EXTRA
TOTAL *	MINUS	$* *$	$=$
INDEPENDENT $*$	MINUS	$* * *$	$=$
\square 1ST PRESENTATION OF MULTIPLE DEP. CLAIMS			

Other Than Small Entity

RATE	ADDITION- AL FEE
$x \$ 22.00=$	$\$ 110.00$
$x \$ 80.00=$	$\$ 400.00$
$\$ 260.00$	$\$$
TOTAL	$\$ 510.00$

* If the entry in Col. 1 is less than the entry in Col. 2, write " 0 " in Col. 3.
** If the "Highest No. Previously Paid For" IN THIS SPACE is less than 20, write " 20 " in this space.
*** If the "Highest No. Previously Paid For" (Total or Independent) is the highest number found from the equivalent box in Col. 1 of a prior amendment or the number of claims originally filed.

X Please charge Deposit Account No. 09-0468 any fee necessary to enter this paper.
X The Commissioner is hereby authorized to charge payment of the following fees associated with this communication or credit any overpayment to Deposit Account No. 09-0468. A duplicate copy of this sheet is enclosed.
X Any additional filing fees required under 37 C.F.R. §1.16.
X Any patent application processing fees under 37 C.F.R. §1.17.

Date: February 10, 1997

IBM CORPORATION
Intellectual Property Law Dept. P.O. Box 218

Yorktown Heights, NY 10598
Tel. No. (914) 945-3217

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of:
J. Bednorz et al.

Serial No.: 08/303,561
Filed: September 9, 1994

Date: February 10, 1997
Group: 1105
Examiner: D. McGinty
Docket No. YO987-074BY

For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, AND METHODS FOR THIER USE AND PREPARATION

Commissioner of Patents and Trademarks
Washington, D.C. 20231

CERTIFICATE OF MAILING UNDER 37 CFR 1.8(a)

I hereby certify that the attached correspondence comprising:
Amendment
Amendment/Response Transmittal Sheet
Acknowledgement card
is being deposited with the United States Postal Service as first class mail in an envelope addressed to:

Commissioner of Patents and Trademarks Washington, DC 20231

on February 10, 1997

in the united states patent and trademark office

Applicants: J. Bednorz et al. Date: February 10, 1997
Serial No.: 08/303,561
Filed: September 9, 1994
Group Art Unit: 1105
Examiner: D. McGinty
For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, AND METHODS FOR THEIR USE AND PREPARATION

The Commissioner of Patents and Trademarks
Washington, D.C.

AMENDMENT

Sir:
In response to the Office Letter dated January 8, 1997, please consider the following:

IN THE CLAIMS

Add claims 114-122.
114. (Added) A method including the steps of forming copper oxide having a phase therein which exhibits a superconducting state at a critical temperature in excess of $26^{\circ} \mathrm{K}$;
maintaining the temperature of said material at a temperature less than said critical temperature to produce said superconducting state in said phase;
passing an electrical supercurrent through said copper oxide while it is in said
superconducting state;
said copper oxide includes at least one element selected from the group consisting of a Group II A element and at least one element selected from the group consisting of at least one a rare earth element and a Group III B element.
115. (Added) A method comprising the steps of:
forming a composition including copper, oxygen and any element selected from the group consisting of at least one Group II A element and an element selected from the group consisting of a rare earth element and a Group III B element, where said composition is a mixed copper oxide having a non-stoichiometric amount of oxygen therein and exhibiting a superconducting state at a temperature greater than $26^{\circ} \mathrm{K}$;
maintaining said composition in said superconducting state at a temperature greater than $26^{\circ} \mathrm{K}$; and
passing an electrical current through said composition while said composition is in said superconducting state.
116. (Added) A method including the steps of:
forming a composition exhibiting a superconductive state at a temperature in excess of $26^{\circ} \mathrm{K}$;
maintaining said composition at a temperature in excess of $26^{\circ} \mathrm{K}$ at which temperature said composition exhibits said superconductive state;
passing an electrical current through said composition while said composition is in said superconductive state; and
said composition including a copper oxide and at least one element selected from the group consisting of Group II A element and at least one element selected from the group consisting of a rare earth element and a Group III B element.
117. (Added) A superconductive method for causing electric-current flow in a superconductive state at a temperature in excess of $26^{\circ} \mathrm{K}$, comprising:
(a) providing a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound having a layer-type perovskite-like crystal structure, the composition having a superconductive transition temperature T_{c} of greater than $26^{\circ} \mathrm{K}$, said superconductive composition includes at least one element selected from the group consisting of a Group II A element and at least one element selected from the group consisting of a rare earth element and a Group III B element;
(b) maintaining the superconductor element at a temperature above $26^{\circ} \mathrm{K}$ and below the superconductor transition temperature T_{c} of the superconductive composition; and
(c) causing an electric current to flow in the superconductor element.
118. (Added) A superconductive method for conducting an electric current essentially without resistive losses, comprising:
(a) providing a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound having a layer-type perovskite-like crystal structure, the copper-oxide compound including at least one element selected from the group consisting of a group || A element and at least one element selected from the group consisting of a rare earth element and a Group III B element, the composition having a superconductive/resistive transition defining a superconductive/resistive-transition temperature range between an upper limit defined by a transition-onset temperature T_{c} and a lower limit defined by an effectively-zero-bulk-resistivity intercept temperature $T_{\rho=0}$, the transition-onset temperature T_{c} being greater than $26^{\circ} \mathrm{K}$;
(b) maintaining the superconductor element at a temperature below the effectively-zero-bulk-resistivity intercept temperature $\mathrm{T}_{\boldsymbol{\rho}=0}$ of the superconductive composition; and
(c) causing an electric current to flow in the superconductor element.
119. (Added) A method including the steps of forming a transition metal oxide having a phase therein which exhibits a superconducting state at a critical temperature in excess of $26^{\circ} \mathrm{K}$;
maintaining the temperature of said material at a temperature less than said critical temperature to produce said superconducting state in said phase;
passing an electrical supercurrent through said copper oxide while it is in said

Ser. No. 08/303,561
superconducting state;
said copper oxide includes at least one element selected from the group consisting of a Group II A element and at least one element selected from the group consisting of a rare earth element and a Group III B element.
120. (Added) A method comprising the steps of:
forming a composition including a transition metal, oxygen and any element selected from the group consisting of at least one Group II A element and an element selected from the group consisting of a rare earth element and a Group III B element, where said composition is a mixed copper oxide having a non-stoichiometric amount of oxygen therein and exhibiting a superconducting state at a temperature greater than $26^{\circ} \mathrm{K}$;
maintaining said composition in said superconducting state at a temperature greater than $26^{\circ} \mathrm{K}$; and
passing an electrical current through said composition while said composition is in said superconducting state.
121. (Added) A method including the steps of:
forming a composition exhibiting a superconductive state at a temperature in excess of $26^{\circ} \mathrm{K} ;$
maintaining said composition at a temperature in excess of $26^{\circ} \mathrm{K}$ at which temperature

Ser. No. 08/303,561
said composition exhibits said superconductive state;
passing an electrical current through said composition while said composition is in said superconductive state; and
said composition including a copper oxide and at least one element selected from the group consisting of Group II A element and at least one element selected from the group consisting of a rare earth element and a Group III B element.
122. (Added) A superconductive method for causing electric-current flow in a superconductive state at a temperature in excess of $26^{\circ} \mathrm{K}$, comprising:
(a) providing a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a transition metal oxide compound having a layer-type perovskite-like crystal structure, the composition having a superconductive transition temperature T_{c} of greater than $26^{\circ} \mathrm{K}$, said superconductive composition includes at least one element selected from the group consisting of a Group II A element and at least one element selected from the group consisting of a rare earth element and a Group III B element;
(b) maintaining the superconductor element at a temperature above $26^{\circ} \mathrm{K}$ and below the superconductor transition temperature T_{c} of the superconductive composition; and
(c) causing an electric current to flow in the superconductor element.

Ser. No. 08/303,561
123. (Added) A superconductive method for conducting an electric current essentially without resistive losses, comprising:
(a) providing a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a transition metal-oxide compound having a layer-type perovskite-like crystal structure, the transition metal-oxide compound including at least one element selected from the group consisting of a Group II A element and at least one element selected from the group consisting of a rare earth element and a Group III B element, the composition having a superconductive/resistive transition defining a superconductive/resistive-transition temperature range between an upper limit defined by a transition-onset temperature $T T_{c}$ and a lower limit defined by an effectively-zero-bulk-resistivity intercept temperature $T_{\rho=0}$, the transition-onset temperature T_{c} being greater than $26^{\circ} \mathrm{K}$;
(b) maintaining the superconductor element at a temperature below the effectively-zero-bulk-resistivity intercept temperature $T_{\rho=0}$ of the superconductive composition; and
(c) causing an electric current to flow in the superconductor element.

REMARKS

Claims 24-26, 86-90 and 96 to 113 are in the application.

Herein, EA will refer to the Examiner's Action's dated April 15, 1996.

In regard to applicant's claim of priority, in PA paragraph 3.b.i and in paragraph 3.b.iii and in paragraph 3.b.iv and 3.v the Examiner states "the certified priority document may provide basis for compositions of the formula $\mathrm{RE}_{2} \mathrm{TM} . \mathrm{O}_{4}$ ". It is noted that the Abstract of the priority document refers to "the second superconductive compounds where oxides of the general formula $R E_{2-x} A E_{x} T M O_{4-y}$, wherein $R E$ is a rare earth, AE is a member of the group of alkaline earths or a combination of at least two members of that group, and TM is a transition metal, and wherein $x<0.3$ and $0.1 \leq$ $y \leq 0.5$. This formula permits no alkaline earth and a varying amount of alkaline earth and rare earths and a varying amount of oxygen. At column 3, lines 20 and 35 , there is recited "the Ba-La-Cu-O system" and at line 41 " $\mathrm{La}_{2-x} \mathrm{Ba}_{\mathrm{x}} \mathrm{DuO}_{4-\mathrm{y}} \mathrm{x}<1$ and $\mathrm{y} \leq 0$ and at line 44 teaches $\mathrm{La}_{1-\mathrm{x}} \mathrm{Va}_{\mathrm{x}} \mathrm{CuO}_{3 .-\mathrm{y}}$. The Examiner at page 2 of PA at paragraph 3.b.i states that the priority document does not provide support for "the limitations a composition including a transition metal, a rare earth or rare earth-like elements, an alkaline earth element, an oxygen as found in claim 86". It is noted that in the priority document at column 2, lines 13-19 it is stated that "it is a characteristic of the present invention that in the compounds in question that the RE portion is partially substituted by one member of the alkaline earth group of metals, or by a combination of the members of this alkaline earth group and that the oxygen content is at a deficit." It is further noted that at column 2, lines 20-23 it states that "for example, one such compound that meets the description given by this lanthanum copper oxide $\mathrm{La}_{2} \mathrm{CuO}_{4}$ in which the tantalum which belongs to the IIIB group of the elements is in part substituted by one member of the neighboring IIIA group of elements." In the sentence bridging pages 2 and 3 of EA, the Examiner states that "the certified priority document may provide a basis for formula $\mathrm{RE}_{2} \mathrm{TM} . \mathrm{O}_{4}$ at P.2, para. 4, but the claimed composition is deemed to be much broader than that formula." It is clear from the quoted sections of the priority document that the priority document clearly supports a much broader composition than the Examiner is claiming that it does, and that the
priority document, in fact, does support applicant's claim 86.

At page 3, paragraph ii of EA, the Examiner claims there is no support for "the limitation 'non-stoichiometric amount of oxygen', as found in claim 86". Applicants submit that the use of the term oxygen deficit is noted by the Examiner at P.2, para. 4 of the priority document and the varying amount of oxygen given in both formulas in sufficient and adequate support for the limitation 'non-stoichiometric' amount of oxygen." In regards to paragraph iii of page 3 of PA, the Examiner states there is no support for "transition metal oxides" as found in claim 24. Claim 24 explicitly recites transition metal oxide which is explicitly recited in the priority document. Claim 88 is directed to the superconducting material having a transition temperature excess at $26^{\circ} \mathrm{K}$. Claim 89 depends from claim 88 and recites that "said composition is comprised of a metal oxide." The priority document support superconducting material containing or comprising a metal oxide. Claim 90 depends from claim 88 and recites "where said composition is comprised of a transition metal oxide, a copper oxide is a transition metal oxide." The issued patent corresponding to the priority at column 3, line 6 recites Ti as a transition metal. [It is noted that in claim 1 of the EPO patent corresponding to the priority document, claim 1 recites the structure $R_{2-x} A E_{x} T M . O_{4-y}$ wherein TM is a transition metal. Claim 2 therein recites copper as the transition metal. Claim 3 therein recites nickel as the transition metal. Claim 8 therein recites chromium as the transition metal. Consequently, a broader class of transition metals other than copper is supported by the priority document.]

At paragraph iv, on page 3 of PA, the Examiner states that "the limitation of 'copper-oxide compounds', as recited in claim 96 " is not supported by the priority document with regards to which the Examiner states "the certified priority document may provide basis for compositions of the formula RE_{2} TM. $\mathrm{O}_{4} . "$ As noted above, the
general formula recited by the Examiner is incorrectly stated and should be stated wherein the quantity of oxygen, of the rare earth element and of an alkaline element is variable. Consequently, the term "a copper-oxide compound" is adequately supported by the priority document.

In paragraph v on page 3 of EA, the Examiner states that "the limitation to the effect that the 'copper-oxide compound' includes (including) at least one rare earth, rare-earth-like element and at least one alkaline-earth element 'as recited in claim $97 . .$. at claim 103...' is not supported by the priority document." The Examiner further states "the certified priority document may provide basis for compositions of the formula $\mathrm{RE}_{2} \mathrm{TM} . \mathrm{O}_{4}$ ". Applicants as stated above respectfully submit the Examiner's misrepresenting the priority document which refers throughout and, in particular, in the Abstract to "the general formula $\mathrm{RE}_{2 \cdot x} \mathrm{AE} \mathrm{E}_{\mathrm{x}} \mathrm{EM} . \mathrm{O}_{4 \cdot y}$ as stated above which includes a copper-oxide as stated above. The Examiner further states "but basis is not seen for the more general limitation of 'a copper-oxide compound' with a rare-earth (like) element and in alkaline earth element." It is noted that in the priority document, claim 2 refers to lanthanum as the rare earth; claim 3 refers to cerium as the rare earth; claim 5 refers to barium as a partial substitute for the rare earth; claim 6 refers to calcium as a partial substitute for the rare earth; claim 7 refers to strontium as a partial substitute for the rare earth and claim 9 refers to neodymium as the rare earth. Clearly, priority document uses barium, calcium and strontium. Consequently, the priority document supports the term rare earth-like since there are other elements other than those commonly referred to as the rare earth which are elements 57-71 which satisty the teaching of the priority document and of the present application. The Abstract of the priority document refers to "AE as a member of the alkaline earth or a combination of at least two members of that group". Consequently, the priority document clearly supports an alkaline earth element.

At paragraph vi of page 4 of EA, the Examiner asserts that the priority document does not support "a non-stoichiometric atomic proportion" as found in claims 101, 102, 107 and 108. The exemplary general formula recited above which is recited in the priority document clearly shows the oxygen has a variable content and, consequently, is not in stoichiometric proportion. Consequently, the priority document clearly supports the term "non-stoichiometric atomic proportion".

At paragraph vii of page 4 of EA, the Examiner states that the priority document does not support "the limitation as to 'the effectively-zero-bulk resistivity intercept temperature T_{0}^{\prime}, as found in claim 103." Applicants responded to this same comment at page 6 of their response dated September 26, 1995 at pages 4-6 thereof. The Examiner has not commented upon applicant's remarks and has merely repeated what was said in the Examiner's prior Office Action. Applicant's assume that the Examiner agrees with applicant's statements in their prior response in that the concept of the intercept temperature is well known in the prior art and can be included in claim 103.

In view of the remarks herein, the Examiner is respectfully requested to withdraw applicant's claim for priority under 35 USC 119 based on applicant's priority document.

In paragraph 4 of EA at page 4 thereof, the specification has been objected to under 35 USC 112, first paragraph, as failing to provide an enabling disclosure commensurate with the scope of the claims. Paragraphs 4.A, 4.B and 4.C on pages 4-5 of the PA are identical to the Examiner's comments in the previous Office Action.

Paragraph 4-C on page 5 of EA rejects claims 24-26, 86-90 and 96-108 under 35 USC 112, first paragraph, for the same reasons set forth in the objection to the specification which is the same as in the Examiner's prior Office Action.

In paragraph 4-D at page 5 of EA, the Examiner states that he has considered applicant's arguments in response to the Examiner's prior Office Action stating that they "have been fully considered but they are not deemed to be persuasive." It is noted that the Examiner makes reference to applicant's case law which is primarily the case law cited by the Examiner in the prior Office Action against applicants, but the Examiner does not specifically respond to the specific passage cited from the case law, nor rebut their applicability in the way applicant's have applied them. Consequently, the Examiner's silence on these issues are taken to mean that the Examiner agrees that these passages from the cited case law are correctly applied by applicants in this application. At paragraph 4.D.i at page 5 of EA, the Examiner states "the additional case law and arguments by the applicants have been newly noted. For the reasons that follow, however, the record as a whole is deemed to support the initial determination that the originally filed disclosure would not have enabled one skilled in the art to make and use the invention to the scope that it presently claimed." The Examiner does not support this statement with any case law citations. Applicants note that this is not a rebuttal of the applicability of the passages quoted from the case law as applicant's have cited them. Applicant's note that the Examiner seemed to have specifically avoided applying the case law and, consequently, as stated above, applicants take the Examiner's silence as concurrence in the manner that applicant's have applied this case law.

At paragraph d.ii on page 6 of PA, the Examiner states that "the applicant's quote several passages from their specification. At pp. 13-15 of their September 29,

1995 amendment, the issue is the scope of enablement, not support". The Examiner further states "the issue here is the scope to which that disclosure would have taught one skilled in the art how to make and use the composition which shows the onset of superconductivity above $26^{\circ} \mathrm{K}$." Applicant's believe the Examiner's comments are not appropriate since recitation of examples are part of the support for the scope of enablement. It addition to the examples recited at page 13-15 of applicant's specification, applicants' comments in their September 29, 1995 amendment, at pages 15-25 clearly show that applicant's "disclosure would have taught one skilled in the art how to make and use the composition which shows the onset of superconductivity above $26^{\circ} \mathrm{K}$." The Examiner seems to have disregard applicant's comments on pages 15-25.

At paragraph d.iii on page 6 of PA, the Examiner states "construed in light of that issue, the invention is not deemed to have been fully enabled by the disclosure to the extent fully claimed." Applicant's respectfully disagree and note that the Examiner has not specifically rebutted applicant's arguments on page 15-25 of applicant's September 29, 1995 amendment.

At paragraph d.iii. 1 on page 6 of PA, the Examiner states in regard to applicant's argument in their September 29, 1995 amendment that applicant's say their disclosure lists several species such as $\mathrm{La}_{2-\mathrm{x}} \mathrm{Ba}_{\mathrm{x}} \mathrm{CuO}_{4 \cdot \mathrm{y}}$ which they indicate are found in the present disclosure." Applicant's respectfully disagree with the tone of the Examiner' statement. Applicant's disclosure supports a substantially broader scope than this species. In particular, the Examiner is directed to applicant's Summary of Invention on page 6-9 of applicant's application. The Examiner seems to confuse scope of invention with specific species recited. There is no requirement that applicants list every possible species that could possibly come within the scope of
applicant's claims. Applicant's broadly teach transition metal oxides.

At paragraph D.iii.1.a, at page 6 of EA, the Examiner states "notwithstanding that argument it still does not follow that the invention is fully enabled for the scope presently claimed." Again, it is noted that the Examiner does not rebut the case law and argument provided by applicants on page 15-25 of their September 29, 1995 amendment which addresses this issue in detail.

At paragraph d.iii.1.b at page 6 of EA, the Examiner refers to the paragraph bridging pages 3 and 4 of applicant's specification. The Examiner states "the present specification actually shows that known forms of 'transition metal oxide' and 'a copper-oxide compound' do not show the onset of superconductivity above 26°. The Examiner then states that "applicants state that the prior art includes a Li-Ti-O system with superconducting onsets as high as $13.7^{\circ} \mathrm{K} .{ }^{\prime \prime}$ Applicants do not see the relevance of the Examiner's statements. Such a composition would not be included within the claims since applicant's claim covers only compositions having superconductivity above $26^{\circ} \mathrm{K}$. Applicant's do not see the relevance of this comment by the Examiner. Applicant's acknowledge that Ti is a transition metal. The Examiner notes "that disclosure also refers to 'a second non-conducting CuO phase at p. 14, line 18." Applicant's do not understand what the significance of reference to the quote at page 14 is to the Examiner's argument.

At paragraph d.iii.1.c at page 7 of EA, the Examiner states "accordingly, the present disclosure is not deemed to have been fully enabling with respect to the 'transition metal oxide' of claim 24, the 'composition' of claim 88 or the 'copper-oxide compound' of claim 98." Again, applicant's note that the Examiner has completely disregarded applicant's arguments on page 15-25 of their September 29, 1995
amendment. Applicant's submit that the Examiner's remarks are not supported by the law and since the Examiner has not specifically rebutted the applicants' arguments which clearly support Applicants' position that these claims are enabled, the consequent conclusion is that the claims are, in fact, enabled.

At paragraph d.iii. 2 of page 7 of EA, the Examiner states that "the examples of p. 18, lines 1-20, of the present specification further substantiate the finding that the invention is not fully enabled for the scope presently claimed." Applicant's respectfully disagree.

At paragraph d.iii.2.a at page 7 of EA, the Examiner refers to an example in the first paragraph of page 18 of their specification which says at line 10 "and there is no superconductivity." The Examiner appears to be using this paragraph to support the Examiner's assertion that applicant's claims are not enabled by their disclosure. Quite to the contrary, this paragraph supports applicant's assertion that their claims are enabled. Applicant's are providing a broad teaching of how these compositions can be fabricated, by providing a teaching which has not resulted in superconductivity, applicant's are providing a teaching of methods which do lead to examples showing superconductivity. The Examiner's recitation of this example in this context is, in applicant's view, misleading. Moreover, even if the claims encompass some inoperative examples, this does not render the claims unenabled. Moreover, the claims specifically refer to compounds which are superconducting. Consequently, a sample which is not superconducting is not within the scope of the claim. Applicant's submit that the Examiner is taking fragments of statements from their specification out of context resulting in a misunderstanding of applicant's teaching.

At paragraph d.iii.2.b, at page 7 of EA, the Examiner refers to applicant's
example which appears to be in the third paragraph of page 18 of applicant's specification which at line 20 recites $\mathrm{T}_{\mathrm{c}}=26^{\circ} \mathrm{K}$. The Examiner then says that applicant's claims are directed to "> $26^{\circ} \mathrm{K}$ in what appears to be an attempt to show that applicant's claims are not enabled. Applicant's submit that this is clearly a species argument. Applicants recitation of $26^{\circ} \mathrm{K}$ in the specification and $>26^{\circ} \mathrm{K}$ in the claims has not significance to this argument. Applicant's can amend their claims to say $\geq 26^{\circ}$ if that's what the Examiner would prefer. Clearly, the temperature consistent with applicant's claims can be infinitesimally close to $26^{\circ} \mathrm{K}$.

At paragraph d.ii.2.c at page 7 of EA, the Examiner states "consequently, the present disclosure is not deemed to adequately enable the full scope of the present claims." The Examiner further states "independent claims 86 and 103 may require the presence of rare earth, alkaline earth, and transition metals, but the aforementioned examples show that superconductivity is still very unpredictable." Applicant's respectfully disagree that the aforementioned examples show that superconductivity is still very unpredictable. The Examiner has taken applicant's examples out of context and these examples are provided as part of the teaching on how to fabricate these examples. In particular, the applicant's note that the example given by the Examiner where applicant's state that the T_{c} is equal to $26^{\circ} \mathrm{K}$ in the specification and applicant's claims say greater than $26^{\circ} \mathrm{K}$ is a specious argument.

The Examiner further states "those claims cannot be deemed to be fully enabled." Applicants respectfully disagree. It is also noted again that the Examiner has not addressed applicants arguments on page 15-25 of applicants September 29, 1995 amendment.

At paragraph div on page 7 of EA, the Examiner refers to 3 affidavits submitted
by applicants. Applicants acknowledge that the 3 affiants are employees of the assignee of the present application. At paragraph d.IV. 1 at page 8 of EA the Examiner states "those affidavits do not set forth particular facts to support the conclusions that all superconductors based on applicants' work behave in the same way that one of skill in the art can make those superconductors without undue experimentation. Conclusionary statements in an affidavit or specification do not provide the facts or evidence needed for patentability." The referred to affidavits are dated after August 19, 1995 a period of more than 8 years after the present application was filed. Those affidavits refer to developments in the field after publication of applicants which was cited on page 6 of applicants specification. The statements in the affidavits are not conclusionary but are statements of fact. By the Examiners statement that these are conclusionary the Examiner appears to be placing himself up as an expert in the field of superconductivity. Applicants respectfully request that the Examiner submit an affidavit in the present application rebutting the position taken by applicants 3 affiants.

At paragraph div.2, at page 8 of PA, the Examiner states "those affidavits do not overcome the non-enablement rejection. The present specification discloses on its face that only certain oxides compositions of rare earth, alkaline earth and transition metals made according to the certain steps will superconduct at greater than $26^{\circ} \mathrm{K}$." Applicants respectfully disagree with this statement. Applicants' specifications discloses substantially more as applicants have indicated above and as applicants have indicated in their amendment of September 29, 1995. Applicants work clearly started the field of high-temperature superconductivity. Consequently, applicants teaching has enabled this entire field. The Examiners statements to the contrary have no basis in fact. Examiners statements have actually no support based on any factual evidence except for the Examiners unsupported statement. Applicants respectfully

Ser. No. 08/303,561
request the Examiner to submit an affidavit stating that applicants teaching has not enabled the field of high T_{c} superconductors, rebutting applicants arguments and the position taken by the three affidavits submitted by applicants.

At paragraph div. 3 of page 8 of PA, the Examiner states "those affidavits are not deemed to shed light on the state of the art and enablement at the time the invention was made." Applicant's respectfully disagree. The Examiner has not shown any reason contrary to applicants assertion that the superconducting materials can be made by the methods disclosed by applicant's and as stated by applicant's 3 affiants. Applicant's have objectively enabled their application and their claims. Applicant's respectfully request that the Examiner provide proof that they have not objectionably enabled the claims. The Examiner has not supported the Examiner's statements that applicant's have not enabled claims. Applicant's have pointed to copious locations in their specification which do provide support for applicant's claims. It is further noted, as noted above, that the Examiner has not rebutted applicant's comments on page 1525 of applicant's amendment dated September 29, 1995 wherein applicant's point to decisions which support applicant's position that they have enabled their application and their claims.

At paragraph d.iv. 4 at page 8 of PA, the Examiner states that "it is fully understood that the applicant's are the pioneers in high temperature metal-oxide superconductivity. The finding remains, nonetheless, that the disclosure is not fully enabling for the scope of the present claims." Applicant's respectfully disagree. The Examiner has provided no substantial evidence to support this assertion. It is respectfully requested that the Examiner support their assertion with factual evidence and not unsupported statements.

In view of the remarks herein, the Examiner is respectfully requested to withdraw the objection to the specification under 35 USC 112, first paragraph, and the rejection of claims 24-26, 86-90 and 96-108 under 35 USC 112, first paragraph.

Claims 86-87 and 96-108 have been rejected under 35 USC 112, second paragraph as being indefinite for failing to particularly point out and distinctly claim the subject matter which applicant's regard as their invention. Applicant's note that the Examiner has not responded to applicant's comments which supports applicants position that a person of skill in the art would understand the terms "layer-type" and "perovskite-like" and has just repeated their rejection of the prior Office Action. Applicant's respectfully request the Examiner to comment on applicant's prior remarks.

In view of the remarks herein, the Examiner is respectfully requested to withdraw the rejection of claims 86-87 and 96-108 under 35 USC 112, second paragraph.

In view of the remarks herein, the Examiner is respectfully requested to withdraw the rejection of claims 86-87 and 96-108 under 35 USC 112, second paragraph.

Claims 24-26, 86-90 and 96-108 have been rejected under 35 USC 102(a) as being anticipated by Asahi Shinbum Int'l. Satellite Edition (London) November 11, 1986. The Examiner incorrectly gives a date of November 11, 1986 for this article. It is November 28, 1986.

Paragraph 6.a and 6.b of page 10 of EA are essentially the same as in the Examiner's prior action. Applicant's have responded to these paragraphs in their prior
response.

In paragraph 6-C at page 10 of EA, the Examiner notes applicant's prior responses and states that they "have been fully considered but they are not deemed to be persuasive." It is noted that in the declaration of co-inventors J.G. Bednorz and K.A. Mueller dated March 21, 1988, mailed into the patent office on June 22, 1988 at paragraph 3 states "On approximately October 16, 1986, we gave Praveen Chaudhari... six samples of the high temperature superconductive ceramic oxide materials that we had described in our aforementioned Z Physik B. publication. Praveen Chaudhari brought these samples back to the U.S. when he returned after visiting with us on or about October 16, 1986. This is evidence that these samples are brought into the United States shortly after October 16, 1986. When these samples came into the United States since they were inherently superconductive as claimed, the invention was essentially reduced to practice in the United States on that date. It is further noted that in the Declaration of Alexis P. Malozenoff signed March 30, 1988 states at paragraph 3, "On or about November 15, 1986, Richard Greene and I travelled to Baltimore for a magnetics conference. During our travel to Baltimore, we discussed Greene's ongoing experiments in high T_{c} superconducting samples which he said had been received from Bednorz and Mueller." This is clear evidence that by November 15, 1986, superconducting samples fabricated by applicant's were in the United States which were inherently superconducting and, consequently, established the reduction to practice in the United States as of that date. The Declaration of Cheng-Chung John Chi dated March 29, 1988 states at paragraph 2, "At a time prior to approximately the middle of November, 1986, Chang C. Tsuei told me a measurement he made on T_{c} superconducting material which he said were received from Georg Bednorz and K.A. Mueller, two physicists working for IBM Corporation in Zurich, Switzerland... Chang Tsuei said that he had measured
resistivity versus temperature of these samples." This is again further evidence that the Mue!ler Bednorz superconducting samples were in the United States prior to the middle of November 1986."

At page 11 of PA in the paragraph labelled i, the Examiner states "the applicants will argue that Sung II Park affidavit of March 30, 1988 states at para. 4 that measurements were taken of a superconductive sample on or before November 9,1986 , to the best of affiants recollection, or no later than November 15, 1986. The document evidence is not deemed to support that argument, however." In the paragraph marked (1) on page 11 of PA, the Examiner states "plots of those measurements are missing. See the Cheng C. Tseui affidavit of March 30, 1988, para. 6." This statement comes directly out of Cheng Tseui's declaration. Notwithstanding, Cheng Tseui's declaration says the measurements were made, that the plots that were taken were missing. The last sentence of this paragraph states "I believe that they may have been inadvertently thrown away when the laboratory was subsequently extensively cleaned." The Examiner further states "a hand-drawn diagram with the indication of a vacuum pumped down on November 9, 1988 also is not deemed to show that the measurements were taken. The Examiner is referring to paragraph 5 of the Cheng Tseui declaration and exhibit C which contains the handdrawn figure.

At paragraph (2) of page 11 of PA, the Examiner points to cablegram sent by Dr. Greene to applicants in Zurich which are attached as exhibit B to his declaration. The Examiner states "Dr. Greene reports that no indication of superconductivity has been seen in his specific heat measurements for temperature $4-35^{\circ} \mathrm{K}$." The Examiner fails to note that in the same cablegram dated November 11, 1986, Dr. Greene states "this is not really too surprising given the very broad transition to have found in
resistivity and susceptibility." Therefore, the Examiner's conclusion or the way the Examiner characterizes Dr. Greene's cablegrams presents it somewhat inaccurately. The Examiner acknowledges that "exhibit C has pages dated December 1, 1986 on in exhibit D, which actually has plots and resistance versus temperature dated as early as December 3, 1986." The Examiner is conceding that high T_{c} superconductivity was measured on the samples which the very same set of cablegrams and affidavit say were in the United States in the middle of November 1986. Consequently, by the Examiner's own admission, samples which were in the United States were clearly shown to be superconducting as of December 3, 1986. Consequently, the samples that were in the United States as of November 9 were inherently superconducting. It is clear from the same declarations that applicant's were communicating with Dr. Greene. It is noted that Dr. Greene's cablegram dated November 25, 1986 to applicants states he will resume work on the new superconductor and that not much will happen because of the Thanksgiving holiday until the following week. There are cablegrams dated November 26, December 1, December 2, 1986 related to high T_{c} superconductivity. Dr. Greene's exhibit C has notebook pages dated December 1, 1986 to December 5, 1986. The December 5, 1986 shows T_{c} of $26^{\circ} \mathrm{K}$ and $30^{\circ} \mathrm{K}$. Exhibit D show a plot of R vs. T dated December 8, 1986. Clear reduction to practice is shown and clear diligence is shown from prior to the date of the Asahi Shinbum article. This was clearly done in close correspondence with the applicants. Thus, the facts clearly show applicant's can swear behind the Asahi Shinbum reference.

At paragraph ii on page 11 of PA, the Examiner states "the applicant's assert that the Asahi Shinbum article reports a third parties confirmation of their original discovery. That assertion appears to be correct, but the article is still deemed to be prior art under 35 USC 102(a). At page 12 under paragraph 2, subparagraphs A, B and C , the Examiner made comments in regards to four cases applicant's have cited
in support of their position that the Asahi Shinbum article should not be prior art because to hold it as prior art would not afford applicant's the benefit the one year grace period provided them under 35 USC 102(b).

At paragraph 3 on page 13 of PA, applicant's respectfully disagree that the earliest date with which applicant's can show for their invention in this country is December 1986. Numerous affidavits which applicant's have submitted clearly show that applicant's have, in early November 1986, the superconducting compounds which the Examiner admits in applicant's data of December 3, 1986 shown the measurements of critical temperatures. Consequently, even with the Examiner's admitted statement in the Examiner's apparent concurrence in the fact that the materials were in this country in the middle of November 1986. The materials inherently shown in this invention presently claimed. Applicant's respectfully disagree with the Examiner's statement, "notwithstanding the possible uniqueness of the present facts, however, the Asahi Shinbum article is still deemed to be prior art under 35 USC 102(a), which the applicant's have not been able to overcome with a showing of early date in this country or showing of their direction and control over the work done by the third party." Applicant's note that the Asahi Shinbum article provides no enablement but merely is an assertion of a result achieved which points to applicant's own work which was reported in the article applicant's cite in their application at page 6. Consequently, any enablement of the Asahi Shinbum article is applicant's own work. If one would follow the rationale of the Examiner, if an applicant publishes an article and some other third party reports that same result prior to applicant's filing of a patent application which is subsequently filed within one year of applicant's own publication. The reporting of applicant's work by the third party would be prior art against applicant's application. Such a result would deny applicant's the one year grace period provided under 35 USC 102(b).

In view of the changes to the claims and the remarks herein, the Examiner is respectfully requested to reconsider the above-identified application. If the Examiner wishes to discuss the application further, or if additional information would be required, the undersigned will cooperate fully to assist in the prosecution of this application.

Please charge any fee necessary to enter this paper to deposit account 09-0468.

If the above-identified Examiner's Action is a final Action, and if the above-identified application will be abandoned without further action by applicants, applicants file a Notice of Appeal to the Board of Appeals and Interferences appealing the final rejection of the claims in the above-identified Examiner's Action. Please charge deposit account 09-0468 any fee necessary to enter such Notice of Appeal.

IBM Corporation Intellectual Property Law Dept. P.O. Box 218

Yorktown Heights, N.Y. 10598 (914) 945-3216
APPLICATION NO. FILING DATE FIST NAMED INVENTOR \quad ATTORNEY DOCKET NO.
Γ

!af

- \quad -

ART UNIT	PAPER NUMBER

DATE MAILED:

> a
$1 L E$

Please find below and/or attached an Office communication concerning this application or proceeding.

X Responsive to communication(s) filed on Oct 17, 1996. That communication is NON-RESPONSIVE
\square This action is FINAL.
\square Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11; 453 O.G. 213.

A shortened statutory period for response to this action is set to expire__ $\quad 1 \quad$ month(s), or thirty days, whichever is longer, from the mailing date of this communication. Failure to respond within the period for response will cause the application to become abandoned. (35 U.S.C. §133). Extensions of time may be obtained under the provisions of 37 CFR 1.136(a).

Disposition of Claims

X Claim(s) 24-26, 86-90, and 96-113 is/are pending in the application.

Of the above, claim(s) \qquad is/are withdrawn from consideration.
\square Claim(s) \qquad is/are allowed.Claim(s) \qquad is/are rejected.Claim(s) \qquad is/are objected to.Claims \qquad are subject to restriction or election requirement.

Application Papers
\square See the attached Notice of Draftsperson's Patent Drawing Review, PTO-948.The drawing(s) filed on \qquad is/are objected to by the Examiner.The proposed drawing correction, filed on \qquad is \square approveddisapproved.The specification is objected to by the Examiner.The oath or declaration is objected to by the Examiner.
Priority under 35 U.S.C. § 119
\square Acknowledgement is made of a claim for foreign priority under 35 U.S.C. § 119 (a)-(d).
\square AllSome*None of the CERTIFIED copies of the priority documents have beenreceived.received in Application No. (Series Code/Serial Number) \qquad .
\square received in this national stage application from the International Bureau (PCT Rule 17.2(a)).

* Certified copies not received:
\square Acknowledgement is made of a claim for domestic priority under 35 U.S.C. § 119 (e).
Attachment(s)
\square Notice of References Cited, PTO-892
\square Information Disclosure Statement(s), PTO-1449، Paper No(s). \qquad
\square Interview Summary, PTO-413
\square Notice of Draftsperson's Patent Drawing Review, PTO-948
\square Notice of Informal Patent Application, PTO-152

Art Unit: 1105

NOTICE OF NON-RESPONSIVE AMENDMENT

1. The communication filed on October 17, 1996 is non-responsive ${ }^{1}$ to the prior Office action because of the reasons that follow:
a. In their October 17, 1996 Amendment, paper no. 57, the applicants state, with parentheses and emphasis added:

In response to the Examiner's interview summary dated May 22, 1996, Applicant's (sic) have added claims 109-113 which correspond to independent claims $24,86,88,96$ and 108, respectively. The added claims read the same as these claims but including the limitations suggested by the Examiner.

Notwithstanding that statement by the applicants, newly added claims 109-113 do NOT correspond to the suggestions made by the Examiner as documented in the Interview Summary dated May 22, 1996, paper no. 55.
i. That Interview Summary states, with emphasis added:

To overcome 112 1st para, rejections, it is suggested that each independent claim be amended to require at least one each of a IIA metal, a rare earth or IIIB metal, and copper oxide.
ii. Newly amended claims 109-113 do not "require at least one each of a IIA metal, a rare earth or IIIB metal, and copper oxide" (emphasis added). Instead, for instance, claim 109 only requires that "said copper oxide includes at least one element selected from the group consisting of a Group II A element, a rare earth element and a Group IIIB element" (emphasis added)." Claims 110-113 each have similar Markush groupings for the II A, rare earth, and III B elements.

[^49]Art Unit: 1105
b. The October 17, 1996 Amendment, paper no. 57, the applicants further assert: Claims 24-26, 86-90 and 96-108 have been rejected for essentially the same reasons as in the Office Action dated March 29, 1995. Applicant's (sic) respectfully disagree for the same reasons given in Applicants (sic) response dated September 26, 1995, October 10, 1995 and April 11, 1996, which Applicant's (sic) incorporate herein by reference.

General assertions of patentability are not deemed to be responsive. ${ }^{2}$
2. To be responsive, an amendment must include the following:
a. One or the other approach with respect to newly added claims 109-113:
i. Pursuant to the May 21, 1996 interview, each of claims 109-113 may be amended to recite compositions containing THREE components:
(1) a II A metal;
(2) a rare earth or III B metal; AND
(3) a copper oxide.
ii. As an alternative, claims 109-113 in their present form may be accompanied by particular arguments to the effect that the same amendments overcome the 35 USC 112 rejections in the previous Office Action. ${ }^{3}$
b. Arguments directed to the particular points raised in the April 15, 1996 Office Action, paper no. 54, with respect to the rejections under 35 USC 112, 102, and 103.
3. Since the response appears to be bona fide, but through an apparent oversight or inadvertence failed to provide a complete response, applicant is required to complete the response within a TIME LIMIT of ONE MONTH from the date of this letter or within the time remaining in the response period of the last Office action, whichever is longer. NO EXTENSION OF THIS
${ }^{2}$ See 37 CFR 1.111(b).
${ }^{3}$ Each of claims 109-113 still needs to be reviewed for compliance with 35 USC 112 and examined with respect to 35 USC 102 and 103.

Art Unit: 1105

TIME LIMIT MAY BE GRANTED UNDER EITHER 37 CFR 1.136(a) OR (b), but the period for response set in the last office action may be extended up to a maximum of SIX MONTHS

Conclusion

4. Any amendment in response to this Office Action must NOT include any new matter.
5. The applicant or applicants is or are reminded that any evidence to be presented in accordance with 37 CFR 1.131 or 1.132 should be submitted before final rejection in order to be considered timely.
6. Any inquiry concerning this communication or earlier communications from the examiner should be directed to Douglas J. McGinty, whose telephone number is (703) 308-3805. The examiner normally can be reached on Monday through Friday from 8:30 A.M. to 5:00 P.M., Eastern time. If reasonable attempts to reach the examiner by telephone are unsuccessful, however, the examiner's supervisor, Mr. Paul Lieberman, can be reached at (703) 308-2523. Any inquiry of a general nature or relating to the status of this application should be directed to the Group receptionist whose telephone number is (703) 308-0661. The fax number for this Group is (703) 305-3600.

January 3, 1996
303561.3

Donglus J. Mrinidy
Douglas J. McGinty
Primary Examiner
Group 1100

Filing: Ame ent, Amendment/Response Transm al Sheet, Petition and Fee for Three Month Extension of Time, Certificate of Mailing
HEASE SMAAP \& RETURN TU US
a re armiontion of: J. Bednorz et al.
rr: SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION

 \qquad
 \qquad : io. of pages of claims
$\therefore \quad \because$ anoto of dxaminge: \qquad

$10 / 15 / 96$

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of:
J. Bednorz et al.

Serial No.: 08/303,561
Filed: September 9, 1994

Date: October 15, 1996

Group: 1105
Examiner: D. McGinty
Docket No. YO987-074BY

For: SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, AND METHODS FOR THIER USE AND PREPARATION

Commissioner of Patents and Trademarks
Washington, D.C. 20231

CERTIFICATE OF MAILING UNDER 37 CFR 1.8(a)

I hereby certify that the attached correspondence comprising:
Amendment
Petition and Fee for Three Month Extension of Time
Amendment/Response Transmittal Sheet
Acknowledgement card
is being deposited with the United States Postal Service as first class mail in an envelope addressed to:

Commissioner of Patents and Trademarks Washington, DC 20231

on \qquad

Sandra Emma
(Print name of person mailing paper)

(Signature of person mailing paper)

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Amendment/Response Transmittal

In re application of: J. Bednorz et al.
Serial No.: 08/303,561
Filed: September 9, 1994
For: SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, AND METHODS FOR THEIR USE AND PREPARATION

Commissioner of Patents and Trademarks
Washington, D.C. 20231
Sir:
Transmitted herewith for filing is an Amendment/Response in the above-identified Application.
No additional fee is required.
X The fee has been calculated as shown below:

(Col. 1)		(Col. 2)	(Col. 3)	Other Than Small Entity	
CLAIMS REMAINING AFTER AMENDMENT		HIGHEST NO. PREVIOUSLY PADD FOR	PRESENT EXTRA	RATE	ADDITIONAL FEE
TOTAL * 26	MINUS	** 21	$=5$	x $\$ 22.00=$	\$ 110.00
INDEPENDENT * 10	MINUS	*** 5	$=5$	x $\$ 80.00=$	\$ 400.00
1ST PRESENTATION OF MULTIPLE DEP. CLAIMS				\$260.00	\$
				TOTAL	\$ 510.00

* If the entry in Col. 1 is less than the entry in Col. 2, write " 0 " in Col. 3.
** If the "Highest No. Previously Paid For" IN THIS SPACE is less than 20, write " 20 " in this space.
*** If the "Highest No. Previously Paid For" (Total or Independent) is the highest number found from the equivalent box in Col. 1 of a prior amendment or the number of claims originally filed.

X Please charge Deposit Account No. $09-0468$ the fee of $\$ 510.00$ to enter this paper or any other fee necessary to enter this paper.

X The Commissioner is hereby authorized to charge payment of the following fees associated with this communication or credit any overpayment to Deposit Account No. 09-0468. A duplicate copy of this sheet is enclosed.
X Any additional filing fees required under 37 C.F.R. §1.16.
X Any patent application processing fees under 37 C.F.R. §1.17.

Date: October 15, 1996

IBM CORPORATION

Intellectual Property Law Dept. P.O. Box 218

Yorktown Heights, NY 10598
Tel. No. (914) 945-3217

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of: J. Bednorz et al.
Serial No.: 08/303,561
Filed: September 9, 1994
For: SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, AND METHODS FOR THEIR USE AND PREPARATION
Group Art Unit: 1105
Examiner: D. McGinty

PETITION AND FEE FOR EXTENSION OF TIME (37 CFR 1.136(a))

Commissioner of Patents and Trademarks
Washington, DC 20231
Sir:

1. This is a petition for an extension of the time to respond to the Office Letter mailed on April 15, 1996 for a period of \qquad months.
2. Applicant is other than a small entity.
3. Extension period and fee:

(months)	Fee for other than small entity			
\square one month		\quad	$\$ 110.00$	
:---:	:---:			
\square two months	$\$ 390.00$			
\square three months	$\$ 930.00$			
\square four months	$\$ 1,470.00$			

4. An amendment

Fee: \$ 930.00
X is filed herewith.
has been filed.
5. Fee Payment

X Charge fee to Deposit Account No. 09-0468 and for any additional fee required to complete the filing or processing of this application or credit any excess fee paid. A duplicate copy of this sheet is enclosed.

Date: October 15, 1996

Telephone: (914) 945-3217
Fax: (914) 945-3281

From:
IBM Corporation
Intellectual Property Law
P.O. Box 218

Yorktown Heights, NY 10598

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: J. Bednorz et al.
Date: October 15, 1996
Serial No.: 08/303,561
Filed: September 9, 1994
Group Art Unit: 1105
\section*{For: SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, AND METHODS FOR THEIR USE AND PREPARATION}

The Commissioner of Patents and Trademarks
Washington, D.C. 20231

AMENDMENT

Sir:

In response to the Office Letter dated April 15, 1996, please consider the following:

IN THE CLAIMS

Add claims 109-113.
109. (Added) A method including the steps of forming copper oxide having a phase therein which exhibits a superconducting state at a critical temperature in excess of $26^{\circ} \mathrm{K}$;
maintaining the temperature of said material at a temperature less than said critical temperature to produce said superconducting state in said phase;
passing an electrical supercurrent through said copper oxide while it is in said superconducting state;
said copper oxide includes at least one element selected from the group consisting of a Group II A element, a rare earth element and a Group III B element.
110. (Added) A method comprising the steps of:
forming a composition including copper, oxygen and any element selected from the group consisting of a Group II A element, a rare earth element and a Group III B element, where said composition is a mixed copper oxide having a non-stoichiometric amount of oxygen therein and exhibiting a superconducting state at a temperature greater than $26^{\circ} \mathrm{K}$;
maintaining said composition in said superconducting state at a temperature greater than $26^{\circ} \mathrm{K}$; and
passing an electrical current through said composition while said composition is in said superconducting state.
111. (Added) A method including the steps of:
forming a composition exhibiting a superconductive state at a temperature in excess of $26^{\circ} \mathrm{K}$;
maintaining said composition at a temperature in excess of $26^{\circ} \mathrm{K}$ at which temperature said composition exhibits said superconductive state;
passing an electrical current through said composition while said composition is in said superconductive state; and
said composition including a copper oxide and an element selected from the group consisting of Group II A element, a rare earth element and a Group III B element.
112. (Added) A superconductive method for causing electric-current flow in a superconductive state at a temperature in excess of $26^{\circ} \mathrm{K}$, comprising:
(a) providing a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound having a layer-type perovskite-like crystal structure, the composition having a superconductive transition temperature T_{c} of greater than $26^{\circ} \mathrm{K}$, said superconductive composition includes at least one element selected from the group consisting of a Group II A element, a rare earth element and a Group III B element;
(b) maintaining the superconductor element at a temperature above $26^{\circ} \mathrm{K}$ and below the superconductor transition temperature T_{c} of the superconductive composition; and
(c) causing an electric current to flow in the superconductor element.
113. (Added) A superconductive method for conducting an electric current essentially without resistive losses, comprising:
(a) providing a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound having a layer-type perovskite-like crystal structure, the copper-oxide compound including at least one element selected from the group consisting of a group II A element, a rare earth element and a Group III B element, the composition having a superconductive/resistive transition defining a superconductive/resistive-transition temperature range between an upper limit defined by a transition-onset temperature $\mathrm{T}_{\boldsymbol{c}}$ and a lower limit defined by an effectively-zero-bulk-resistivity intercept temperature $\mathrm{T}_{p=0}$, the transition-onset temperature $\mathrm{T}_{\boldsymbol{c}}$ being greater than $26^{\circ} \mathrm{K}$;
(b) maintaining the superconductor element at a temperature below the effectively-zero-bulk-resistivity intercept temperature $T_{\rho=0}$ of the superconductive composition; and
(c) causing an electric current to flow in the superconductor element.

REMARKS

Claims 24-26, 86-90 and 96-108 have been rejected for essentially the same reasons as in the Office Action dated March 29, 1995. Applicant's respectfully disagree for the same reasons given in Applicants response dated September 26, 1995, October 10, 1995 and April 11, 1996, which Applicant's incorporate herein by reference.

In response to the Examiner's interview summary dated May 22, 1996, Applicant's have added claims 109-113 which correspond to independent claims $24,86,88,96$ and 108,
respectively. The added claims read the same as these claims but including the limitations suggested by the Examiner.

In view of the changes to the claims and the remarks herein, the Examiner is respectfully requested to reconsider the above-identified application. If the Examiner wishes to discuss the application further, or if additional information would be required, the undersigned will cooperate fully to assist in the prosecution of this application.

Please charge any fee necessary to enter this paper to deposit account 09-0468.

If the above-identified Examiner's Action is a final Action, and if the above-identified application will be abandoned without further action by applicants, applicants file a Notice of Appeal to the Board of Appeals and Interferences appealing the final rejection of the claims in the above-identified Examiner's Action. Please charge deposit account 09-0468 any fee necessary to enter such Notice of Appeal.

Reg. No. 32,053

IBM Corporation
Intellectual Property Law Dept.
P.O. Box 218

Yorktown Heights, N.Y. 10598
(914) 945-3217

All participants (applicant, applicant's representative, PTO personnel):

(3)

(4)

Date of interview $\leq 5-21-96$
Type: ${ }^{\text {P/ Telephonic } ~} \square$ Personal (copy is given to \square applicant \square applicant's representative).
Exhibit shown or demonstration conducted: \square Yes \square No. If yes, brief description:

Agreement \square was reached with respect to some or all of the claims in question. Was not reached.
Claims discussed:

 Identification of prior art discussed:

Shinbum article Description of the general nature of what was agreed to if an agreement was reached, or any other comments: To aver coighe $1 / 2$, Mst para, rejections, it is suss bested that eachindependiont
claims be amerifidito require at least one each of a chain be amerififto require at least ane enoch of a II A mut at or rare earth on int B metal ana do copper oxide.

(A fuller description, if necessary, and a copy of the amendments, if available, which the examiner agreed would render the claims allowable must be attached. Also, where no copy of the amendments which would render the claims allowable is available, a summary thereof must be attached.)
XI. It is not necessary for applicant to provide a separate record of the substance of the interview.

Unless the paragraph below has been checked to indicate to the contrary, A FORMAL WRITTEN RESPONSE TO THE LAST OFFICE ACTION IS NOT WAIVED AND MUST INCLUDE THE SUBSTANCE OF THE INTERVIEW (e.g., items 1-7 on the reverse side of this form). If a response to the last Office action has already been filed, then applicant is given one month from this interview date to provide a statement of the substance of the interview.

- 2. Since the examiner's interview summary above (including any attachments) reflects a complete response to each of the objections, rejections and requirements that may be present in the last Office action, and since the claims are now allowable, this completed form is considered to fulfill the response requirements of the last Office action. Applicant is not relieved from providing a separate record of the substance of the interview unless box 1 above is also checked.

 or not an agreement with the examiner was reached at the interview.

$\S 1.133$ Interviews

(b) In every instance where reconsideration is requested in view of an interview with an examiner, a complete written statement of the reasons presented at the interview as warranting favorable action must be filed by the applicant. An interview does not remove the necessity for response to Office actions as specified in $\S \mathcal{\xi}$ 1.111, 1.135 . (35 U.S.C. 132)
§ 1.2 Business to be transacted in writing. All business with the Patent and Trademark Office should be transacted in writing. The personal attendance of applicants or their aftorneys or agents at the Patent and Trademark Office is unnecessary. The action of the Patent and Trademark Office will be based exclusively on the written record in the Office. No attention will be paid to any alleged oral promise, stipulation, or understanding in relation to which there is disagreement or doubt.

The action of the Patent and Trademark Office cannot be based exclusively on the written record in the Office if that record is itself incomplete through the failure to record the substance of interviews.

It is the responsibility of the applicant or the attorney or agent to make the substance of an interview of record in the application file, unless the examiner indicates he or she will do so. It is the examiner's responsibility to see that such a record is made and to correct material inaccuracies which bear directly on the question of patentability.

Examiners must complete a two-sheet carbon interleaf interview Summary Form for each interview held after January 1, 1978 where a matter of substance has been discussed during the interview by checking the appropriate boxes and filling in the blanks in neat handwritten form using a ball point pen. Discussions regarding only procedural matters, directed solely to restriction requirements for which interview recordation is otherwise provided for in Section 812.01 of the Manual of Patent Examining Procedure, or pointing out typographical errors or unreadable script in Office actions or the like, are excluded from the interview recordation procedures below.

The interview Summary Form shall be given an appropriate paper number, placed in the right hand portion of the file, and listed on the "Contents" fist on the file wrapper. The docket and serial register cards need not be updated to reflect interviews. In a personal interview, the duplicate copy of the Form is removed and given to the applicant (or attorney or agent) at the conclusion of the interview. In case of a telephonic interview, the copy is mailed to the applicant's correspondence address either with or prior to the next official communication. If additional correspondence from the examiner is not likely before an allowance or if other circumstances dictate, the Form should be mailed promptly after the telephonic interview rather than with the next official communication.

The Form provides for recordation of the following information:

- Serial Number of the application
- Name of applicant
- Name of examiner
- Date of interview
- Type of interview (personal or telephonic)
- Name of participant(s) (applicant, attorney or agent, etc.)
- An indication whether or not an exhibit was shown or a demonstration conducted
- An identification of the claims discussed
- An identification of the specific prior art discussed
- An indication whether an agreement was reached and if so, a description of the general nature of the agreement (may be by attachment of a copy of amendments or claims agreed as being allowable). (Agreements as to allowability are tentative and do not restrict further action by the examiner to the contrary.)
- The signature of the examiner who conducted the interview
- Names of other Patent and Trademark Office personnel present.

The Form also contains a statement reminding the applicant of his responsibility to the record the substance of the interview.
It is desirable that the examiner orally remind the applicant of his obligation to record the substance of the interview in each case unless both applicant and examiner agree that the examiner will record same. Where the examiner agrees to record the substance of the interview, or when it is adequately recorded on the form in an attachment to the form, the examiner should check a box at the Form informing the applicant that he need not supplement the Form by submitting a separate record of the interview.

It should be noted, however, that the interview Summary form will not be considered and proper recordation of the interview unless it includes, or is supplemented by the applicant or the examiner to include, all of the applicable items required below concerning the substance of the interview:

A complete and proper recordation of the substance of any interview should include at least the following applicable items:

1) A brief description of the nature of any exhibit shown or any demonstration conducted.
2) an identification of the claims discussed.
3) an identification of specific prior art discussed.
4) an identification of the principal proposed amendments of a substantive nature discussed, unless these are already described on the Interview Summary Form completed by the examiner.
5) a brief identification of the general thrust of the principal arguments presented to the examiner. The identification of arguments need not be lengthy or elaborate. A verbatim or highly detailed description of the arguments not required. The identification of the arguments is sufficient if the general nature or thrust of the principal arguments made to the examiner can be understood in the context of the application office. Of course, the applicant may desire to emphasize and fully describe those arguments which he feels were or might be persuasive to the examiner.
6) a general indication of any other pertinent matters discussed, and
7) if appropriate, the general results or outcome of the interview unless already described in the interview Summary Form completed by the examiner.

Examiners are expected to carefully review the applicant's record of the substance of an interview. If the record is not complete or accurate, the examiner will give the applicant one month from the date of the notitying letter or the remainder of any period for response, whichever is longer, to complete the response and thereby avoid abandonment of the application (37 CFR 1.135(c)).

Examiner to Check for Accuracy

Applicant's summary of what took place at the interview should be carefully checked to determine the accuracy of any argument or statement attributed to the examiner during the interview. If there is an inaccuracy and it bears directly on the question of patentability, it should be pointed out in the next Office letter. If the claims are allowable for other reasons of record, the examiner should send a letter setting forth his or her version of the statement attributed to him. If the record is complete and accurate. the examiner shoulc place the indication "interview record OK" on the paper recording the substance of the interview along with the date and the examiner's initials.

SERIAL NUMBER	FILING DATE	FIRST NAMED APPLICANT	ATTORNEY DOCKET NO.
$0: / 303,561$	$09 / 09 / 94$	EEPHORZ	1

DANIEL F MDFFIS IEM EORFOFATIOR INTELIEETUAL FRGFEFTY LAW DEFAFTMENT F O EOX 219
YOFETOUN HETEHTS NV 10SGE

Please find below a communication from the EXAMINER in charge of this application.

区 Responsive to communication(s) filed on April 11, 1996, January 3, 1996, and September 29, 1995 \qquad .
\square This action is FINAL.
\square Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11; 453 O.G. 213.
A shortened statutory period for response to this action is set to expire__ 3 month(s), or thirty days, whichever is longer, from the mailing date of this communication. Failure to respond within the period for response will cause the application to become abandoned. (35 U.S.C. $\S 133$). Extensions of time may be obtained under the provisions of 37 CFR $1.136(\mathrm{a})$.

Disposition of Claims

Х Claim(s) 24-26, 86-90, and 96-108 is/are pending in the application.

Of the above, claim(s) \qquad is/are withdrawn from consideration.Claim(s) \qquad is/are allowed.

X Claim(s) 24-26, 86-90, and 96-108 is/are rejected.Claim(s) \qquad is/are objected to.Claims \qquad are subject to restriction or election requirement.

Application Papers

\square See the attached Notice of Draftsperson's Patent Drawing Review, PTO-948.The drawing(s) filed on \qquad is/are objected to by the Examiner.The proposed drawing correction, filed on \qquad isapproved \square disapproved.
\square The specification is objected to by the Examiner.
\square The oath or declaration is objected to by the Examiner.
Priority under 35 U.S.C. $\$ 119$
\boxtimes Acknowledgement is made of a claim for foreign priority under 35 U.S.C. § 119 (a)-(d).
X All \square Some* \square None of the CERTIFIED copies of the priority documents have been \square received.
X received in Application No. (Series Code/Serial Number) \qquad 08/053,307
\square received in this national stage application from the International Bureau (PCT Rule 17.2(a)).
*Certified copies not received:
\square Acknowledgement is made of a claim for domestic priority under 35 U.S.C. § $119(\mathrm{e})$.
Attachment(s)Notice of References Cited, PTO-892Information Disclosure Statement(s), PTO-1449, Paper No(s). \qquadInterview Summary, PTO-413Notice of Draftsperson's Patent Drawing Review, PTO-948
\square Notice of Informal Patent Application, PTO-152

Serial Number: 08/303,561
Art Unit: 1105

DETAILED ACTION

1. The text of those sections of Title 35, U.S. Code not included in this action can be found in a prior Office action. The rejections and objections, if any, from the previous Office Action have been withdrawn if not repeated in this Office Action. 2. It is requested that this Examiner be notified of all pending, related applications. See MPEP 2001.06(b). That notice need not be in a PTO form - 1449, however. See MPEP 901.03.

Priority

3. Acknowledgment is made of applicant's claim for priority under 35 U.S.C. § 119. The certified copy has been filed in parent application, Serial No. 08/053,307, filed on April 23, 1993 as paper no. 28.
a. However, a review of that certified copy, which is in English, indicates that it does not support the present assertion of priority. Support is not found in that certified copy for the invention as presently claimed. See MPEP 201.13 et seq.
and 201.14 et seq.
b. Applicants' arguments filed April 11, 1996, January 3, 1996, and September 29, 1995, paper nos. 53, 50, and 51, as well as the Affidavits filed September 29, 1995 and January 3, 1996, paper nos. 49 and 52, have been fully considered but they are not deemed to be persuasive. The applicants quote some passages out of the priority document and argue that the present claims are fully based that document. Nevertheless, that priority document is not deemed to provide basis for the following limitations found in the present claims:
i. The limitations "a composition including a transition metal, a rare earth or rare earth-like element, an alkaline earth element, and oxygen", as found in claim 86 (lines 2-4). The certified priority document may provide basis for the

Art Unit: 1105
formula $\mathrm{RE}_{2} \mathrm{TM} . \mathrm{O}_{4}$ at p. 2, para. 4, but the claimed composition is deemed to be much broader than that formula.
ii. The limitation "non-stoichiometric amount of oxygen", as found in claim 86 (line 6). Basis may be seen for an oxygen deficit at p. 2, para. 4, but no such basis is seen for the more general limitation of "a nonstoichiometric amount of oxygen".
iii. The limitation "a composition exhibiting a superconductive state", as found in claim 88 (line 2), wherein the composition is a "(transition) metal oxide", as found in claims 24 (lines 1 and 2), 89 and 90. The certified priority document may provide basis for compositions of the formula RE E_{2} TM. O_{4}, as discussed above, but "a composition", "metal oxide", or "transition metal oxide" is deemed to be much broader than the formula $\mathrm{RE}_{2} \mathrm{TM} . \mathrm{O}_{4}$.
iv. The limitation "a copper-oxide compound", as recited in claim 96 (line 6). The certified priority document may provide basis for compositions of the formula $\mathrm{RE}_{2} \mathrm{TM} . \mathrm{O}_{4}$, as discussed above, but "a copper-oxide compound" is not deemed to be equivalent to a composition of the formula $\mathrm{RE}_{2} \mathrm{TM} . \mathrm{O}_{4}$. Basis is not seen in the certified priority document for "a copper-oxide compound" with the breadth of the present claims.
v. The limitation to the effect that "the copper oxide compound includes (including) at least one rare-earth or rare-earth-like element and at least one alkaline-earth element", as recited in claim 97 (lines 3 and 4) and claim 103 (lines 6-8). The certified priority document may provide basis for compositions of the formula $\mathrm{RE}_{2} \mathrm{TM} . \mathrm{O}_{4}$, as discussed above, but basis is not seen for the more general limitation of "a copperoxide compound" with a rare-earth (like) element and an alkaline earth element.

Art Unit: 1105
vi. The limitation to the effect that "the copperoxide compound includes at least one element (oxygen) in a nonstoichiometric atomic proportion", as found in claim 101 (lines 2 and 3), 102 (lines 2 and 3), 107 (lines 2 and 3), and 108 (lines 2 and 3). Basis may be seen for an oxygen deficit as discussed above, but no such basis is seen for the more general limitation of "a nonstoichiometric atomic proportion".
vii. The limitation as to "the effectively-zero-bulkresistivity intercept temperature $T_{p=0}$ ", as found in claim 103 (lines 13, 16, and 17). The critical temperature, T_{c}, is discussed throughout that certified priority document, but not $T_{p=0}$.

Claim Rejections - 35 USC § 112

4. The specification is objected to under 35 U.S.C. § 112, first paragraph, as failing to provide an enabling disclosure commensurate with the scope of the claims.
a. The present specification is deemed to be enabled only for compositions comprising $\mathrm{Ba}_{\mathrm{x}} \mathrm{La}_{5-\mathrm{x}} \mathrm{Cu}_{5} \mathrm{O}_{y}$. The art of high temperature (above $30^{\circ} \mathrm{K}$) superconductors is an extremely unpredictable one. Small changes in composition can result in dramatic changes in or loss of superconducting properties. The amount and type of examples necessary to support broad claims increases as the predictability of the art decreases. ${ }^{1}$ Claims broad enough to cover a large number of compositions that do not exhibit the desired properties fail to satisfy the requirements of 35 USC $112 .^{2}$ Merely reciting a desired result does not
[^50]Art Unit: 1105
overcome this failure. ${ }^{3}$ In particular, the question arises: Will any layered perovskite material containing copper exhibit superconductivity? Also, does any stoichiometric combination of rare earth, an alkaline earth, and copper elements result in an oxide superconductor?
b. It should be noted that at the time the invention was made, the theoretical mechanism of superconductivity in these materials was not well understood. That mechanism still is not understood. Accordingly, there appears to be little factual or theoretical basis for extending the scope of the claims much beyond the proportions and materials actually demonstrated to exhibit high temperature superconductivity. A "patent is not a hunting license. It is not a reward for the search, but a reward for its successful conclusion". ${ }^{4}$
c. Claims 24-26, 86-90, and 96-108 are rejected under 35 U.S.C. § 112, first paragraph, for the reasons set forth in the objection to the specification.
d. Applicants' arguments filed April 11, 1996, January 3, 1996, and September 29, 1995, paper nos. 53, 50, and 51, as well as the Affidavits filed September 29, 1995 and January 3, 1996, paper nos. 49 and 52, have been fully considered but they are not deemed to be persuasive.
i. The additional caselaw and arguments by the applicants have been duly noted. For the reasons that follow, however, the record as a whole is deemed to support the initial determination that the originally filed disclosure would not have enabled one skilled in the art to make and use the invention to the scope that it is presently claimed.

[^51]Art Unit: 1105
ii. The applicants quote several passages from their specification at pp. 13-15 of their September 29, 1995 Amendment, but the issue is the scope of enablement, not support. The present disclosure may or may not provide support for particular embodiments, but the issue here is the scope to which that disclosure would have taught one skilled in the art how to make and use a composition which shows the onset of superconductivity at above $26^{\circ} \mathrm{K}$.
iii. Construed in light of that issue, the invention is not deemed to have been fully enabled by the disclosure to the extent presently claimed.
(1) In their September 29, 1995 Amendment, the applicants argue that their disclosure refers to "the composition represented by the formula $\mathrm{RE}-\mathrm{TM}-\mathrm{O}$, where RE is a rare earth or rare earth-like element, TM is a nonmagnetic transition metal, and O is oxygen", and list several species such as " $\mathrm{La}_{2-x} \mathrm{Ba}_{\mathrm{x}} \mathrm{CuO}_{4-y}$ " which they indicate are found in the present disclosure.
(a) Notwithstanding that argument, it still does not follow that the invention is fully enabled for the scope presently claimed. The claims include formulae which are much broader than the RE-TM-O formula cited in the disclosure. Claim 24 recites "a transition metal oxide", claim 88 "a composition", and claim 96 "a copper-oxide compound".
(b) The present specification actually shows that known forms of "a transition metal oxide", "a composition", and "a copper-oxide compound" do not show the onset of superconductivity at above $26^{\circ} \mathrm{K}$. At p. 3, line 20, through p. 4, line 9, of their disclosure, the applicants state that the prior art includes a "Li-Ti-O system with superconducting onsets as high as $13.7^{\circ} \mathrm{K} . "$ Official Notice is taken of the well-known fact that Ti is a transition metal. That disclosure also refers to "a second, non-conducting CuO phase" at p. I4, line 18.

Art Unit: 1105
(c) Accordingly, the present disclosure is not deemed to have been fully enabling with respect to the "transition metal oxide" of claim 24, the "composition" of claim 88, or the "copper-oxide compound" of claim 96.
(2) The examples at p. 18, lines $1-20$, of the present specification further substantiates the finding that the invention is not fully enabled for the scope presently claimed.
(a) With a $1: 1$ ratio of (Ba, La) to Cu and an x value of 0.02 , the La-Ba-Cu-O form (i.e., "RE-AE-TM-O", per p. 8, line 11) shows "no superconductivity".
(b) With a 2:1 ratio of (Ba, La) to Cu and an x value of 0.15 , the La-Ba-Cu-O form shows an onset of superconductivity at " $T_{c}=26^{\circ} \mathrm{K}$ ". It should be noted, however, that all of the claims in this application require the critical temperature $\left(T_{c}\right)$ to be "in excess of $26^{\circ} \mathrm{K}$ " or "greater than $26^{\circ} \mathrm{K}$ "
(c) Consequently, the present disclosure is not deemed to adequately enable the full scope of the present claims. Independent claims 86 and 103 may require the presence of rare earth, alkaline earth, and transition metals, but the aforementioned examples show that superconductivity is still very unpredictable. Those claims cannot be deemed to be fully enabled.
iv. The applicants also have submitted three affidavits attesting to the applicants' status as the discoverers of materials that superconduct $>26^{\circ} \mathrm{K}$. Each of the affidavits further states that "all the high temperature superconductors which have been developed based on the work of Bednorz and Muller behave in a similar manner (way)". Each of the affidavits add "(t)hat once a person of skill in the art knows of a specific transition metal oxide composition which is superconducting above $26^{\circ} \mathrm{K}$, such a person of skill in the art, using the techniques

Art Unit: 1105
described in the (present) application, which includes all known principles of ceramic fabrication, can make the transition metal oxide compositions encompassed by (the present) claims ...without undue experimentation or without requiring ingenuity beyond that expected of a person of skill in the art." All three affiants apparently are the employees of the assignee of the present application.
(1) Those affidavits do not set forth particular facts to support the conclusions that all superconductors based on the applicants' work behave in the same way and that one skilled in the art can make those superconductors without undue experimentation. Conclusory statements in an affidavit or specification do not provide the factual evidence needed for patentability. ${ }^{s}$
(2) Those affidavits do not overcome the non-
enablement rejection. The present specification discloses on its face that only certain oxide compositions of rare earth, alkaline earth, and transition metals made according to certain steps will superconduct at $>26^{\circ} \mathrm{K}$.
(3) Those affidavits are not deemed to shed light on the state of the art and enablement at the time the invention was made. One may know now of a material that superconducts at more than $26^{\circ} \mathrm{K}$, but the affidavits do not establish the existence of that knowledge on the filing date for the present application. Even if the present application "includes all known principles of ceramic fabrication", those affidavits do not establish the level of skill in the ceramic art as of the filing date of that application.
(4) It is fully understood that the applicants are the pioneers in high temperature metal oxide

[^52]Art Unit: 1105
superconductivity. The finding remains, nonetheless, that the disclosure is not fully enabling for the scope of the present claims.
5. Claims 86-87 and 96-108 are rejected under 35 U.S.C. § 112, second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which applicant regards as the invention.
a. The terms "layer-type", "perovskite-like", "rare-earthlike" are vague and confusing. The question arises: What is meant by these terms?
b. Applicants' arguments filed April 11, 1996, January 3, 1996, and September 29, 1995, paper nos. 53, 50, and 51, as well as the Affidavits filed September 29, 1995 and January 3, 1996, paper nos. 49 and 52, have been fully considered but they are not deemed to be persuasive.
i. The terms "layer-type" and "perovskite-like" are unclear because the "type" or "like" terms are deemed to be indefinite. Terms such as "like", "similar", and "type" are indefinite. ${ }^{6}$ It is suggested that "layer-type perovskite-like crystal structure" be changed -- a substantially layered perovskite crystal structure --.
ii. The applicants respond that "(a) person of skill in the art would understand (rare earth-like) to mean that a location occupied by a rare earth element can also be occupied by another element which would have chemical properties similar enough to the rare earth elements such that it would fit in to the latter (sic - lattice?) site occupied by the rare earth element." : That response does not alleviate the problem, however.

[^53]Art Unit: 1105

Other elements may "fit" into the lattice but they may not necessarily be "rare-earth-like". It is suggested that the same language be changed to -- Group III B --, per p. 7, line 11, of the present specification.

Claim Rejections - 35 USC § 102
6. Claims 24-26, 86-90, and 96-108 are rejected under 35 U.S.C. § 102 (a) as being anticipated by Asahi Shinbum, International Satellite Edition (London), November 11, 1986 (hereinafter, "the Asahi Shinbum article").
a. As discussed in paper no. 20 of the ancestral application, 07/053.307, it is not fully clear to what exact date applicants are entitled. Based on the record, nonetheless, that date would appear to be no later than around December 13, 1986, the date samples were tested in the US to show superconductivity. See MPEP 715 et seq. The Asahi Shinbum article was published on November 28, 1986.
b. The reference confirms superconductivity in an oxide compound of La and Cu with Ba having a structure of the so-called perovskite structure. Although the reference fails to teach use of the testing of zero resistance for confirming
superconductivity, it inherently must have been used because it is one of two methods used for testing for superconductivity (the other being diamagnetism). Accordingly, the burden of proof is upon the applicants to show that the instantly claimed subject matter is different from and unobvious over that taught by this reference. ${ }^{7}$
c. Applicants' arguments filed April 11, 1996, January 3, 1996, and September 29, 1995, paper nos. 53, 50, and 51, as well as the Affidavits filed September 29, 1995 and January 3, 1996,

[^54]Art Unit: 1105
paper nos. 49 and 52, have been fully considered but they are not deemed to be persuasive.
i. The applicants argue that the Sung II Park Affidavit of March 30 , 1988 states at para. 4 that measurements were taken of a superconductive sample on or before November 9, 1986, to the best of the affiant's recollection, or no later than November 15, 1986. The documentary evidence is not deemed to support that argument, however. See MPEP 715.07.
(1) Plots of those measurements are missing. See the Chang C. Tsuei Affidavit of March 30, 1988, para. 6. A handdrawn diagram with the indication of vacuum pumping on November 9, 1988 also is not deemed to show that the measurements were taken.
(2) Moreover, the other evidence in the record appears to show that high temperature superconductivity was not attained in this country as of November 9 or 15, 1986. The March 30, 1986 Declaration of Richard L. Greene includes a series of cablegrams sent by Dr. Greene to the applicants in Zurich, Switzerland as Exhibit B. On both November 11, 1986 and November 14, 1986, Dr. Greene reports that no indication of superconductivity has been seen in his specific heat measurements for temperatures of $4-35^{\circ} \mathrm{K}$. Exhibit C has pages dated December 1, 1986 on, and Exhibit D, which actually has plots of resistance vs. temperature, has an earliest date of December 3, 1996.
ii. The applicants assert that the Asahi Shinbum article reports a third party's confirmation of their original discovery. That assertion appears to be correct, but the article still is deemed to be prior art under 35 USC $102(a)$.
(1) It should be noted again, however, that the applicants' discovery was not originally made in this country and that they cannot show an earlier date than December 1986 for their invention in this country. The Asahi Shinbum article was published on November 28, 1986.

Serial Number: 08/303,561
Art Unit: 1105
(2) The applicants cite four decisions ${ }^{8}$ which do not directly apply to the present facts.
(a) The In re Katz ${ }^{9}$ decision held that an applicant may overcome an article as 35 USC 102 (a) prior art by showing that the applicant was a co-author and that the other coauthors were under the direction and control of the applicant. Here, however, the applicants were neither co-authors in the Asahi Shinbum article nor did they exercise direction and control over the work reported in that article.
(b) The Andrews v. Hovey ${ }^{10}$ decision involved a grace period which is now codified in 35 USC $102(\mathrm{~b})$. The present case involves a printed publication as prior art under 35 USC 102 (a).
(c) The Ex parte Powell and Davies ${ }^{11}$ decision held that an applicant's own foreign patent which issued within the grace period cannot be used against him or her, and the Ex parte Lemieux ${ }^{12}$ decision applied that reasoning to an applicant's own article published in another country. Again, the present applicants had no part in the writing of the Asahi Shinbum article.
${ }^{8}$ One decision is cited in the January 4, 1996 Supplementary Response, paper no. 51: In re Katz, 215 USPQ 14 (CCPA 1982). Three decisions are cited in the April 11, 1996 Supplementary Response, paper no. 53: Andrews v. Hovey, 123 US 267 (1887); Ex parte Lemieux, 115 USPQ 148 (POBA 1957); and Ex parte Powell and Davies, 37 USPQ 285 (POBA 1938).
${ }^{9}$ See In re Katz, supra, 215 USPQ at 17 , 18. See also, MPEP 716. 10 .
${ }^{10}$ See Andrews v. Hovey, supra.
${ }^{11}$ See Ex parte Powell and Davies, supra, 37 USPQ at 285, 286.
${ }^{12}$ See Ex parte Lemieux, supra, 115 USPQ at 149. See also, MPEP 715.01(c).

Art Unit: 1105
(3) The present facts may raise a novel issue of law. ${ }^{13}$ The applicants were the first to develop the presently claimed invention, but the earliest date they can show for that invention in this country is December of 1986. ${ }^{14}$ The Asahi Shinbum article was published in November of 1986 and describes the development of superconductivity with an oxide of La, Ba, and Cu having a perovskite structure by a third party, but that article apparently indicates that the third party was confirming the discovery of the present applicants. Notwithstanding the possible uniqueness of the present facts, however, the Asahi Shinbum article still is deemed to be prior art under 35 USC 102(a), which the applicants have not been able to overcome with a showing of an earlier date in this country or a showing of their direction and control over the work done by that third party.

Claim Rejections - 35 USC § 103
7. Claims 24-26, 86-90, and 96-108 are rejected under 35 U.S.C.

$\S 103$ as being unpatentable over the Asahi Shinbum article.

a. The reference is relied upon as set forth in the previous rejection. This reference may differ from the present claims in that it may fail to disclose the presently claimed method of "causing an electric current to flow in the superconductor element". It was notoriously well-known in the art of superconductors that a method of utilizing superconductive

[^55]Art Unit: 1105
materials was to cause an electric current to flow in the material while it is cooled below its transition temperature. See MPEP 706.02(a). Accordingly, it would have been well within the purview of one of ordinary skill to use the present claimed method with the materials disclosed by the reference. One would have been motivated to cool the material of the reference to below the transition temperature and cause electric current to flow in the material to provide electricity without resistance. Accordingly, the present claims are unpatentable in view of the prior art of record.
b. Applicants' arguments filed April 11, 1996, January 3, 1996, and September 29, 1995, paper nos. 53, 50, and 51, as well as the Affidavits filed September 29, 1995 and January 3, 1996, paper nos. 49 and 52, have been fully considered but they are not deemed to be persuasive. The Asahi Shinbum article is deemed to be prior art under 35 USC $102(a)$ for the reasons discussed above. Possibly Allowable Subject Matter
8. It is noted that the applicants were awarded the Nobel Prize for their work in this area. The record is not deemed to indicate, however, that the Asahi Shinbum article was predated by the applicants' earlier conception and/or reduction to practice in this country. The presently claimed invention also is nonenabling and indefinite for the reasons set forth above. 9. To possibly overcome the above rejections, the following amendments are suggested:
a. 109 (New). A method comprising the steps of:
forming a composition of the formula $\mathrm{Ba}_{\mathrm{x}} \mathrm{La}_{5-\mathrm{x}} \mathrm{Cu}_{5} \mathrm{O}_{\mathrm{y}}$, wherein x is from about 0.75 to about 1 and y is the oxygen deficiency resulting from annealing said composition at temperatures from about $540^{\circ} \mathrm{C}$ to about $950^{\circ} \mathrm{C}$ and for times of about 15 minutes to about 12 hours, said composition having a metal oxide phase which

Art Unit: 1105
exhibits a superconducting state at a critical temperature in excess of $26^{\circ} \mathrm{K}$;
maintaining the temperature of said composition at a temperature less than said critical temperature to induce said superconducting state in said metal oxide phase; and
passing an electrical current through said composition while said metal oxide phase is in said superconducting state.
b. Cancel claims 24-26, 86-90, and 96-108.
10. The following is an Examiner's statement of reasons for the indication of possibly allowable subject matter:
a. The Asahi Shinbum article teaches in general that perovskite-like compounds of La, Cu , and Ba have a T_{c} of $30^{\circ} \mathrm{K}$, but that article apparently does not teach the particular formula in the amendment suggested above. The examples in the present specification are deemed to show criticality for that formula in that suggested amendment.
b. Support for the proposed amendment is found at p. 20, line 1, through p. 25, line 5, and in Figure 3.

Art Unit: 1105
c. This indication of possibly allowable subject matter is subject to further consideration and review.
11. Any amendment in response to this Office Action must NOT include any new matter. See MPEP 608.04 and $706.03(0)$.
12. The applicant or applicants is or are reminded that any evidence to be presented in accordance with 37 CPR 1.131 or 1.132 should be submitted before final rejection in order to be considered timely.
13. Any inquiry concerning this communication or earlier communications from the examiner should be directed to Douglas J. McGinty, whose telephone number is (703) 308-3805. The examiner normally can be reached on Monday through Friday from 8:30 A.M. to 5:00 P.M., Eastern time. If reasonable attempts to reach the examiner by telephone are unsuccessful, however, the examiner's supervisor, Mr. Paul Lieberman, can be reached at (703) 308-2523. Any inquiry of a general nature or relating to the status of this application should be directed to the Group receptionist whose telephone number is (703) 308-0661.
14. The fax number for this Group is (703) 305-3600.

April 12, 1996
303561.2

Douglas J. McGinty
Primary Examiner
Group 1100
** TX CONFIRMATION REPORT **

DATE	TIME	TO/FROM	MODE	MIN/SEC	PGS	CMDH	Status
4/11	15:31	7033053600	EC--S	04"36	12		

IBM CORPORATION
INTELLECTUAL PROPERTY LAW DEPARTMENT
Thomas J. Watson Research Center
Yorktown Heights, New York 10598

FACSIMILE TRANSMITTAL SHEET
FAX \# 862-3281 (internal) FAX \# (914) 9A5-3281 (external)

Date: $4-11-96 \quad$ Number of Pages to Follow: $\quad 11$

To: Exam: Examiner Mon os
 Address:
 \qquad

Phone: \qquad

FAX $H:$ \qquad

Contact \#: \qquad

From:
Name: Janie P. Morris

Phone: \qquad

Location: \qquad

Classification:
\qquad IBM Confidential
1BM Internal Use Only:
Personal
Unclassified

This message is intended only for the use of the individual or entity to which it is addressed, and may contain information that is privileged, confidential and exempt from disclosure under applicabile law. If the reader of this message is not the intended recipient, or the employee or agent responsible for delivering the message to the intended recipient, you are hereby notified that any dissemination, distribution or copying of this communication is strictly prohibited. If you have received this communication in in error, please notify us immediately by telephone and return the original message to us at the address above via the U.S. I'ostal Service. Thank you.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: J.G. Bednorz ct al.
Serial No.: 08/303,561
Filed: September 9, 1994

Date: April 11, 1996
Group Art Unit: 1105
Examiner: D. McGinty

For: SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, AND METHODS FOR THEIR USE AND PREPARATION

I hereby certify that this paper is being facsimile transmitted under Rule 37 CFR § $1.161(\mathrm{~d})$ to the U.S. Patent and Trademark Office on the date shown above,

Reg. No. 32,053

The Commissioner of Patents and Trademarks
Washington, D.C. 20231

SUPPLEMENTARY RESPONSE

Sir:

In response to the Office Action dated March 19, 1995, please consider the following:

REMARKS

These remarks are in addition to those of the previously submitted response.

Claims 24-26, 86-90 and 96-108 have been rejected under 35 USC § 102(a) as being anticipated by the Asahi Shinbum article and under 35 SC $\S 103$ in view of the Asahi

Shinbum article. In addition to Applicants' remarks in regard to this rejection in Applicant's prior response, please consider the following:

The date of the Asahi Shinbum article is November 28, 1986. As stated in Applicants' specification at page 6 , lines $7-10$:

The basis for our invention has been described by us in the following previously published article: J.G. Bednorz and K.A. Mueller, Zeitschrift for Physik B - Condensed Matter, 64, pp. 189-193, Sept. (1986).

The Examiner is using Asahi Shinbum as a reference under 35 USC § 102(a). Applicants respectfully disagree since to do so does not permit Applicants the one year period provided under 35 USC § $102(\mathrm{~b})$ to file a U.S. application after their own publication which permitted Applicants to file the present application up to September 1987. The date of the Asahi Shinbum article is after the date of Applicants' publication.

In regard to the two-year grace period under a prior statute, the U.S. Supreme Court in Andrews v. Hovey, 123 US 267 (1887) states that:
> "The evident purpose of the section was to fix a period of limitation which should be certain, and require only a calculation of time, and should not depend upon the uncertain question of whether the Applicant had consented to or allowed the sale or use. Its object was to require the inventor to see to it that he filed his application within two years from the completion of his invention, so as to cut off
all question of the defeat of his patent by a use or sale of it by others more than two years prior to his application, and thus leave open only the question of priority of invention. The evident intention of congress was to take away the right (which existed under the act of 1836) to obtain a patent after an invention had for a long period of time been in public use, without the consent or allowance of the inventor; it limited that period to two years, whether the inventor had or had not consented to or allowed the public use."

From this quote from Andrews v. Hovey, it is evident that the use or sale by others prior to filing a patent application by the inventor does not cut off the inventors right to obtain a patent so long as the inventor files the application within the statutory period which was 2 years at the time of the Andrews v. Hovey decision and is now 1 year under 35 USC 102(b).

The Patent Office Board of Appeals in Ex parte Powell and Davies, 37 USPQ 285 states in regard to the publication of Applicants foreign patent application before the filing of a U.S. application on October 5, 1936 on an invention described in the foreign patent application that:

The Examiner has also rejected the claims on the printed specification of Applicants' own British application which appears from this record to have been published on August 27, 1936. We know of no authority for such a rejection. Neither section 3886 nor section 4887 R.S. warrants the rejection. Obviously, the publication could not have a date
prior to Applicants' invention. There is no statute that requires an Applicant to make his invention in this country.

Therefore, Applicants of the present invention can rely on their publication in Zeitschrift for Physik as evidence of their invention.

The Patent Office Board of Appeals in Ex parte Powell and Davies, 37 USPQ 285, 286 further states:

The Commissioner indicates in Ex parte Grosselin that the Examiner should consider whether the German patent was derived from Applicant and was in effect nothing more than a printed publication of Grosselin's invention.

The Asahi Shinbum article states in the first paragraph:

A new ceramic with a very high T_{c} of 30 K of the superconducting transition has been found. The possibility of high T_{c} - superconductivity has been reported by scientists in Switzerland this spring. The group of Prof. Shoji TANAKA, Dept. Appl. Phys. Faculty of Engineering at the University of Tokyo confirmed in November, that this is true.

The "scientists in Switzerland" are the inventors of the above-identified application. The Asahi Shinbum article only reports the work of Applicants and that it was reproduced by Prof. Tanaka. This article is a disclosure of Applicants' "own invention" and clearly
in the words of the Board in Ex parte Powell and Davies, "was derived from [Applicants] and [is] in effect nothing more than a printed publication of [Applicants'] own invention and cannot be used as a reference.

The Patent Office Board of Appeals in Ex parte Lemieux 148, 140 states that:

Finally, we believe that our holding is consistent with decisions in interference practice wherein, even though in the usual case a party may not establish a priority date of invention by reference to activity in a foreign country, yet in an originality case where a party is seeking to prove that the other party derived from him so that there is only a single original inventor, he may be permitted to prove derivation by reference to activity abroad. ... By analogy, in the present case appellant has demonstrated that he is the single original inventor, there being no adverse party.

Following this decision it is clear from the Asahi Shinbum article that Applicants are the "single original inventor" and that the Asahi Shinbum article is "derived" from Applicants and that Professor Tanaka's work reported in the Asahi Shinbum article is "derived" from Applicants.

Therefore, the Examiner is respectfully requested to withdraw the rejection of claims 24-26, 86-90 and 96-108 under 35 USC § 102(a) as anticipated by Asahi Shinbum and under 35 USC § 103 as obvious over Asahi Shinbum.

Attached are copies of the following decisions:

Ex parte Powell and Davies 37 USPQ 285
Ex parte Lemicux 115 USPQ 148

IBM Corporation
Intellectual Property Law Dept.
P.O. Box 218

Yorktown Heights, N.Y. 10598
(914) 945-3217

Patent Office Board of Appeals

Ex parte Lemieux

Patent issued Oct. 8, 1957
Opinion dated July 31, 1957

PATENTS

1. Interference-Reduction to practiceIn general (\$41.751)
Patentability-Anticipation-In general (§51.201)
Patentability - Anticipation - Pub-lications-In general ($\$ 51.2271$)
Act of August 8, 1946 (35 U.S.C. 104) was enacted to overrule Electric v. Shimadzu, 307 U.S. 5, 41 USPQ 155, and preclude applicant or patentee from relying upon foreign activity to establish date of invention; it had no effect on Ex parte Powell, 37 USPQ 285; hence, inventor's foreign publication within year prior to filing United States application does not bar him from obtaining patent.
2. Affidavits - Anticipating references (§ 12.3)
Rule 131 does not apply where publication is publication of applicant's own invention; domestic inventors are not distinguished from foreign inventors; all that is required is that identity of application inventor and publication author be established.
3. Interference - Originality of inven-tion-In general (\$41.551)
Interference-Reduction to practiceIn general (\$41.751)
Even though in usual case interference party may not establish priority date of invention by reference to activity in foreign country, in originality case, where party is seeking to prove that opponent derived from him so that there is only a single original inventor, he may be permitted to prove derivation by reference to activity abroad.

Particular patents-Ustilic Acids
2,809,205, Lemieux, Production of Ustilic Acids, claims 1 to 4 and 6 of application allowed.

Appeal from Division 63.
Application for patent of Raymond U. Lemieux, Serial No. 281,451, filed Apr. 9, 1952. From decision rejecting claims 1 to 4 and 6, applicant appeals. Reversed. Pierce, Scheffler \& Parker, Washington, D.C., and Alex E. MacRae for applicant.
Before Duncombe, Examiner in Chief, and Magil and Brewrink, Acting Examiners in Chief.
Magil, Acting Examiner in Chief.

This is an appeal from the final rejec. tion of claims 1 through 4 and 6. Claims 5 and 7, the remaining claims in the case, have been withdrawn from further consideration in accordance with Rule 142 (b) and are not before us.
Since the issue involved in this case is purely legal in nature, there is no reason for reproducing an illustrative claim.
The reference relied upon is:
Lemieux, Canadian Journal of Chem. istry, Vol. 29, (May 1951), pages 415. 425.

We need not refer to the subject matter of the claims because, as previously in. dicated, the appeal involves only a legal point. The following facts are not in dispute:

1. The appellant is the author of the cited publication.
2. The subject matter of the appealed claims is adequately disclosed in the cited publication
3. The cited article was published prior to appellant's filing date in this country, but not more than one year prior thereto.
4. Appellant does not rely upon any earlier filing date to antedate the publication, nor does he assert that he completed the invention in this country prior to the date of the publication.
The examiner holds that appellant is barred from obtaining a patent by the provision of 35 U.S.C. 102 (a) and that he cannot avoid this bar because of the restriction of 35 U.S.C. 104 and the words "in this country" in Rule 131.
Appellant contends that he filed his application within the one year period specified in 35 U.S.C. $102(\mathrm{~b})$ and that Rule 131 is inapplicable. Appellant relies upon the case of Ex parte Powell and Davies, 489 O.G. 231, 1938 C.D. 15 , 37 USPQ 285; he also refers to the International Convention for the Protection of Industrial Property and to the effect of the examiner's rejection on Canadian inventors.
We have carefully considered the examiner's rejection and the appellant's arguments and have studied the pertiment cases on this subject. On its face, and disregarding subsequent statutory changes, the Powell and Davies case appears to be most apposite. The examiner recognizes that the cited decision is relevant, but holds that it is no longer controlling because of the Act of August 8, 1946, which resulted in the enactment of the statute presently corresponding to 35 U.S.C. 104.
[1] We hav U.S.C. 104 and by the case o Shimadzu et lij5, 83 Law. 504 0.G. 4, 41 in an infringel not precluded invention by abroad. We the Shimadzu country" in ol to present Rul the case of In 810, 1942 C.D F. 2 d 169, 52 U the Shimadzu anomalous sit plying in inte another rule a ings. In orde the Act of A nnd, as is evi No. 1502, Junt 2nd Session, a January 28, Session, the p effect, to overr tation of the clude an appl relying upon f a date of inver ase is referre Senate and the
With the f be said that the Act of A to overrule the it had no eff Davies decisio Powell and I affected, we s trolling in the reversal of the note that the was cited by t In re Saurer, 405, 529 O.G. 8 78, but the Cr applicable on failed to estal person named also state tha Ex parte Gro C.D. 248, cites decision, as k Ex parte Gro C.D. 163 , to b

Aside from 104, there is section is not case. Appella lish a date of argued that h publication a the examiner of invention
m the final rejec a 4 and 6. Claims laims in the case, rom further conwith Rule 142(b)
ived in this case ure, there is no ; an illustrative
upon is:
Journal of Chem951), pages 415-
he subject matter as previously inlves only a legal facts are not in
; the author of
tter of the apfuately disclosed n.
n. was published ling date in this e than one year
ot rely upon any :o antedate the he assert that vention in this late of the pub-
hat spellant is a patent by the 102(a) and that r because of the .. 104 and the in Rule 131.
nat he filed his one year period 102(b) and that Appellant reix parte Powell 1, 1938 C.D. 15, , refers to the n for the Proroperty and to er's rejection on
asidered the exthe appellant's adied the pertict. On its face, quent statutory Davies case ap-

The examiner decision is rele; no longer conict of August 8, he enactment of orresponding to

115 USPQ
Ex parte Lemieux
[1] We have traced the history of 35 U.S.C. 104 and find that it was prompted by the case of Electric Storage Co. v. Shimadzu et al., 307 U.S. 5, 59 Sup.Ct. 675,83 Law. Ed. 1071, 1939 C.D. 870 , 504 O.G. 4, 41 USPQ 155, which held that in an infringement action the patentee is not precluded from proving his date of invention by reference to his activity abroad. We note that, on the basis of the Shimadzu decision, the words "in this country" in old Rule 75 , corresponding to present Rule 131, were held invalid in the case of In re McFarlane, 29 C.C.P.A. 810, 1942 C.D. 254, 540 O.G. 237, 125 F.2d 169, 52 USPQ 335. The decision in the Shimadzu et al. case created an anomalous situation, with one rule applying in interference proceedings and another rule applying in other proceedings. In order to remedy this situation, the Act of August 8, 1946 was enacted and, as is evident from Senate Report No. 1502, June 14, 1946, 79th Congress, 2nd Session, and House Report No. 1498 , January 28, 1946, 79th Congress, 2nd Session, the purpose of the law was, in effect, to overrule the statutory interpretation of the Shimadzu decision and preclude an applicant or a patentee from relying upon foreign activity to establish a date of invention. The Shimadzu et al. case is referred to by name in both the Senate and the House Reports.

With the foregoing analysis, it may be said that the purpose and effect of the Act of August 8, 1946 was solely to overrule the Shimadzu et al. case and it had no effect upon the Powell and Davies decision cited by appellant. The Powell and Davies decision being unaffected, we should hold that it is controlling in the present case and dictates reversal of the examiner's decision. We note that the Powell and Davies case was cited by the appellant in the case of In re Saurer, 28 C.C.P.A. 1021, 1941 C.D. 405, 529 O.G. 802, 118 F. 2 d 719, 49 USPQ 78, but the Court found the decision inapplicable only because the appellant failed to establish his identity with the person named in the reference. We may also state that we consider the case of Ex parte Grosselin, 97 O.G. 2977, 1901 C.D. 248, cited in the Powell and Davies decision, as well as the earlier case of Ex parte Grosselin, 84 O.G. 1284, 1898 C.D. 163 , to be pertinent.

Aside from the history of 35 U.S.C. 104, there is another reason why this section is not applicable to the present case. Appellant is not seeking to "establish a date of invention" but has merely argued that he is the author of the cited publication and this is not disputed by the examiner. There being no evidence of invention by anyone else prior to
appellant's filing date, the date of appellant's invention is immaterial. In the present case, we are not concerned with appellant's "date of invention" vis-a-vis the publication of another, an interferant, or other adverse party.
[2] Insofar as the requirements of Rule 131 are concerned, we need do nothing more than refer to and state our agreement with the holdings in the first Grosselin decision (84 O.G. 1284 1898 C.D. 163) and in the Powell and Davies case concerning old Rule 75, corresponding to present Rule 131. In the former decision it was held that "this rule presupposes that the printed publication is the publication by some one other than the applicant whose application is re-jected-by some one who asserts inventorship therein either in himself or some other person than the applicant." In the later case it was held that the rule is not "intended to apply to a case where the publication appears without question to be a publication of the applicant's own invention."

We also take cognizance of several decisions (Ex parte Ensign, 2 USPQ 214; Ex parte Layne, 63 USPQ 17; Ex parte Hirschler, 110 USPQ 384) which have held that, apparently in the case of a domestic inventor, a publication dated less than a year prior to the filing date of an application is not an effective bar if the applicant makes a satisfactory showing that the publication is his own invention or that he is, in effect, the author of the publication. In none of these cases is there any indication that the applicant made the usual showing under Rule 131, that is, reduction to practice prior to the date of the publication or conception prior to the date of the publication coupled with the necessary diligence. We find no reason for distinguishing between a domestic inventor and a foreign inventor in situations of this type and all that is required is that the identity of the application inventor and the publication author be established. There is no dispute on this point in the present case.
[3] Finally, we believe that our holding is consistent with decisions in interference practice wherein, even though in the usual case a party may not establish a priority date of invention by reference to activity in a foreign country, yet in an originality case where a party is seeking to prove that the other party derived from him so that there is only a single original inventor, he may be permitted to prove derivation by reference to activity abroad. Shiels v. Lawrence and Kennedy, 81 O.G. 2085, 1897 C.D. 184; Stiff v. Galbraith, 108 O.G 290, 1904 C.D. 10. By analogy, in the present case appellant has demonstrated

115 USPQ

that he is the single original inventor, there being no adverse party.

In accordance with the foregoing reasoning, we conclude that the examiner's rejection cannot be sustained. We do not consider it necessary to discuss appellant's arguments concerning the International Convention for the Protection of Industrial Property or the effect of the examiner's rejection on Canadian inventors.
The decision of the examiner is reversed.

Patent Office Board of Appeals

Ex parte Bergmann

Patent issued Oct. 8, 1957
Opinion dated Jan. 22, 1957

PATENTS

1. Patentability - Change - Material (§51.257)
Claims are allowed where applicant did not merely indulge in routine experimentation with material having properties which would be expected to produce results desired, but utilized to advantage a material whose properties appeared to be unfavorable.

Particular patents-Sound Recording
2,809,237, Bergmann, Magnetic Sound Recording Head, claims 1 and 3 to 7 of application allowed.

Appeal from Division 16.
Application for patent of Friedrich Bergmann, Serial No. 209,250, filed Feb. 3, 1951. From decision rejecting claims 1 and 3 to 7, applicant appeals. Reversed. Marzall, Johnston, Cook \& Root, Chicago, Ill., for applicant.
Before Taylor and Kreek, Examiners in Chief, and Nilson, Acting Exminer in Chief.

Kreek, Examiner in Chief.

This is an appeal from the final rejection of claims 1 and 3 to 7 inclusive. No claims have been allowed.

Claim 1 is illustrative:

1. Magnetic sound recording head having a core consisting exclusively of magnetic ferrite.
The references relied on are:
$\begin{array}{lll}\text { Burns } & 2,536,260 & \text { Jan. 2, 1951 } \\ \text { Buhrendorf } & 2,592,652 & \text { Apr. 15, } 1952\end{array}$

As is apparent from the illustrative claim, the subject matter here on appeal relates to a recording head for a mag. netic sound recorder in which the core consists exclusively of magnetic ferrite. Numerous advantages are claimed for this construction among which are reduction of wear on the core as a result of the magnetic record medium passing thereover, as compared to the wear of conventional iron cores under similar circumstances; and reduction in electrical losses especially at high frequencies.
Claims 1 and 3 to 7 were rejected as being unpatentable over Buhrendorf or Burns in view of the general knowledge of the art, the examiner's position being "The routine examination of any known substance for a particular use is expected where the known basic requirements of the use are compatible with some characteristics of the substance." It is his opinion "that the mere knowl. edge that 'ferrites' are magnetic is enough to warrant investigation bs workers in magnetic recording. The knowledge of their high frequency losses and avowed utility in electo-acoustic devices practically demands investigation."
Appellant contends that the references relied on do not suggest making cores exclusively of ferrite, and that the known permeability, saturation and abrasive characteristics of ferrite would point away from its use in sound recording heads rather than suggest it. He asserts that recording heads heretofore used are made with cores of highly permeable material to secure proper operation, but that satisfactory operation is secured with ferrite cores even though the permeability thereof is considerably less than the magnetic materials previously used He asserts that the smaller magnetic saturation of ferrite as compared with metallic magnetic material would tend to indicate its unsuitability in erasing heads where high magnetic saturation is required He further asserts that the fact ferrite would not abrade the surface of the sound band was surprising sint sintered ferrite behaves somewhat like sintered porcelain. This characteristle which would have been expected to be det rimental is alleged to provide a great advantage resulting in heads having : life at least ten times longer than that of metal heads heretofore used. Appet lant has made of record a publication bs Rolf Cruel in Technische Hausmitteilur gen des Nordwestdeutschen Rundfunb which compares magnetic heads m^{80} with ferrite with previously used lamb nated, high permeability iron alloy, whid publication demonstrates important tes nical advantages possessed by fert over previously used magnetic materiaks, These are summarized as greater hart
ness resulting in gr sistance to wear so used for much long without adjustment, high frequency and for erasing.
We have carefully in view of appellant various publications show the suitability material for recordin of which we are of t rejection cannot be s
The patent to Bu magnetic recording h netic materials such a ing high permeability tions are made extre 0.001 of an inch this reduce eddy current value as is feasible c ability to work with tions. Obviously Br anticipatory value, bu the problems confron this field as of the tid Buhrendorf applicatio
Burns shows a magr for magnetic record utilize a central yok either side of which iron pole pieces 11 and contact the surface of used in the recorder. lorms a part of the ci tor, the frequency of a result of the variatio flow through the fer noted, however, that t pieces are necessary to netic tape from being frequency currents flo wound in the ferrite co no suggestion in Burr core may be made of f
[1] The examiner a that low permeability factor as he states "su bo undesirable permeal undesigned results." I the teachings of the point away from the material having low as ferrite as the sole core for a sound recon withstanding this, tl clearly shows that' in permeability of ferrite oetic properties are s - mes satisfactorily as aimagnetic recording mincantly, however, is t reade of ferrite have reaistance to abrasion operate up to ten time ventional metallic iron ththout adjustment. strportant factor in ra
fice is istence ssarily on for
to the
of reith the
h peti-

- be di-

October
matter
ph and
appeal
: patent
and an
? of the
ised 11
patent,
Busse in
d to dis-
has no
d Busse
decision inted the ar $3-$ jen n ich petiated the further the inter-

2109 the the right claims, in for those e, as they s for fursponents. sed under period or ach a mohe is not e addition is not the tage of an litional uld lead to the interably delay s toward a
it the prionfined his he motions 1 to rewrite th this conf appeal.
the extent

Patent Office Board of Appeals

Ex parte Powell and Davies
Appl. No. 23985
Patent issued Apr. 5, 1938-Opinion dated Mar. 1, 1938
Patents-Patentability-Anticipation-Foreign patents; Affidavits-Anticipating references (Rule 75)-
Applicants' own British patent has not been sealed, so there is no reason for registry under Rule 29 ; the British application was pubiished in Aug., 1936, but there is no authority for basing on it rejection of United States application filed less than two years after such publication; Rule 75 was intended to provide ex parte means by which applicant can overcome rejection based on publication not more than two years prior to his invention but does not apply to case where publication appears without question to be publication of applicant's own invention.

Patents-Electrodeposition of Silver-
2113517, Powell and Davies, Electrodeposition of Silver, claims 1, 2, 4 to 7, 10 and 11 of application allowed.

Patent No. 2113517 for electrodeposition of silver issued on application filed Oct. 5, 1936.

Appeal from Division 56.
Howson \& Howson for applicants.
Before Van Arsdale, Assistant Commissioner, and Redrow and Porter, Examiners in Chief.

Porter, Examiner in Chief.-This is an appeal from the final rejection of claims $1,2,4$ to 7,10 and 11.

Claim 7 is illustrative.
7. A plating bath comprising a potassium argento-cyanide, an excess of free potassium cyanide, carbon disulphide and Turkey red oil.

The references relied upon are as follows:

Schlotter (British) 443,428, Feb. 27, 1936.

Powell et al (British) 450,979, Aug. 27, 1936.

Blum \& Hogaboom, Principles of Electroplating (2nd Ed.) 1930, pages 350,355 to 357.

It appears from Blum and Hogaboom that the silver plating solution of the claims is old except for the addition of alkali metal soaps or their equivalents. Bhum et al describe an excess of free alkali metal cyanide but the British patent indicates that this excess should be very large and describes the use of Turkey red oil to which applicants refer at the bottom of page 3 of their specification. The British patent does not suggest the use of carbon bisulphide but rather suggests a substitute therefor. Blum et al does not suggest the use of Soap. It is the combined use of carbon bisulphide and soap in the silver plating which applicants describe as their invention. The gist of the examiner's position with respect to the references referred
to appears to be that there is no invention in the combined use of the carbon bisulphide and soap in the silver plating bath. The trouble with this position is that it is not warranted by the record which does not show carbon bisulphide combined with a dispersing agent of the nature of the one employed by applicants.

The examiner has also rejected the claims on the printed specification of applicants' own British application which appears from this record to have been published on August 27, 1936. We know of no authority for such a rejection. Neither section 4886 nor section 4887 R. S. warrants the rejection. Obviously, the publication could not have a date prior to applicants' invention. There is no statute that requires an applicant to make his invention in this country.

It does not appear that the British patent has been sealed which sealing would be necessary in the case of a British patent in a rejection under Rule 29 and it appears from the decision of the Supervisory Examiner (Paper No. 7) that the examiner's real position is not that applicants are barred by the provisions of Rule 29 as appears from his statement, but that applicants have failed to overcome their own publication by affidavits filed under Rule 75.

Applicants filed a petition to the Commissioner asking that the examiner be instructed to withdraw the citation of their own British specification as a reference against the claims. This the Commissioner refused to do indicating that an adverse decision on the point by him might act to preclude a favorable decision by the Board of Appeals.

The examiner holds the affidavits insufficient as the nature of the contents of che notes referred to in the affidavit of Coussmaker does not appear and there is no such showing as to facts as is

** TX CONFIRMATION REPORT $* *$
AS OF JAN 3'96 13:32
PAGE. 01

IBM IPLAW-RES

	DRTE	TIME	TO/FROM	MODE	MIN/SEC	PGS	CMDH	STATUS
01	$1 / 3$	$13: 25$	7033053600	EC- 5	$06 " 34$	16		OK

IBM CORPORATION

INTELLECTUAL PROPERTY LAW DEPARTMENT

Thomas J. Watson Research Center
Yorktown Heights, New York 10598
FACSIMILE TRANSMITTAL SHEET
FAX \# 862-3281 (internal) FAX \# (914) 945-3281 (external)

Date: \qquad
$1-3-96$ Number of Pages to Follow: \qquad

To: Examiner McGint/Grouplos
Address:
Phone: \qquad

FAX \#: \qquad
Contact \#: \qquad

From:
Name: \square
Phone: \qquad
Location: \qquad

Classification:

\qquad IBM Confidential \qquad IBM Internal Use Only
\qquad Personal
\square Unclassified

This message is intended only for the use of the individual or entity to which it is addressed, and may contain information that is privileged, confidential and exempt from disclosure under applicabe law. If the reader of this message is not the intended recipient, or the employee or agent responsible for delivering the message to the intended recipient, you are hereby notified that any dissemination, distribution or copying of this communication is strictly prohibited. If you have received this communication in in error, please notify us immediately by telephone and return the original message to us at the address above via the U.S. Postal Service. Thank you.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant: Bednorz et al.
Serial No.: 08/303,561
Filed: September 9, 1994

Art Unit: 1105
Examiner: D. McGinty
Date: January 3, 1996

For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, AND METHODS FOR THEIR USE AND PREPARATION

I hereby certify that this paper is being facsimile transmitted under Rule 37 CFR $\S 1.161(\mathrm{~d})$ to the U.S. Patent and Trademark Office on the date shown above.

Daniel P. Morris
Reg. No. 32.053

SUPPLEMENTARY RESPONSE

The Commissioner of Patents and Trademarks
Washington, D.C. 20231

Sir:
In response to the Office Action dated March 29, 1995, please consider the following:

REMARKS

These remarks are in addition to those of the previously submitted response.

As further support for applicants' position that the claims under examination are supported by applicants' specification the attached affidavit of Dr. Chang C. Tsuei is submitted. Dr. Tsuei's affidavit is in agreement with the earlier submitted affidavit of Drs. Donger and Mitzi and states that applicants initi-
ated high temperature superconductor field and the teaching in applicants' specification cnables a person of skill in the art to fabricate and use the invention as claimed by applicants.

Claims 24-26, 86-90 and 96-108 have been rejected under 35 USC §102(a) as being anticipated by the Asahi Shinbum article and under 35 USC $\$ 103$ in view of the Asahi Shinbum article. In addition to applicants' remarks in regard to this rejection in applicant's prior response please consider the following.

The date of the Asahi Shinbum article is November 28, 1986. As stated in applicants' specification at page 6 , lines $7-10$:

The basis for our invention has been described by us in the following previously published article: J.G. Bednorz and K.A. Muller, Zeitschrift fur Physik B - Condensed Matter, 64, pp. 189-193 Sept. (1986)

The Examiner is using Asahi Shinbum as a reference under 35 USC §102(a). Applicants respectfully disagree since to do so does not permit applicants the one year period provided under 35 USC $§ 102(b)$ to file a US application after their own publication which permitted applicants to file the present application up to September 1987. The date of the Asahi Shinbum article is after the date of applicants' publication.

Applicants believe this is not a correct application of 35 USC $§ 102$. The Court of Custom and Patent Appeal in In re Katz 215 USPQ 14, 17 (a copy of which is attached) states that

It may not be readily apparent from the statutory language that a printed publication cannot stand as a reference under §102(a) unless it is describing the work of another. A literal reading might appear to make a prior patent or printed publication "prior art" even though the disclosure is that of the applicant's own work. However, such an interpretation of this section of the statute would negate the one year period afforded under $\S 102(\mathrm{~b})^{1}$ during which an inventor is allowed
to perfect, develop and apply for a patent on his invention and publish descriptions of it if he wishes.

Thus, one's own work is not prior art under $\$ 102(a)$ even though it has been disclosed to the public in a manner or form which otherwise would fall under $\$ 102(\mathrm{a})$. Disclosure to the public of one's own work constitutes a bar to the grant of a patent claiming the subject matter obvious therefrom only when the disclosure occurred more than one year prior to the date of the application, that is, when the disclosure creates a one-year time bar, frequently termed a "statutory bar," to the application under $\S 102(\mathrm{~b})$. As stated by this court in In re Facius, 56 CCPA 1348, 1358, 408 F.2d 1396, 1406, 161 USPQ 294, 302 (1969), "But certainly one's own invention, whatever the form of disclosure to the public, may not be prior art against oneself, absent a statutory bar." [Emphasis in original] ${ }^{2}$.

The Asahi Shinbum article states in the first paragraph:

A new ceramic with a very high T_{6} of 30 K of the superconducting transition has been found. The possibility of high T_{c} superconductivity has been reported by scientists in Switzerland this spring. The group of Prof. Shoji TANAKA, Dept. Appl. Phy. Faculty of Engineering at the University of Tokyo confirmed in November, that this is true.

The "scientists in Switzerland" are the inventors of the above-identified application. The Asahi Shinbum article only reports the work of applicants and that it was reproduced by Prof. Tanaka. This article is a disclosure of applicants' "own invention" and cannot be used as a reference. Therefore, the Examiner is respectfully requested to withdraw the rejection of claims $24-26,86-90$ and 96 -108 under 35 USC $£ 102(\mathrm{a})$ as anticipated by Asahi Shinbum and under 35 USC $\S 103$ as obvious over Asahi Shinbum.

Daniel P. Morris
Registration No. 32,053

(3)

-34i

from ASAHI SHINKUN
International Satellite Edition
28. 11. 1986 (London)

DISCOVERY OF NEW SUPERCONDUCTING MATERIAL

" CERAMIC WITH SUFEICIENT SUPERCONDUCTIVE POWER IN HIGH TEMPERATURE REGION "

A new ceramic with a very high T_{c} of 30 K of the superconducting transition has been found. The possibility of high T_{c} - superconductivity has been reported by scientists in Switzerland in this spring. The group of Prof. Shoji TANAKA, Dept. Appl. Phys. Faculty of Engineering at the University of Tokyo confirmed in November, that this is true. T_{c} 's of all superconducting materials which we have in practical application till now are lower than 20 K . Therefore we need large amount of liquid He for cooling. Note that the price of liquid He is very expensive. But with this new material we can use cheaper liquid H_{2} for cooling. We can expect greatifrom this material to the applications such as linear motorcars, electricity transport systems, etc.

The ceramic newly discovered, is an oxide compound of La and Cu with Ba, which has a structure of the so-called perovskite and shows metal-like properties: Prof. Tanaka's laboratory confirmed that this material shows diamagnetism (Meissner effect) up to 30 K , which is the most important indication of the existence of superconductivity.
There are a lot of possibilities for practical applications of superconductors. For example very strong magnets, made of superconducting coils, etc. But one handicap is that T_{c} is too low in in each material we know till now.
The T_{c} of Nb -alloys which are already in practical use are lower than 20 K . The record of T_{c} in a laboratory is around 23.2 K . This record has not been broken since 1973.

Nowadays each instrument using superconductors is operated by liquid He cooling, and He is a very rare material with a boiling point of 4 K . Liquid He used in present Japan is exclusively imported from the USA. If we could get a material with a high T_{c} of 30 K , we can not only use liquid H_{2} but also liquid Ne with a boiling point of 27 K .

Since the application of superconductors to many fields, such as very strong magnets, medical use of NMR machines,etc. show rapid increasing, research field of hich T_{c} superconductivity is highcompetitive all over the world.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant: Bednorz et al.
Serial No.: 08/303,561
Filed: September 9, 1994
Art Unit: 1105
Examiner: D. McGinty
Date: January 2, 1996
COMPOUNDS HAVING
HIGH TRANSITION TEMPERATURE, AND METHODS FOR THEIR USE AND PREPARATION

AFFIDAVIT UNDER 37 C.F.R. § 1.132

The Commissioner of Patents and Trademarks
Washington, D.C. 20231

Sir:
I, Chang C. Tsuci, being duly sworn, do hereby depose and state:

That I received a B.S. degree in Mechanical Engineering from National Taiwan University (1960) and M.S. and PhD. degrees, in Material Science (1963, 1966) respectively from California Institute of Technology.

That I have worked as a research staff member and manager in the physics of superconducting, amorphous and structured materials at the Thomas Watson Research Center of the International Business Machines Corporation in Yorktown Heights, New York, from 1973 to the present. (See attached Exhibit A for other professional employment history.)

That I have worked in the fabrication of and characterization of high temperature superconductor and related materials from 1973 to the present.

That I have reviewed the above-identified patent application and acknowledge that it represents the work of Bednorz and Muller, which is generally recognized as the first discovery of superconductivity above $26^{\circ} \mathrm{K}$ and that subsequent developments in this field have been based on this work.

That all the high temperature superconductors which have been developed based on the work of Bednorz and Muller behave in a similar manner, conduct current in a similar manner and have similar magnetic properties.

That once a person of skill in the art knows of a specific transition metal oxide composition which is superconducting above $26^{\circ} \mathrm{K}$, such a person of skill in the art, using the techniques described in the above-identified patent application, which includes all known principles of ceramic fabrication, can make the transition metal oxide compositions encompassed by claims 24-26, 86-90 and 96-108, without undue experimentation or without requiring ingenuity beyond that expected of a person of skill in the art. This is why the work of Bednorz and Muller was reproduced so quickly after their discovery and why so much additional work was done in this field within a short period of their discovery.
$\therefore-2$

Sworn to before me this 26th day of September, 1995.

DANIEL P. MORRIS
NOTARY PUBLIC, Ste ti New York Ne. 4838676
Qualified in Wieniciset?: County
Commission Expires Match 15, 19.9.7

CHANG C. TSUEI

Education

California Institute of Technology, M.S. (1963), Ph.D. (1966)
National Taiwan University, B.S. (1960)

Professional Employment

1993-present - Research Staff Member
1983-1993 - Manager, Physics of Structured Materials
1979-1983 - Manager, Physics of Amorphous Materials
1974-1975 - Acting Manager, Superconductivity
1973-1979 - Research Staff Member

Harvard University: 1980 (Summer)
Visiting Scholar in Applied Physics

Stanford University: 1982 (Sept.)-1983 (April)
Visiting Scholar in Applied Physics

California Institute of Technology
1972-1973-Senior Research Associate in Applied Physics
1969-1972 - Senior Research Fellow in Materials Science
1966-1969 - Research Fellow in Materials Science

215 USPQ
tors merely other hand, publication claimed in application which it mı article may tion whethe ple, if auth specifically cant's worl content and well as cir cation, not considered.

8. Patenta

cation
Althougl vits or decl. that does inventorshi work in w have been have ende reasonably inventor, 1 Rule 132; showing position.

9. Applic:
 (§14.)

Patenta
catio:
Joint is
face of sy article au working supervisio

Particu

Tole
Katz, I
ance, reje
reversed.

Appeal Board of
Applic:
Kacz, Ser
ion, Seri
From det
18, арр'
Judge, di
John H.
of Nev

[^56]right; no barrier is created by that section unless another has either actually reduced invention to practice or has constructively reduced it to practice by filing, patent application.

3. Interference - Priority ($\$ 41.70$)

Interference - Reduction to practice Constructive reduction ($\$ 41.755$)

Unlike filing of patent application, publication of article is not constructive reduction to practice of subject matter described in it; therefore, disclosure in publication does not prove that any "invention" within meaning of Section 102(g) has ever been made by anyone.
4. Patentability - Anticipation - Patents - In general (\$51.2211)

Patentability - Anticipation - Publications - In general ($\$ 51.2271$)
Interpretation of Section 102(a) that would make prior patent or printed publication "prior art" even though disclosure is that of applicans's own work would negate one year period afforded under Section 102(b) during which inventor is allowed to perfect, develop, and apply for patent on his invention and pubish descripuions of it if he wishes.
5. Patentability - Anticipation - In general (\$51.201)
One's own work is nom prior art under Section. 102(a) even though it has been disclosed to public in manner or form that otherwise would fall under Sccion 102(a); disclosure to public of onc's own work constitutes bar to grant of patem claiming subject matter so disclosed, or subject mater olvious from it, only when disclosure occurred more than one year prior to application's date, that is, when disclosure creates one-year time bar, to application under Section 102(b); one's own invention, whatever form of disclosure to public, may not be prior art against oneself, absent statutory bar
6. Patentability - Anticipation - Publications - In general ($\$ 51.2211$)
Disclosure of publication that occurred less than one year before appellant's application comes within scope of Section 102(a) only if description is not of appellant's own work.

7. Patentability - Anticipation - Publi-

 cations - In general ($\$ 51.2211$)Authorship of article by itself does not raise presumption of inventorship with respect to subject matter disclosed in article; thus,coauthors may not be presumed to be co-inven-

wors merely from fact of co-authorship; on other hand, when PTO is aware of printed publication that describes subject matter of claimed invention and is published before application is filed (only date of invention on which it must act in absence of other proof), article may or may not raise substantial question whether applicant is inventor; for example, if author, whether he is applicant or not, specifically states that he is describing applicant's work, no question at all is raised; content and nature of printed publication, as well as circumstances surrounding its publication, not merely its authorship, must be considered.

8. Patentability - Anticipation - Publications - In general (§51.2211)

Although submission of disclaiming affidavits or declarations by other authors of article that does not tell anything specific about inventorship and that reports on scientific work in which applicant and other authors have been engaged in some capacity would have ended inquiry into whether it can be reasonably concluded that applicant is sole inventor, they are not required by statute or Rule 132; what is required is reasonable showing supporting basis for applicant's position.
9. Applicants for patent - In general (§14.1)

Patentability - Anticipation - Publications - In general (\$51.2211)
Joint inventorship cannot be inferred, in face of sworn statements to contrary, from article authored by applicant and students working under applicant's direction and supervision.

Particular patents - Immunological Tolerance Induction

Katz, Induction of Immunological Tolerance, rejection of claims $1,5,17$, and 18 reversed.

Appeal from Patent and Trademark Office Board of Board of Appeals.
Application for patent of David Harvey Katz, Scrial No. 937,574, division of application, Serial No. 764,586, filed Feb. 3, 1977. From decision rejecting claims 1,5,17, and 18, applicant appeals. Reversed; Miller, Judge, dissenting with opinion.

John H. Lynn and Grant L. Hubbard, both of Newport Beach, Calif., for appellant.

Joseph F. Nakamura and Gerald H. Bjorge for Patent and Trademark Office.

Markey, Chief Judge, and Rich, Baldwin, Miller, and Nies, Associate Judges.

Nies, Judge.
This appeal is from the decision of the Patent and Trademark Office (PTO) Board of Appeals (board) sustaining rejection of claims $1,5,17$, and 18 , all remaining claims in application Serial No. 937,574 for "Induc(ion of Immunological Tolerance." The subject application is a divisional application of application Serial No. 764,586, filed February 3, 1977, and is entitled to that filing date. The claims were rejected because of a description of the subject matter of the invention in a publication dated June 1976, which appellant, however, asserts is a description of his own work. The board was unpersuaded by appellant's declarations to that effect and sustained the rejection. We reverse

Background

In June, 1976, cigh months before appertane's effective filing date, an artide coauthored by Nicholas Chiorazzi, Zelig Eshhat and appellant was published in the Proceedings of the Nationat Academy of Science, U.S.A., Vol. 73, No. 6, pp. 2091-95. There is mo dispute that the artiele (Chiorazzi et al.) fully describes the claimed invention.

Along with his divisional application. appellame lited a dedaration in which he declared that

He is the sole inventor of the subject matter deseribed and clamed in the United States latent Application Serial No. 764,586, filed February 3, 1977, entited, INIDUCIION OF IMMUNOLOGICAL TOLERANC: which subject matter is disclosed and damed in part in the divisional application with which this dectaration is submitted.

He is co-author of a report in the proceedings of the National Academy of Science, U.S.A., Volume 73, No. 6, Pages 2091-2095, June, 1976, communicated to the National Academy of Science by Albert H. Coons, a member of said Academy, on March 8, 1976, that he is the sole inventor of the subject matter which is disclosed in said publication in the proceedings of the National Academy of Science and disclosed and claimed in the application submitted herewith. [Emphasis ours.]

The other authors of the publication, Nicholas Chiorazzi and Zelig Eshhar were students working under the direction and supervision of the inventor, Dr. David H. Katz, and while co-authoring the publication, are not co-inventors of the subject matter described therein.

The Examiner's Rejections
In his first Official Action, the examiner stated:

Claims 1, 5, 17 and 18 are rejected under 35 USC $102(\mathrm{~g})$ as anticipated by Chiorazzi et al. * * Applicant's declaration * * * is entirely ineffective in overcoming the rejection of this nature and is considered to be nothing more than the self-serving statement.

In his Final Ollicial Action, the examiner adhered to the $\S 102(\mathrm{~g})$ rejection adding:
[There is no evidence of record which makes it dear that appellant is the sole inventor of the claimed invention ***. Where a reference is from a collection of authors, it must be assumed that all authors contributed equally even though it is recognized that sometimes individuals involved only with assay and testing features of the invention and * * * not involved in the conceptial [sicl aspect of the research are included as an author to a particular reference. There is not sufficient evidence of record to show that applicant is the sole inventor of the claimed invention.
*** The publication date as well as communication date of the reference, both dates being prior to applicant's filing date, [are] clear evidence to [sic] prior invention. [Emphasis in original].

To overcome the rejection, the examiner required that appellant either (1) amend his application to include the other authors as coinventors, or (2) file affidavits from the other authors "disclaiming the invention claimed." Appellant chose to appeal rather than comply with either requirement.

The Board's Affirmance
While the board sustained the examiner's rejection, it did so on the following ground:

The Chiorazzi et al. article, as pointed out by the examiner and as acknowledged by appellant, fully describes the presently claimed therapeutic immunosuppressive agent and the method of preparing same. In view of the fact that the article was published some eight months prior to the effective fliling date of the present application and since the authors of the article are legally another within the meaning of Section $102(a)$, we are satisfied that the examiner has clearly established a prima facie case of lack of novelty of the presently claimed therapcutic agent and method.

Appellant, who is a coauthor of the Chiorazzi article, has stated under oath that he is the sole inventor of the subject matter hercin claimed and described in the article, and that the other authors, namely, Chiorazzi and Eshhar, are not coinventors but were simply students working under his direction and supervision. In appellant's view, this declaration constitutes legally acceptable evidence and, in the absence of evidence to the contrary, is sullicient to establish that he is the sole inventor of the subject matuer in issue.

However. ye do not find this declaration, standing alone, sufficient to establish that Kate is the sole inventor and thus remove the Chiorazzi article as a reference against the fresently claimed subject matter. Although appellant may be of the opinion that he is the sole inventor, such a view may not be shared by the coauthors of this article. Coauthors Chiorazzi and Eshhar may, in fact, be of the opinion that they are, at the very least, coinventors of the subject matter described in the article and daimed herein. Eiven though authorshit) may not conchusidy cstablish imventorship, is is reasenalle to infer that such a retationshif, caiss. Appellant's unsupported statement, even though under oath, does not convince us otherwise. In our view, disclaiming athdavits or declarations by the wher authors are required in order to support appellan's contention that he is the sole inventor of the subject matter described in the Chiorazzi article and claimed here. [Emphasis ours.]

The troard adhered to its position on rehearing.

Opinion

[1] Because the board did not specincally reverse the $\S 102(\mathrm{~g})$ rejection, we treat it as having been affirmed. 37 CFR 1.196(a). Fur-
ther, since a
board's reli.
for rejection
tion. 37 C gest that §102(e) wit reference to thorship of agree that respect for ent and, ace to consider
[2] Secti
A per:
unless -
(g) b
thereof i
country
doned, s
terminin.
be consic of conce the inver gence of last to re to conce

This sectio: ciple that : be the first cuer, prior another do ble barrier other has tion to pra it to practic
[3] We prosition th article pro rejection u filing of a of an arti reduction described : 986. 989, 2 305-06 (1 publication tion" with been mad ground for

s pointed owledged presently ppressive ing same. ticle was ior to the - applicaarticle are ng of Secat the exprima fa: presently rethod.
or of the inder oath the subject ibed in the rs, namely, coinventors king under In appelistitutes lein the abontrary, is is the sole n issue.
declaration, tablish that thus remove ence against maller. AIthe opinion such a view thors of this and Eshhar on that they :ntors of the e article and ; authorship inventorship, ch a relationsported stateth, does not ur view, disations by the order to suphat he is the lleer described claimed here.
position on not spectincally we treat it as 1.196(a). Fur-
ther, since appellant does not contend that the board's reliance on $\S 102(a)$ is a new ground for rejection, we will also consider that section. 37 CFR $1.196(\mathrm{~b})$. Appellant does suggest that the board apparently confused $\S 102(\mathrm{c})$ with $\$ 102(\mathrm{a})$ since $\S 102(\mathrm{a})$ makes no reference to "another" in the context of authorship of a publication. However, we disagree that the board was "confused" in this respect for reasons which will become apparent and, accordingly, do not find it necessasry to consider $\S 102(\mathrm{e})$ separately.

35 USC 102(g)

[2] Section 102 (g) reads:

Λ person shall be enitiled to a patent unless -
(g) before the applicant's invention thereof the invention was made in this country by another who had not abandoned, suppressed, or concealed it. In determining priority of invention there shall be considered nol only the respective dates of conception and reduction to practice of the invention, but also the reasomable diligence of one who was lirst to conceive and last to seduce to practice, from a lime prior to conception by the other.

This section of the statute embexies the principle that to be entited to a patent one must be the first to have made the invention. However, prior conception of the invention by another does not defeat one's right. No possible barrier is created by $\$ 102(\mathrm{~g})$ unless another has either actually reduced the invention to practice or has constructively reduced it to practice by filing a patent application.
[3] We specifically reject the examiner's position that the publication of the subject article provides even a tenuous ground for rejection under 35 USC 102(g). Unlike the filing of a patent application, the publication of an article is not deemed a constructive reduction to practice of the subject matter described therein. In re Schlituler, 43 CCPA 986, 989, 234 F.2d 882, 884, 110 USPQ 304, 305-06 (1956). Therefore, disclosure in a publication does not prove that any "invenlion" within the meaning of $102(\mathrm{~g})$ has ever been made by anyone. The examiner's ground for rejection must, therefore, fail.

35 USC 102 (a)
Section 102(a) reads:

A person shall be entitled to a patent unless -
(a) the invention was known or used by others in this country, or patented or described in a printed publication in this or a foreign country, before the invention thereof by the applicant for patent.
[4] It may not be readily apparent from the statutory language that a printed publication cannot stand as a reference under §102(a) unless it is describing the work of another. A literal reading mighe appear to make a prior patent or printed publication "prior art" even though the disclosure is that of the applicant's own work. However, such an interpretation of this section of the statute would negate the one year period alforded under $\$ 102(b)$ ' during which an inventor is allowed to perfect, develop and apply for a patent on his invention and publish descriptions of it if he wishes. Illinois Tool v. Solo Cup Co., 461 F. 2 d 265, 172 USPQ 385 (CA 7), cert. denied, 407 U.S. 916 (1972).

15] Thus, onc's own work is not prior art under $\S 102(a)$ even though it has been disdesed to the publice in a manner or form which otherwise would fall under \$102(a). Disclosure to the public of one's own work constitutes a bar to the grant of a patent thaming the subject mater so disclosed (or subject matuer obvious therefrom) only when the disclosure occurred more than one year prior to the date of the application, that is, when the disclosure creates a one-year lime bar, frequently termed a "statutory bar," to the application under $\$ 102$ (b). As stated by this courn in In re Facius, 56 CCPA 1348 , 1358, 408 F.2d 1396, 1406, 161 USPQ 294, 302 (1969). "But certainly one's aum muentim, whatever the form of disclosure to the public, may not be prior art against oneself. "howent of statutory bar." |Emphasis in original.|:

- 35 115: 102(b) provides:

A permen shalt be contilded wa patem unkes -
(b) the invention was patented or described in a printed publication in this or a foreign country or in publier use or on sale in this country, more than ome veray phin th the date of the apphication for patem in the United States. Emphasis added.)
"Since any valid rejection is necessarily a "statutory bar," in a generic sense, the expression "stalulory bar" musi the understood here as meaning "statutory time bar" under 35 USC. 102(b).
[6] Since the publication in this case occurred less than one year before appellant's application, the disclosure comes within the scope of $\S 102(\mathrm{a})$ only if the description is not of appellant's own work.

The specific question present in this appeal is essentially an evidentiary one, namely, the sufficiency of applicant's showing to establish that the subject disclosure was his original work, and his alone.' We conclude that appellant's declaration is sufficient in this case to overcome the rejection.
[7] As an initial matter, we hold that authorship of an article by itself does not raise a presumption of inventorship with respect to the subject matter disclosed in the article. Thus, co-authors may not be presumed to be coinventors merely from the fact of co-authorship. On the other hand, when the PTO is aware of a printed publication, which describes the subject matter of the claimed invention and is published before an application is filed (the only date of invention on which it must act in the absence of other proof), the article may or may not raise a substantial question whether the applicant is the inventor. For example, if the author (whether he is the applicant or not) specifically states that he is describing the work of the applicant, no question at all is raised. The content and nature of the primed publication, as welf as the circumstances surrounding its publication, not merely its authorship, must be considered.

What we have in this case is ambiguity created by the printed publication. ${ }^{4}$ The article does not tell us anything specific about inventorship, and appellant is only one of thrce authors who are reporting on scientific work in which they have all been engaged in some capacity at the Harvard Medical School. It was incumbent, therefore, on appellant to provide a satisfactory showing which would lead to a reasonable conclusion that he is the sole inventor.

[^57][8] The board and the examiner held that "disclaiming affidavits or declarations by the other authors are required to support appellant's position that he is, in fact, the sole inventor of the subject matter described in the article and claimed herein." This was clear error. Submission of such affidavits or declarations would have ended the inquiry, but we do not agree that they are required by the statute or Rule 132. What is required is a reasonable showing supporting the basis for the applicant's position.

In this case, appellant reaverred in his declaration that he is the sole inventor of the subject matter described and claimed in his application and also that disclosed in the publication of proceedings of the National Academy of Science. We do not view this averment as a mere pro forma restatement of the oath in his application.
[9] In the dectaration, appellant provides the explanation that the co-authors of the publication, Chiorazzi and Eshhar, "were students working under the direction and supervision of the inventor, Dr. David H Katz." This statement is of significance since it provides a dear alternative condusion to the board's inference that their names were on the article because they were coinventors. As acknowledged by the examiner, the names of individuals may be given as authors of a scientific report who are "involved only with assay and testing features of the invention." Appellani's explanation is, thus, consistent not only with the content of the article but with the nature of the publication. On the record here, the board should not have engaged in further speculation as to whether appellam's view was shared by his co-authors but rather should have accepted that Chiorazzi and Eshhar were acting in the capacity indicated, that is, students working under the direction and supervision of afpellant. From such a relationship, juint inventorship cannot le inferred in the face of sworn statements to the conerary.

Thus, we conclude that in view of the totality of circumstances, appellant has made a sufficient showing that the cited publication discloses his invention. Accordingly, we reuerse the decision of the board.

Reversed.

Miller, Judge, dissenting.
The board correctly held that it is reasonable to infer coinventorship from coauthor-

215 USPQ
ship. This determinat printed pu question is applied ag: by one of CCPA 134 (1969); In F.2d 1393 Land, 54 USPQ 621 opinions b patents isst the board involving Magner, 13 131 USPQ USPQ 384 (1943). Sur stant appea guments, al

In Laync iner that an that an ar made with sufficient u tion. The b.
[I] ${ }^{1}$ is : obtain as article in his inforn view that article, H in afford the ident: publicatic.
furnished in the Pe ,
'As argued tion is also ev or used by ond in a primied p the invention 102(a) and, than "before mocrition wa under 35 U : "nor himself are terms that inventive enti ion's view of indicates that practice; appe rejection on applicant, is date of invent application fili and Eshhar a CHISUM Ot

decla-
ut we
iy the
d is a
sis for
in his
of the
in his
in the
ational
w this
aent of
rovides
of the
"were
ind su-
id H .
e since
sion to
-s were entors. names rs of a ly with ntion." nsistent icle but On the ave envhether authors hiorazzi ty indider the
i. From
, cannot
nents to
of the
as made
blication
we re-
s reason-oauthor-
ship. This inference is sufficient to justify a determination by the PTO that the reference printed publication ("Chiorazzi et al.") in question is prior art under 35 USC 102 as applied against an application for patent filed by one of the coauthors.' In re Facius, 56 CCPA 1348, 408 F.2d 1396, 161 USPQ 294 (1969); In re Mathews, 56 CCPA 1033, 408 F.2d 1393, 161 USPQ 276 (1969); In re Land, 54 CCPA 806, 368 F.2d 866, 151 USPQ 621 (1966). Nthough all of the latter opinions by this court have involved prior patents issued to different inventive entities, the board has established a line of cases involving only printed publications. In re Magner, 133 USPQ 404 (1961); In re Seaborg, 131 USPQ 202 (1960); In re Hirschler, 110 USPQ 384 (1952); In re Layne, 63 USPQ 17 (1943). Such cases are analogous to the instant appeal, and, contrary to appellant's arguments, are consistent.

In Layne, the board agreed with the examiner that an allidavit by the applicant, stating that an article published by another was made with the applican's consent, was not sufficient to owcrome the examiner's rejection. The beard stated
[1] 1 is stated in the brief that counsel can obtain an allidavit of the writer of the article in the publication that he obtained his information from the deponent. It is our view that this allidavit of the writer of the article, H. Lee Flosed, should be furnished to afford complete and satisfactory proof of the identity of the article disclosed in the publication.

* * * $[\mathrm{U}]$ ntil the allidavit referred to is furnished, the rejection on the publication in the Petroleum Engineer appears proper.

[^58]For this reason, the rejection is alfirmed. It is recommended, however that if a proper allidavil of H. Lee Flood is promptly submitied, the claims be allowed.

63 USPQ at 19. Laync differs from the present case in that the inventor in Layne was not named as a coauthor, here, Katz was one of the named coauthors

When presented with an examiner's rejection urilizing a publication coauthored by the applicant and his laboratory assistant, the braard in Hirschler refused to sustain the rejection in view of the submission of an allidavit disclaiming inventorship which was executed by the lat) assistant. The board said:
| $\mathrm{A} \mid \mathrm{n}$ allidavit which points out that afliant took no part in writing the article and was nor the inventer of the subject matter described in the articte, but was merely listed as coathor of the article in order to reccive credit for having collaborated on the research program under the directions of presemt appeliam, is properly acceptable and * * * the article may be considered the sole work of presem appellam. Since the article is nom a statuony bar, it is no cflective as a reference

110 USPQ a 387 . Here, of course, there are no disclaining aflidavits filed by the co-authors and alleged noninventors.

Appeltant quotes the following statement of the board in Sealorg explaining that a Kule 1.31 allidavit was unacessary:

The issue is no one of priority but atoribution of inventership, the examiner cuidently having in mind the possibility that Waht might le a joint inventor. But we wrould emphasize that the bare fact that Waht is the literary co-author is nos evidence of joint inventorship.

131 USP(Q at 203. This statement is taken out of context, the board attuatly concluding:

On the question of originality any evidence convincing to the Ollice may be aceeped. The evidence here is in the form of an aflidavit by joint author Wahl stating that he is not the inventor of the subject matter claimed herein. In absence of any adversity of interest there seems to be litile basis for challenging this allidavit. In fact, the examiner states on page 4 of his answer that he "has no doubt that Seaborg is the sole inventor of the subject matter claimed."

Under these circumstances we see no valid basis for maintaining the rejection on the Seaborg and Wahl article.

131 USPQ at 203. As is apparent, a disclaiming aflidavit was filed by the coauthor and noninventor, which clearly distinguishes Seaborg from the present case. Also, the board justified its position, at least in part, on the basis that the affiant had no "adversity of interest."

In Magner, three of four applicants had published an article disclosing their invention less than a year prior to the application's filing date. The three coauthors and coinventors filed an affidavit declaring that the fourth applicant was also a coinventor, viz., that he "and themselves mutually participated in the conception, research and reduction to practice of the invention claimed ***" and that the article "was prepared from the research records of themselves and the fourth coinventor." 133 USPQ at 405. The examiner refused to accept this alfidavit because an explanatory allidavis by the fourth coinventor had not been presented. The board refused to sustain the examiner's rejection, stating:

The article is by three of the four joint inventors; we sec no necessity for an afidavit under Rule 131 as no question of priority is involved. The question is as to attribution of inventorship - an explanation of the relation of the publication by three of the joint inventors to the application of all four of them. We think that the aflidavit satisfies this requirement. On the question of originality any competent evidence convincing to the Office may be accepted. There is no reason to doubt the statement of the threc joim inventors as to the participation of the fourth inventor as this statement is of no benefit to them. [Emphasis supplied.]

Id. This is unlike the present case, where the appellant's aflidavit is favorable to his own inicrest and adverse to the interests of coauthors Chiorazzi and Eshhar.

Appellant argues that the board's reasoning in In re McGuckian, 202 USPQ 398 (1975), is somehow analogous and supports his position. McGuckian, however, involved the use of a typical 37 CFR 1.131 affidavit filed to overcome the examiner's application of a United States Patent as a reference under 35 USC 102(e). The examiner determined that the Rule 131 showing, which included three declarations, two by applicant and one by his attorney, and fifteen exhibits, was not sufficient to meet the requirements of the
rule. The board held that the Rule 131 showing was sufficient and indicated that the examiner was required to accept as true the applicant's sworn statements that "he is the inventor'; that 'he conceived and reduced to practice the invention'; and the work evidenced by Exhibits 1 through 15 'was made through his efforts and others at his request on his behalf." In this context, as quoted by Kazz, the board said:

It is neither the Examiner's function nor our function under such circumstances to divine the role if any played by someone who is a complete stranger to the proceeding. It is only in some inter partes proceeding, totally lacking here, where all interested partics are represented and the fundamental safeguards of direct examination and cross-examination are possible, that the question of inventorship and dates of invention can be explored in the manner attempted by the Examiner here.

202 USPQ al 399. However, McGuckian ollers no support to appellant. That case was concerned only with the adequacy of the applicam's Rule 131 showing; whereas, appellant here has not atempted to comply with the requirements of Rule 131.

Essentially, appellant argues that this court cither should hold that coauthorship is not evidence of, or a basis for inferring, coinventorship or should accept without question an allidavie by an applicant which simply states that lie is the sole inventor. To the contrary, I would hold that coauthorship is evidence of coinventorship and creates an inference thereof which is sufficient to establish a prima facie case under either 35 USC 102(a), (f), or (g) that the Chiorazzi et al. article is prior arr:' ' further, that appellant's declaration does not rebut the prima facic case. ${ }^{3}$

As t the showing that would be sufficient (1) overcome the governmen's prima facie case, it is to be noted that inventorship is a matter of law which depends upon factual maters underlying the development of the invention, including the contribution by all parties involved with the claimed invention. See Linkow v. Linkow, 517 F.2d 1370, 186 USPQ 223 (CCPA 1975); Hedgewick v.

[^59]
show-
the exue the : is the iced to k evi; made equest ned by
on nor
nces to ,meone
oceed-
oceed-iterestd the iminaussible,
1 dates
nanner
uckian
se was
he ap-
appel-
y with

5 court
is not
inven-
ion an
states
rary, I
nce of
there-
prima
(I), or
; prior
in does
flicient

- Sacie
ip is a
factual of the by all ention. 0,186 ick v.
nvolved lesting tivities, limited all, the nforma-

Akers, 497 F.2d 905, 182 USPQ 167 (CCPA 1974). As related earlier, the board's decision to accept or reject affidavits affecting a nonafflant's rights in an invention has been predicated upon whether the affiant's statements are adverse to the nonaffiant's interest. Because the affiant, Katz, sceks to adversely affect the interests of the coauthors Chiorazzi and Eshhar, the PTO has refused to accept his affidavit as determinative, leaving him a choice of submitting affidavits by Chiorazzi and Eshhar disclaiming any interest in the invention or making a showing of facts in existence prior to the date of publication of the Chiorazzi et al. article sufficient to prove that inventorship of the claimed invention lies solely with Katz. ${ }^{4}$

The majority accepts the Katz declaration, which simply concludes that Katz is the sole inventor and that his coauthors were students in his employ. Katz has not provided either a recitation of facts to support these conclusions, viz., type of supervision in the lab, circumstances resulting in his conception, instructions to his coauthors, parlicipation and performance by his coauthors, etc or a recitation of facts from which the PTO could conclude that his coathors played no role in the conception of the invention. Joint publication of this article in the names of Katz, Chiorazzi, and Eshhar, without explanation, places a cloud upon the sole application of Katz and requires that Katz allirmatively clear the air. This he has not done.

In view of the Pro's limited resources for processing in excess of 100,000 patent applications a year, it is disappointing that a majority of this court cannot see its way to extend a helping hand to the effort of a vital administrative agency to protect the integrity of the patent system, with minimal inconvenience to an applicant.

[^60]Court of Appeals, District of Columbia Circuit

Oetiker

v. Jurid Werke GMBH

Nos. 81-1427 and 81-1489
Decided Feb. 19, 1982

UNFAIR COMPETITION

1. Antitrust laws (§68.15)

One guilty of fraudulent procurement, and attempted enforcement of patent thus procured, may be liable for treble damages to competitors under antitrust laws; enforcement of patent procured by fraud on PTO may be violative of Sherman Act Section 2 provided all other elements necessary to establish Section 2 violation are proved, and persons injured by that violation may sue for ereble damages under Section 4 of Clayton Aet

PATENTS

2. Presumption from patent grant - Patent Office consideration of prior art (§55.5)
Fat that exammer did not apply references is certainly nom indication that be misunderstorad them.
3. Pleading and practice in Patent Office - In general (\$54.1)

Applicane bears no oftigation to distinguish over references of record that are no applied against claims.

4. Defenses - Fraud (\$30.05)

Patent Office loses all purisdiction once patent issues, and there can thus be no fraud on Patent Ollice for fature to che prior ant that was discovered only after issuance of patem.

5. Defenses - Fraud (§30.05)

Finding that patent was procured by fraud must be based on elaar, unequiveal, and convincing evidence; there must be evidence of teliberate misrepresentation in- PTO; good faith judgment not to cite prior art to PTO, even if erroneous, cannot be fraud; it is necessary that there be elear evidence of specifice intent, and that defendant knowingly and willfully misrepresented facts to PTO.

6. Costs - Attorney's fees (\$25.5)

35 U.S.C. 285 permits award of athorney's fees in patent cases involving exceptional circumstances.

PLEASE STAMP \& RETURN TO US

In re application of: Bednorz et al. For: NEW SUPERCONDUCTIVE Cocket No.: YO987-074BY Serial No. 08/303,561 Dock \& Trademark Office:

Supplementary Amendment
Certificate of Mailing
arnoren on OUR ACCOUNT NO.: 09-0468

PLEASE STAMP \& RETURN TO US

In re application of: Bednorz et al.
For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION...
Serial No. 08/303,561 Docket No.:Y0987-074BY Attny:DPM
Received in the U.S. Patent \& Trademark Office:
Supplementary Amendment
Certificate of Mailing

ALL FEES ARE TO BE CHARGED ON OUR ACCOUNT NO.: 09-0468
Date of Deposit: October ${ }^{10}, 1995$

In re application of:

Bednorz et al.

Serial No.: 08/303,561
Filed: September 9, 1994

Date: October 10, 1995
Group No.: 1105
Examiner: D. McGinty
Docket No. YO987-074BY

For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, AND METHODS FOR THEIR USE AND PREPARATION

Commissioner of Patents and Trademarks
Washington, D.C. 20231

CERTIFICATE OF MAILING UNDER 37 CFR 1.8(a)

I hereby certify that the attached correspondence comprising:
Supplementary Amendment Acknowledgement Card
being deposited with the United States Postal Service as first class mail in an envelope addressed to:

Commissioner of Patents and Trademarks
Washington, DC 20231
on October 10, 1995
Michele Ahl
(Print name of person mailing paper)
Trickele Ald
(Signature of person mailing paper)
Docket No. YO987-074BY

```
In re Patent Application of
    J. Bednorz et al. : Date: October 4, 1995
Serial No.: 08/303,561
Filed: September 9, 1994 : Examiner: D. McGinty
FOR: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION
TEMPERATURE, AND METHODS FOR THEIR USE AND PREPARATION
```


SUPPLEMENTARY AMENDMENT

Commissioner of Patents and Trademarks washington, D. C. 20231

Sir:
In response to the office action dated March 29, 1995, please consider the following:

REMARKS

The Examiner has cited Asahi Shinbun, International Satellite Edition (London), November 28, 1986. Claims 24-26, 86-90, 96-108 have been rejected as anticipated by Asahi Shinbun under 35 U.S.C. 102 (a) and as obvious over Asahi Shinbun under 35 U.S.C. 103.

At page 6, lines 7-10 of the specification states that "The basis for our invention has been described by us in the following previously published article: J.G. Bednorz and K.A. Mūller, Zeitschrift für Physik B - Condensed Matter, 64, pp. 189-193, YO987-074BY
S.N. 08/303.561

September 1986." The present application was filed within a year of this article.

The Asahi Shinbun article reports on applicants' work and says that it has been reproduced by Professor Tanaka. It is therefore not a proper reference, since it is essentially applicants' work.

[^61]
PLEASE STAMP \& RETURN TO US

In re application of: Bednorz et al.For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGHT TRANSITION..Serial No.08/303,561 Docket No.: Y0987-074BYAttny: DPMReceived in the U.S. Patent \& Trademark Office:Associate Power of Attorney for DPM, Wllm B.Porter, Wm.E11isPetition and Fee for Extension of Time (3mo.)Affidavits from Dr. T. Dinger and Dr. D. MitziSubmission after Final rejection Under 37 CFR 1.129 (a)
Appendix A, B, C and D.
Amendment
ALL FEES ARE CHARGED TO OUR ACCOUNT NO.: 09-0468
Date of Deposit:
September 26, 19.95

in the unitel states patent and trauemark office

In re application of:
Bednorz et al.

Serial No.: 08/303,561
Filed: September 9, 1994

Date: September 26, 1995
Group No. 1105
Examiner: D. McGinty
Docket No. YO987-074BY

For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, AND METHODS FOR THEIR USE AND PREPARATION

Commissioner of Patents and Trademarks
Washington, D.C. 20231

CERTIFICATE OF MAILING UNDER 37 CFR 1.8(a)

I hereby certify that the attached correspondence comprising:
Petition and Fee for Extension of Time
Submission after Final Rejection
Under 37 CFR 1.129(a)
Associate Power of Attorney for:
Daniel P. Morris, William T. Ellis and
William B. Porter
Affidavits from Dr. T. Dinger and
Dr. D. Mitzi
Amendment
Appendix A, B, C \& D
Acknowledgement Card
being deposited with the United States Postal Service as first class mail in an envelope addressed to:

Commissioner of Patents and Trademarks
Washington, DC 20231
on September 26, 1995
Daniel P. Morris
(Print name of person maijing paper)
(Signature of person mailing paper)

In re Patent Application of J. Bednorz et al.
 Serial No.: 08/303,561
 Filed: September 9, 1994 : Examiner: D. McGinty
 FOI: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, AND METHODS FOR THEIR USE AND PREPARATION

AMENDMENT
Commissioner of Patents and Trademarks Washington, D. C. 20231
Sir:
In response to the office action dated March 29, 1995, please consider the following:

REMARKS

Claims 24-26, 86-90, 96-108 are in the application.

In view of the remarks herein, the Examiner is respectfully requested to reconsider the above-identified application.

Claim of Priority

The Examiner acknowledges applicants' claim for priority under 35 USC 119. The Examiner states "however, a review of that certified Copy, which is in English, indicates that it does not support the present assertion of priority. Support is not found in that certified copy for the invention as presently claimed."

Applicants respectfully disagree. The certified copy is directed to transition metal oxide superconducting materials.

A copy of the European Patent Application number 87100961.9. filed January 23, 1987 corresponding to the priority document is attached as Appendix A. Moreover, the title of the priority document refers to "superconductive compounds ... having a high transition temperature" and further provides examples of transition temperatures greater than $26^{\circ} \mathrm{K} . "$ (see for example column 4, lines 56-58 and column 5, lines 7-8).

The Examiner's attention is directed to the following comments from this document which is referred to herein as the priority document.
S.N. 08/303.561
I) The priority document states at column 1 , lines 7-19 that:
"The present invention proposes to use compounds having a layer-type structure of the kind known from potassium nickel fluoride $\mathrm{K}_{2} \mathrm{NiF}_{4}$. This structure is in particular present in oxides of the general composition $\mathrm{RE}_{2} \mathrm{TMO4}$, wherein RE stands for the rare earths (lanthanides) and $T M$ stands for the so-called transition metals. It is a characteristic of the present invention that in the compounds in question, the RE portion is partially substituted by one member of the alkaline earth group of metals or by a combination of the members of this alkaline earth group, and that the oxygen content is at a deficit."
II) The priority document further states at column 3. lines 39-40, "a first layer-type perovskite-like phase, related to the $\mathrm{K}_{2} \mathrm{NiF}_{4}$

S.N. 08/303,561

structure".
III) The priority document defines T_{c} at column 6, lines 4-5, by referring to the onset of superconductivity, i.e., the value of the critical temperature T_{c} ".
IV) The priority document further states at column 6, lines 38-43 that "[r]esistivity... measurements, as a function of temperature... show the same general tendency... A drop in resistivity $p(T)$ and a cross-over to diamagnetism at a slightly lower temperature."
v) It is generally known that: "[a] magnetic field... cannot penetrate onto the interior of a superconductor... [p]erfect conductivity implies a time-independent magnetic field in the interior... In a superconductor, the field is not only independent of time, but also zero." (Solid State Physics, N.W. Ashcroft, N.D. Mermin, Saunders College, 1976) (see Appendix B).
VI) It is also well-known that: "[i]n the ideal
case the resistance vanishes completely and discontinuously at a transition temperature. Ts... Actually, the resistance temperature curve does fall more sharply the more the specimen is like a single crystal... [T]he drop always occurs in a measurable temperature range..." (Theory of Superconductivity, M. von Laue, Academic Press, Inc., 1952) (see Appendix C).

Applicants' claim 103 recites (claims 104-108 depend from

 claim 103):A) "providing a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound having a layer-type pervoskite-like crystal structure, the copper-oxide compound including at least one rare-earth or rare-earth-like element, and at least one alkaline-earth element".
B) "composition having a superconductive/resistive transition defining a superconductive/ resistive-transition temperature change between an upper limit defined by a transition-onset temperature T_{c} and a lower limit defined by an effectively-zero-bulkresistivity intercept temperature T_{c}, the transition-onset temperature T_{c} being] greater than $26 \mathrm{~K}^{\prime \prime}$.

Support for that part of claim 103 designated as A above is found in the priority document as indicated in I and II above.

Support for that part of claim 103, designated as B above can be found in the priority document in III, IV and V above and in VI above which provides a more detailed explanation of aspects of superconductors as described in the priority document above.

Claim 87 depends from independent claim 86. Support for claims 86 and 87 is found in the priority document in the same way as is support for claims 103-108. Claims 88-89 depend from claim 88. Support for claim 88 is found in the priority document in the same way as for claims 103-108. Claims 97-102 depend from claim YO9 87-074BY
S.N. 08/303,561
96. Support for claims 96-102 is found in the priority document in the same way as in found for claims 103-108. Claims 25-26 depend from claim 24. Support for claim 24 is found in the priority document in the same way as is found for claims 103-108.
S.N. 08/303,561

Objection to Specification and Rejection of Claims 103-108 Under 35 USC 112 - Lack of Support

The specification has been objected to under 35 USC 112, first paragraph. The Examiner states that "the language of claim 103 is not supported by the original specification."

Applicants respectfully disagree. Claim 103 is adequately supported by the original specification. As noted above, claim 103 is supported by the priority document.

The Examiner's attention is directed to the following comments from the specification.
VII) The specification states at page 1, lines 510, that "This invention relates to ... superconducting compositions including copper and/or transition metals."

The specification further states at page 5 , lines 2-9 that:
"It is another object of the present invention to provide novel superconductive materials that are
multi-valent oxides including transition metals, the compositions having a perovskite-like structure."

It is a further object of the present invention to provide novel superconductive compositions that are oxides including rare earth and/or rare earth-like atoms, together with copper or other transition metals that can exhibit mixed valent behavior."

The specification further states at page 8, lines 1-11, that "[A]n example of a superconductive composition having high T_{c} is the composition represented by the formula RE-TM-O, where $R E$ is a rare earth or rare earth-like element, TM is a nonmagnetic transition metal, and 0 is oxygen. Examples of transition metal elements include Cu, Ni, Cr etc. In particular, transition metals that can exhibit multivalent states are very suitable. The rare earth elements are typically
S.N. 08/303.561
elements 58-71 of the periodic table, including $C e, N d, ~ e t c . ~ I f ~ a n ~ a l k a l i n e$ earth element (AE) were also present, the composition would be represented by the general formula RE-AE-TM-O."

And at page 7, lines 14-15, the specification states that "the rare earths site can also include alkaline earth elements."

The specification at page 6, lines 7-10 states that:
VIII) "The basis for our invention has been described by us in the following previously published article: J.G.Bednorz and K.A. Muller, Zeitschrift fūr Physik B Condensed Matter, 64, pp. 189-193, (September 1986)." Another article of interest by us is J.G. Bednorz, K.A. Muller, M. Takashige, Europhysics Letters, 3(3), pp. 379385 (1987)."

The first article clearly shows in the figures (for example Figure 3 that the resistivity reaches a critical temperature at YO987-074BY
S.N. 08/303,561
which it begins to rapidly drop and over a small temperature range goes to zero.

Support for recitation \underline{A}, above of claims 103-108 can be found in the specification as indicated in VII above. Support for recitation B, above of claims 103-108 can be found in the specification as indicated in VIII above.

Objection to Specification and Rejection of Claims Under 35 USC 112, First Paragraph - Enablement

Claims 103-108 have been rejected under 35 USC 112 , first paragraph for the reasons set forth in the objections to the specification. Claims 104-108 depend from claim 103. In view of to applicants' comments in regards to the objection to the specification, the Examiner is respectfully requested to withdraw the rejection of claims 103-108 under 35 USC 112.

The specification has been rejection under 35 USC 112 , first paragraph as failing to provide an enabling disclosure commensurate with the scope of the claims. The Examiner states that "the present specification is only enabled for compositions comprising $\mathrm{Ba}_{\mathrm{x}} \mathrm{La}_{5 \cdot x} \mathrm{Cu}_{5} \mathrm{O}_{\mathrm{y}}$. The art of high temperature (above 300 K) superconductors is an extremely unpredictable one. Small changes in composition can result in dramatic changes in or loss of superconducting properties. The amount and type of examples necessary to support broad claims increases as the predictability of the art decreases."

The Examiner cites number of see CCPA cases in support of the rejection of claims 103-108 under 35 USC 112, first paragraph: in re Fisher, 166 USPQ 18; in re Angstadt and Griffen, 190 USPQ 214. and in re Coliani, 195 USPQ 150.
S.N. 08/303,561

Applicants respectfully disagree that claims 103-108 are not enabled by the specification.

The specification at page 8 , line 1 , states that "An example of a superconductive composition having high T_{c} is the composition represented by the formula RE-TM-O, where $R E$ is a rare earth or rare earth-like element, $T M$ is a nonmagnetic transition metal, and O is oxygen. Examples of transition metal elements include Cu, Ni. Cr, etc. In particular, transition metals that can exhibit multivalent states are very suitable. The rare-earth elements are typically elements 58-71 of the periodic table, including Ce, Nd, etc. If an alkaline earth element (AE) were also present, the composition would be represented by the general formula RE-AE-TMO."
S.N. 08/303,561

The specification further states at page 11, lines 19-24, that "An example of a superconductive compound having a layer-type structure in accordance with the present invention is an oxide of the general composition $\mathrm{RE}_{2} \mathrm{TMO}_{4}$, where RE stands for the rare earths (lanthanides) or rare earth-like elements and $T M$ stands for a transition metal."

The composition $\mathrm{RE}_{2} \mathrm{TMO}_{4}$: RE is referred to at page 24, lines 59; $\mathrm{RE}_{2 \cdot \mathrm{x}} \mathrm{TM}_{\mathrm{x}} \mathrm{O}_{4 \cdot \mathrm{y}}$ is referred to at page 25, lines 19-21.

The following specific compounds are recited in the application:
$\mathrm{Ba}_{4} \mathrm{La}_{5 \cdot \times} \mathrm{Cu}_{5} \mathrm{O}_{5(3-\mathrm{y})}$ at page 10, lines 4, 10, 14. Other compounds are given in the articles to B. Raveau, in Mat. Res. Bull., Vol. 20 (1985) pp. 667-671, and to C. Michel et al. in Rev. Claim. Min. 21 (1984) 407, both of which are incorporated by reference at page 13 , lines 4-5.
$\mathrm{La}_{2 \cdot x} \mathrm{Ba}_{\mathrm{x}} \mathrm{CuO}_{4 \cdot \mathrm{y}}$ at page 12 , line 13
$\mathrm{La}_{2 \cdot \mathrm{x}} \mathrm{Ba}_{\mathrm{x}} \mathrm{NiO}_{4 \cdot \mathrm{y}}$ at page 12 , line 13
$\mathrm{La}_{2 \cdot x} \mathrm{Sn}_{\mathrm{x}} \mathrm{NiO}_{4 \cdot y}$ at page 12 , line 17
$\mathrm{Ce}_{2 \cdot \mathrm{x}} \mathrm{Cu}_{\mathrm{x}} \mathrm{NiO}_{4 \cdot \mathrm{y}}$ at page 12 , line 19
$\mathrm{La}_{2} \mathrm{CuO}_{4} \quad$ at page 12, line 21
$\mathrm{La}_{2} \mathrm{CuO}_{4 \cdot \mathrm{y}}$ with $\mathrm{Sn}^{2 \mathrm{x}}$ substitution at page 13 , line 17 $\mathrm{Ba}^{2 \mathrm{x}}$ and $\mathrm{Ca}^{2 \mathrm{x}}$

```
\(\mathrm{La}_{2 \cdot \mathrm{x}} \mathrm{Sn}_{\mathrm{x}} \mathrm{CuO}_{4 \cdot \mathrm{y}}\) at page 17, line 21
\(\mathrm{La}_{2 \cdot \mathrm{x}} \mathrm{Ca}_{\mathrm{x}} \mathrm{CuO}_{4 \cdot \mathrm{y}}\) at page 17, line 21
\(\mathrm{La}_{2 \cdot x} \mathrm{Ba}_{\mathrm{x}} \mathrm{CuO}_{4 \cdot \mathrm{y}}\) at page 18 , line 6
\(\mathrm{La}_{2} \mathrm{CuO}_{4}: \mathrm{Ba}\) at page 18 , line 15
\(\mathrm{La}_{2} \mathrm{CuO}_{4}: \mathrm{Ba}\) at page 24, line 6
\(\mathrm{Na}_{2} \mathrm{NiO}_{4}: \mathrm{Sn}\) at page 24, line 9
\(\mathrm{La}_{2} \mathrm{CuO}_{4 \cdot \mathrm{y}}\) doped with \(\mathrm{Sn}^{2 \mathrm{x}}, \mathrm{Ca}^{2 \mathrm{x}}\) and \(\mathrm{Ba}^{2 \mathrm{x}}\) at page 25, lines 6-18
```

The paragraph bridging pages 13 and 14 refer to $\mathrm{Ba}-\mathrm{La}-\mathrm{Cu}-\mathrm{O}$ systems having different crystalographic phases having Cu^{3+} and Cu^{2+} ions or Ni^{3+} and Ni_{2+} ions.

The claims under appeal In re Fisher are directed to increasing the potency of substances containing ACTH hormones for injection into human beings. In regards to the rejection for insufficient disclosure under 35 USC 112 the CCPA states that:
"the issue thus presented is whether an inventor with the first to achieve potency of greater that 1.0 for certain types of compositions, which potency was long designed because of its beneficial effects on humans, should be allowed to dominate all compositions having potencies greater 1.0 , thus including future compositions having potencies in excess

```
of those obtainable from his teachings plus
ordinary skil1." 166 USPQ 18, 23-24 (emphasis
in the original).
```

The CCPA goes on to say in In re Fisher that:
"It is apparent that such an inventor should be allowed to dominate the future patentable inventions of others where those inventions were based in some way on his teachings. Such improvements, while unobvious from his teachings, are still within his contribution, since the improvement was made possible by his work. It is equally apparent, however, that he must not be committed to achieve this dominance by claims which are insufficiently supported and hence, not in compliance with the first paragraph of 35 USC 112. That paragraph requires that the scope of the claims must bear a reasonable correlation to the scope of enablement provided by the specification to persons of ordinary skills in the art... In cases involving unpredictable factors, such as most chemical reactions... the scope of enablement obviously varies inversely with the degree of unpredictability of the factors involved." (166 USPQ 18, 24)

Applicants of the present invention have provided the first
S.N. 08/303.561
teaching that transition metal oxides can form a superconductor having a critical temperature in excess of 200 K , therefore, "is apparent that such an [applicant] should be allowed to dominate the future patentable inventions of others when those inventions lare based in some way on applicantsl teaching" as stated by the CCPA in In re Fisher Supra.

Claim 103 of the present invention recites "a copper oxide compound having a layer-type-perovskite-like crystal structure, the copper oxide compound including at least one rare-earth or rare-earth-like element, and at least one alkaline-earth element". In regard to the stated elements, the rare earth elements are defined in the specification at pate 7, lines 9-12 to the "a group IIIB element, such as La." Group IIIB includes Sc, Y, La and Ac, rare earth-like or near rare earth. The rare earth elements are elements 58 to 71. This group contains four elements from group IIIB and fourteen elements from the rare-earth for a total of 18 elements. The alkaline earths contain the elements of Group A which has 6 elements.

The claimed invention in re Angstadt and Griffen (190 USPQ 214) involves a methods of catalycally oxidizing alkylaromatic hydrocarbons to form a reaction comprising the corresponding hydroperoxides. The method employs catalysts. The Examiner rejected all the claims under 35 USC 112, first and second YO987-074BY
S.N. 08/303.561
paragraphs. The Board's rational for affirming the Examiner's rejection was directed primarily to the enablement required of the first paragraph.

The CCPA stated that:
"what is a maximum concern in the analysis of whether a particular claim is supported by the disclosure in an application, is whether the disclosure contains sufficient teaching regarding the subject matter of the claims as enabled one of skill in the art to make and to use the claimed invention. These two requirements 'how to make' and 'how to use' have some times been referred to in combination as the 'enablement requirement'... The relevancy may be summed up as being whether the scope of enablement provided to one of ordinary skill in the art by the disclosure as such as to be commensurate with the scope or protection sought by the claims. (190 USPQ 214.47 citing In re Moore 169 USPQ).

In the attached affidavits under 37 CFR 132, Dr. T. Dinger and Dr. D. Mitzi state:
"That once a person of skill in the art knows of a specific transition metal oxide composition which is superconducting above
S.N. 08/303,561
$26^{\circ} \mathrm{K}$, such a person of skill in the art, using the techniques described in the aboveidentified patent application, which includes all known principles of ceramic fabrication, can make the transition metal oxide compositions encomposed by claims 24-26, 86-90 and 96-108, without undue experimentation or without requiring ingenuity beyond that expected of a person of skill in the art. This is why the work of Bednorz and Müller was reproduced so quickly after their discovery and why so much additional work was done in this field within a short period of their discovery."

In the paragraph at the bottom of page 15 of the specification, it is stated that:
in regard to compositions according to the present invention that "their manufacture generally follows the known principles of ceramic fabrication." Thereafter, an example of a typical manufacturing process is given. The CCPA in In re Angstadt and Griffen further states that: "we cannot agree with the Board that

Appellants'disclosure is not sufficient to enable one of ordinary skill in the art to practice the invention without undo experimentation. We note that many chemical processes and catalytic processes particularly, are unpredictable, and the scope of enablement varies inversely with the degree of unpredictability involved... The question, then, whether in an unpredictable art, section 112 requires the disclosure of a test with every species covered by a claim. To require such a complete disclosure will apparently necessitate a patent application or applications with 'thousands ' of examples... . More importantly, such a requirement would force an inventor to seek adequate patent protection to carry out a prohibited number of natural experiments. This would tend to discourage inventors in filing patent applications in an unpredictable area since the patent claim would have to be limited those embodiments which are expressly disclosed. A potential infringer could readily avoid 'infringement of such claims' by merely finding another analogous (example) which could be used..." 190 USPQ 124, 218.

The CCPA in In re Angstadt further goes on to say
"having decided that appellants are not required to YO987-074BY
disclose every species encompassed by the claims even in an unpredictable art such as the present record presents, each case must be determined on its own facts." 190 USPQ 214. 218. (emphasis in the original).

In regards to the catalyst In re Angstadt and Griffen CCPA further states:
"since appellants have supplied the list of catalysts and have taught how to make or how to use them, we believe that the experimentation required to determine which catalyst will produce hydroperoxide would not be undo and certainly would not 'require ingenuity beyond that to be expected of one of ordinary skill in the art'. 190 USPQ, 214, 218 in re Field v. Connover 170 USPQ, 276, 279 (1971).

As stated in the affidavits of Dr. Dinger and Dr. Mitzi, to make the high temperature superconductors encompassed by claims 2426, 86-90 and 96-108, using the teaching of the present invention would not require ingenuity beyond that expected of one of ordinary skill in the art.

```
The CCPA in In re Angstadt further states that:
```

"the basic policy of the Patent Act. which is to encourage disclosure of inventions and thereby to promote progress in the useful arts. To require disclosures in patent applications to transcend the level of knowledge of those skilled in the art would stifle the disclosure of inventions in fields man understands imperfectly." 190 USPQ 214. 219.

The CCPA further states that:
"the certainty which the law requires in patents is not greater than is reasonable." 242 USPQ, 270-271, cited in In re Angstadt. 190 USPQ 214, 219.

The Examiner cited In re Colianni 195 USPQ 150 which applicants believe is not on point since in In re Colianni "[t]here is not a single specific example or embodiment by way of an illustration of how the claimed method is to be practiced." (195 USPQ 150, 152). In contradistinction as noted above, there are numerous examples cited in applicants' specification and incorporated references.
"Showing that the disclosure entails undue experimentation is
S.N. 08/303,561
part of the PTO's initial burden." In re Armbruster 185 USPQ 152 , 504.
"The practicle approach followed consistently by [the CCPA] places the initial burden on the PTO to show that the enabling disclosure is not commensurate in scope with the claim. Upon such a showing, the burden of rebuttal shifts to applicants". In re Coliani 195 USPQ 150.
"However, [the CCPA] has made it clear that the Patent and Trademark office must substantiate its rejections for lack of enablement with reasons" In re Armbruster 185 USPQ 152, 153.

The Examiner has merely asserted without support that "the art of high temperature superconductivity is unpredictable...".

The CCPA in In re Marzocchi, 58 CCPA 1069, 439 F. 2d 220, 169 USPQ 367, 369-370 (1971) states:
"The only relevant concern of the patent office under these circumstances should be over the truth of any such assertion. The first paragraph of $\$ 112$ requires, nothing more than objective enablement. How such a teaching is set forth, either by the use of illustrative examples or by broad terminology, is of no importance.

As a matter of Patent Office practice, then, a specification disclosure which contains a teaching of the manner and process of making and using the invention in terms which correspond in scope to those used in describing and defining the subject matter sought to be patented must be taken as in compliance with the enabling requirement of the first paragraph of $\$ 112$ unless there is reason to doubt the objective truth of the statements contained therein which must be relied on for enabling support. Assuming that sufficient reason for such doubt does exist, a rejection for failure to teach how to make and/or use will be proper on that basis; such a rejection can be overcome by suitable proofs indicating that the teaching contained in the specification is truly enabling...
[I]t is incumbent upon the Patent Office, whenever a rejection on this basis is made, to explain why it doubts the truth or accuracy of any statement in a supporting disclosure and to back up assertions of its own with acceptable evidence or reasoning which is inconsistent with the contested statement. Otherwise, there would be no need for the applicant to go to the trouble and expense of supporting his presumptively accurate
S.N. 08/303.561
disclosure. [Emphasis in original footnote deleted].

Applicants have enclosed herewith affidavits of Dr. Mitzi and Dr. Dinger under 37 CFR 132 which state, as quoted above, that once a person of skill in the art knows of applicants' work, the compositions encompassed by the claims under experimentation, can be made using the teaching of applicants without under experimentation.

Thereby rebutting the Examiner's statement that:
" [the specification ... [fails] to provide an enabling disclosure commensurate with the scope of the claims."

Rejection of Claims 86-87 and 96-108 Under 35 USC 112, Second

Paragraph

Claims 86-87 and 96-108 have been rejected under 35 USC 112, second paragraph.

The Examiner states that:
"The terms 'layer-type', 'perovskite-like', 'earth-like' are vague and confusing."

The Examiner's attention is directed to the specification at page 7, lines 12-15 where it is stated that "substitutions can be found in the rare earth (or rare earth-like) sites, or in the transition metal sites of the compositions. A person of skill in the art would understand this to mean that a location occupied by a rare earth element can also be occupied by another element which would have chemical properties similar enough to the rare earth elements such that it would fit in to the latter site occupied by the rare earth element.

The Examiner's attention is directed to the book entitled "Copper-Oxide Superconductors", Charles P. Poole, Jr. et al., 1988, John wiley and Sons. The Preface at page V states that "this volume reviews the experimental aspects of the field of oxide YO987-074BY
S.N. 08/303,561
superconductivity with transition temperatures between $30^{\circ} \mathrm{K}$ to above $120^{\circ} \mathrm{K}$ from the time of discovery by Bednorz and Muller in April 1986 until a few months after the award of the Nobel Prize to them, in October 1987. During this period, a consistent experimental description of many of the properties of the principal superconducting compounds, such as BiSrCaCuO, LaSrCuO, TlBaCaCuO and YBaCuO has emerged" (emphasis added)

This is clear evidence that it is generally accepted that Applicants work initiated the field of high temperature superconductivity and that the other compounds developed behave similarly. At page 78 of this book, it is stated under the heading "Perovskite-type superconducting structures" that "in their first report on high-temperature superconductors, Bednorz and Müller referred their samples as 'metallic oxygen deficient... perovskitelike mixed valent copper compounds.' Subsequent work as confirmed that the new superconductors do indeed have these characteristics. In this section, we will comment on their perovskite-like aspects." This is clear evidence that a person of skill in this art, at the time of applicants' invention, would have understood the meaning of "perovskite-like". In this book, at page 86 , under the heading "'Layering Scheme of LrCuO'" it is stated that "when we describe the LrCuO structures were left out, what is perhaps their most important characteristics, their layered aspect." Therefore, it is apparent that a person of ordinary skill in the art at the time of YO987-074BY
S.N. 08/303,561
applicants invention, would have understood the meaning of "layerlike." At page 15 of this book, it is stated that "these are cases such as ... in which T_{c} is less composition dependent and the highest value does not occur at the stoichiometric compositions." Therefore, it is apparent that a person of ordinary skill in the art at the time the invention was made, would understand the meaning of "non-stoichiometric atomic proportion". Copies of the pages corresponding to these quoted sections is attached in Appendix D.

In re Borkowski 164 USPQ 642, 646, the CCPA states that:
[6] "we do not agree ... that claims ... are rendered "unduly broad" or "indefinite" . Moreover, there is no magical relation between the number of representative examples and the breath of the claims; the number and variety of examples are irrelevant if the disclosure is "enabling" and sets forth the "best mode contemplated".

The Examiner further states that "it should be noticed, that at the time the invention was made, the theoretical mechanism of superconductivity of these materials, was not understood. That mechanism is still not understood. Accordingly, there appears to little factual of theoretical basis for extending the scope of the YO9 87-074BY
S.N. 08/303,561
claims much beyond the proportions and materials actually demonstrated to exhibit high temperature superconductivity". Applicants respectfully disagree. It is not necessary that applicants have a theoretical understanding of their invention. The comments herein and in particular the affidavits of Dr. Dinger and Dr. Mitzi, clearly point out that there is a factual basis for extending the scope of the claims beyond the proportions and materials actually demonstrated.

As stated in the affidavit of Dr. Mitzi and Dr. Dinger and the preface of the book by Poole et al., quoted above, the work of Applicants initiated the field of high temperature superconductors. As stated above according In re Fisher "it is apparent that such an inventor should be allowed to dominate future patentable inventions of others where those inventions were based in some way on his teachings." (166 USPQ 18, 24)

The Examiner quotes from Brenner v. Manson, 148 USPQ which states that "a patent is not a hunting license or is not a reward for the search, but a reward for a successful conclusion." Applicants respectfully disagree that this passage is applicable to applicants' situation. In Brenner v. Manson, the issue to which this quotation refers is whether an applicant may patent a chemical process which produces a product for which there is no known use. This is not the case in the above-identified application, YO9 87-074BY
S.N. 08/303.561
therefore, the quoted passage from Brenner v. Manson is not applicable.

Claims 24-26, 86-90 and 96-108 have been rejected under 35 USC 112, first paragraph for the reasons set forth in the rejections to the specification. Claims 24-26 were originally filed in the application, are therefore supported by it since claims are selfsupporting. Claims 86-90 and 96-102 are supported by the specification for the same reasons given above, for why claims 103108 are supported by the specification.

The Examiner queries "will any layered perovskite material containing copper exhibit superconductivity? Also, does any stoichiometric combination of rare earth, an alkaline earth, and copper elements result in an oxide superconductor?"

The claims are directed only to these materials that are superconducting. A claim which covers an inoperative species does not fail to satisfy 35 USC 112. In the present application, none of the species which the claim reads on are inoperative, since the claims only read on superconducting compositions. In In re Angstadt, 190 USPQ 214, 119, the CCPA held that inoperative examples do not render claims unpatentable under 35 USC 112.

We hold that the evidence as a whole, including the
> inoperative as wall as the operative examples, negates the PTO position that persons of ordinary skill in this art, given its unpredictability, must engage in undue experimentation to determine which complexes work. The key word is "undue", not "experimentation". 190 USPQ 214, 719 (emphasis on the original)

Claims Rejections Under 35 USC 102

Claims 24-26, 86-90 and 96-108 have been rejected under 35 USC 102 (a) as being anticipated by Asahi Shinbum, International Satellite Edition (London, November 28, 1986). The Examiner states "as discussed in paper number 20 of the ancestral application, 07/053, 307, it is not fully clear to what exact date applicants are entitled. Based on the record, nonetheless, that date would appear to be no later than around December 13,1986 , the date samples were tested in the US to show superconductivity."

Applicants respectfully disagree.

In the Affidavit of Sung Il Park, dated March 30, 1988, at paragraph 4, it is stated "the preparation in measurement of the aforementioned superconducting samples occurred at a date prior to YO987-074BY
S.N. 08/303,561

November 15, 1986, and to the best of my recollection, occurred on or about November 9, 1986, the date when a Helium dower was pumped down preparatory to taking the actual measurement." Therefore, since measurements were taken prior to the date of publication of the Asahi Shinbum article, which was November 28, 1986 the invention was reduced to practice in the US prior to the publication date of the Asahi Shinbum article.

In view of these remarks, the Examiner is respectfully requested to withdraw the rejection of claims 24-26, 86-90 and 96108 under 35 USC $102(\mathrm{a})$ as being anticipated by the Asahi Shinbum article.
S.N. 08/303,561

Claim Rejection - 35 USS 103

Claims 24-26, 86-90 and 96-108 have been rejection under 35 USS 103 as being unpatentable over Asahi Shinbum article. For the reasons given above in response to the rejection of these claims under 35 CSC 102 as anticipated by the Ashahi Shinbum article, that article cannot be considered a reference, therefore, these claims cannot be obvious in view thereof.

In view of these remarks, the Examiner is respectfully requested to withdraw the rejection of claims 24-26, 86-90 and 96108 under 35 USC 103 as being unpatentable over the Asahi Shinbum article.

The Examiner is respectfully requested to consider this application in view of these remarks and the changes made to the claims. If the Examiner wishes to discuss the application further, or if additional information would be required, the undersigned will cooperate fully to assist in the prosecution of this application.

Respectfully submitted,

By: Daniel P. Morris Registration No. 32,043
S.N. 08/303,561

```
IBM CORPORATION
Intellectual Property Law Dept.
P.O. Box 218
Yorktown Heights, NY 10598
Tel. (914) 945-3217
Fax (914) 945-3281
```

AppendixAApplication number: 87100961.9
(1) Int CI.4 HO1L 39/12
(3) Oale of fling: 23.01.87
(4) Date of publication of application: 27.07.88 Bullotin 8830
(4) Dosignatod Contracting Statos: AT BI CH OE ESFA OB ORIT LILUNL SE

Applicant: International Business Msohines Corporation Old Oroherd Moed
Armonk, N.Y. 10804(U8)
Inventor: Bednorz, Johannes Georg, Dr. Sonnenbergstrasse 47
CH-8134 AdIswil(CH)
Inventor: Muller, Cart Alexander, Prof.Dr.. Haldenstiasse 84
CH-8908 Hedingen(CH)
Inventor: Takeehlge, Masaakl, Dr.
Rottarbweg 1
CH-8803 Ruschlikon(CH)Reprejentative: Rudack, Qunter O., Dlpl.-Ing. IBM Corporation 8lumerstrasse 4 CH-8003 RUschilkon(CH)

New superconductive compounds of the K2NIF4 structural type having a high transition temperature, and method for fabricating same.
(7) The superconductive compounds are oxides of the general formula $R E_{2 . n} A E_{x}$ TM. $\mathrm{O}_{4 y}$, wherein $R E$ is a rare earth. AE is a member of the group of alkaline earths or a combination of at least two momber of that group, and TM is a transition metal. and wherein $x<0.3$ and $0.1 \leq y$ s0.5. The method for making these compounds involves the steps of coprecipitating aqueous solutions of the respective nitrates of the constituents and adding the coprocipitate to oxalic acid. decomposing the precipitate and causing a F solid-state reaction at a temperature between 500 and $1200^{\circ} \mathrm{C}$ for between one and eight hours, lorMming pellets of the powdered product at high presFure. sintering the pellets at a temperature between m_{500} and $1000^{\circ} \mathrm{C}$ for between one hall and three In hours. and subjecting the pellets to an additional
$\mathbf{N}^{\mathbf{N}}$ annealing treatment at a temperature between 500 and $1200^{\circ} \mathrm{C}$ for between one halt and five hours in a Oprotected atmosphere permitting the adjustment of a the oxygen content of the linal product.
4

NEW SUPERCONDUCTIVI COMPOUNDS OF THI KNIF, STRUCTI'RAL TYPI HAVINQ A HIOH TRANAITION TEMPERATURE. AND MITHOD POR PADAICATINO SAME

Fioln of the Invention
The invention relates to a new clasa of superconductors. in particular to components of the K,NIF, lype of structure having superconduclior properties bolow a relatively high transition tomperature. and to a mothod for manulacturing those compounds.

Ba-l jround of the Invention

Superconductivity is usually delined as ine complete losa of electrical resistence of a material at a well-defined temperziure. It is known to occur in many materials: About a quarter of the elements and over 1000 alloye and components have been lound to be superconductors. Superconductivity is considered a property of the metallic state of the material. in that all known superconductors are metellic under the conditions that cause them to uperconduct. A tow normally non-metalic materials. for example. becomo superconductive under very high pressure. the pressure converting them to metals before they become superconductors.

Superconductors are very attractive for the generation and energy-saving transport of electrical power over long distances, as materials for forming the coils of strong magnets for use in plasma and nuclear physics. in nuclear resonance medical diagnosis, and in connoction with the magnetic levitation of tast trans. Power generation by thermonuclear fusion. for axample. will require very large magnotic tields which can only be provided by superconducting magnets. Cortainly, superconductors will also find application in computers and high-speed signal processing and data communication.

While the advantages of superconductors are quite obvious. the common disadvantage of all superconductive materials so far known lies in their very tow transition temperature (usually called the critical temperature T_{c}) which is typically on the order of a lew degrees Kelvin. The element with the highest T_{c} is niobium (9.2 K). and the highest known T_{c} is about 23 K for $\mathrm{NB}_{3} \mathrm{Ge}$ at ambient pressure.

Accordingly, most known superconductors require liquid helium for cooling and this, in turn. requires an elaborate technology and as a matter of principle involves a considerable investment in cost and energy.

It is. therelore. an object of the present inven-
tion to propose compositione lor high. T. auperconductors and a manulacturing moithod lor producing compounds which exhiblt such a high critical lemperalure that cooling with liquid hellum is obvialed
3 so as to considerably reduce the cost involved and 10 save energy.

The present invention proposes to use com. pounds having a lajerlype sltucture of the hind known lrom potasslum nickel lluoride K, NiFs. This
lually. ino T_{0} of LarCuO 4 , with Sr^{2} is highor and is superconductivity-inetuced diamagnolism largor than thal found with Ba^{2} and Ca^{2}

As a matior of lact. only a small number of oxides is known to oxhibit superconductivity. among them the LI-Ti.O system with onsots of superconductivity as high as 13.7 K , as reported by D.C. Johnston. H. Prakash. W.H. Zachariason and A. Visvanainan in Mas. Res. Bull 8 (1973) 777. Other known superconduclive oxidos include Nb doped SrTiO and $\mathrm{BaPb}_{1 .} \mathrm{Bl} \mathrm{B}_{\mathrm{n}} \mathrm{O}$. roported rospectivoly by A. Baratott and O Binnig in Physics 10BB (1981) is3s. and by A.W. Sloight. J.L. Gillson and FE. Bierslodt in Solid Stato Commun. 17 (1875) 27.

The X-ray analysis conducted by Johnsion of al. revealod the presence in their Li-Ti-L system of throe ditferent crystallographic phases, ons of them, with a spinol structure. showing the high entical temporaturo. The Ba-La-Cu-O systom. 100. exhibits a number of crystallographic phases. namoly with mixed-valent copper constituonts which have itinerant electronic states between non-Jann-Tollor Cu^{3} and Jahn-Tollor Cu^{2} ions.

This applies likowise to systems whero nickol is used in place of copper, with Ni^{3} being ine Jahn-Teller constituent, and Ni^{2} being the non-Jahn- Teiler constituent.

The existence of Jahn-Teller polarons is conducting crystals was postulated thooretically by K.H. Hoock. H. Nickisch and H. Thomas in Heiv. Phys. Acta 58 (1983) 237. Polarons have large electron-phonon interactions and, therelore. are lavorable to the occurrance of superconductivity at high critical lemperatures.

Generally, the Ba-La-Cu-O systom, when subpected to X -ray analysis reveales three individual crystallographic phases, viz.

- a first layer-type perovskito-like phase. related to the K.NiF, structure, with the general composition $\mathrm{La}_{2 \cdot n} \mathrm{Ba}_{n} \mathrm{CuO}_{4-y}$ with $\mathrm{X}<1$ and $\mathrm{y}<0$:
- a second. non-conducting CuO phase; and
- a third, nearly cubic perovskite phase of the general composition $\mathrm{La}_{1 . n} \mathrm{Ba}_{4} \mathrm{CuO}_{3 . y}$ which appears to independent of the exact starting composition.
as has been reported in the paper by J.G. Bednorz and K.A. Müller in Z. Phys. B. Condensed Matter 64 (1986) 189-193. Of these three phases the lirst one appears to be responsible for the high- T_{c} superconductivity, the critical temperature showing a dependence on the barium concentration in that phase. Obviously. the Ba^{2} substitution causes a mixed-valent state of Cu^{2} and Cu^{3} to preserve charge neutrality. It is assumed that the oxygen deficiency. y. is the same in the doped and undoped crystallites.

Both $\mathrm{La}_{2} \mathrm{CuO}_{4}$ and LaCuO_{3} are metallic conduc-
tors at high tomperatures in the absence of Darium. Aclually. both are motals like LaNiO, Dospite their motallie charactor, the Ba-La-Cu-O typo matonala are coramics. as are the other compounds of the

With a, (Ba.La) versus Cu ratio of $2: 1$ in tho starting compoattion. thi: composition of the $\mathrm{Las} \mathrm{CuO}_{\mathrm{s}}$.Ba phase, which was assumed to bo rosponsible lor the serconductivily. is imitaled. with tho result that now only two phases are pfosent. the CuO phase not existing. With barium content of $x=0.15$. the resistivity drop occurs at $T_{n}-28$ K.

The mothod for preparing the Ba-La-Cu-O complex involves two heat treatments for the precipitate at an elevated temperature lor several hours. In the experiments carried out in conneclion with the presert invention it was lound that best rosulls were obtained at $800^{\circ} \mathrm{C}$ lor a decomposition and reaction period of 5 hourt, and again at $900^{\circ} \mathrm{C}$ for a sintering pertod of one hour. These values apply to ratio $1: 1$ composition as well as to a $2: 1$ composition.

For the ratio $2: 1$ composition. a somowhat higher temperalure is permissible owing to the melting point of the composition being higher in the absence of excess copper oxide. Yot if is not possible by high-tomperature troatment to obtain a one-phase compound.

Measurements of the $O C$ conductivity were conducted between 300 and 4.2 K . For barium-doped samples. for example. with $x<0.3$. at current densities of $0.5 \mathrm{ACm}^{2}$. high-tomperature molallic behavior with an increase in resistivity at low temperatures was found. Al slill lower temperatures. a sharp drop in resistivity (290%) occurred which lor highor current densitios became partially suppressed. This characleristic drop was studied as a lunclion of the annealing conditions. l.e. temperalure and oxygen partial pressure. For samples annealed in aur. the transition from itinerant to localized behavior was not found to be very pronounced. annealing in a slightly reducing atmosohere. however, led to an incsease in resistivity and a more pronounced localization effect. At the same time. the onset of the resistivity drop was shifted towards higher values of the critical temperature. Longer annealing times, however. completely destroy the superconductivity.

Cooling the samples from room temperature. the resistivity data first show a metal-like decrease. At low temperatures, a change to an increase occurs in the case of Ca compounds and for the Basubstituted samples. This increase is followed by a resistivity drop. showing the onset of superconductivity at $22=2 \mathrm{~K}$ and $33 \pm 2 \mathrm{~K}$ for the Ca and Ba compounds. respectively. In the Sr compound. the resistivity remains metallic down to the resistivity drop at $40=1 \mathrm{~K}$. The presence of localization effects. however, depends strongly on alkaline-earth ion concontration and sample preparation. that is to say. annealing conditions and also on the density which have to be optimized. All samples with low
concentiations of Ca . St. and Ba show a strono rendency ; localizelion before the resietivily drop occur.

Apparently. the onset of the superconductivily. at room temperature. the $\mathrm{Re}_{2.4} \mathrm{TM}_{4} \mathrm{O}_{4 . \gamma}$ structure is close to the orthorhombic-ittragonal structural phase transition which may be related to the substantial electron-phonon interaction enhanced by the substitution. The alkaline-earth substifution of
the rare oarth motal is cloarly important. and quite likely creato: TM tons with no θ_{0} Jahn-Tolior orbilals. Therefore. the absence of these J.-T. orbitals. Ihat is. J.-T. holes now the Fermi onergy probably plays an important role lor the T_{0} en. hancement.

Clalms

1) Superconductive compound of the RE2TM.O4 lype having a transition temperature above 20 K . wherein the raro oarth (RE) is partisily subsiltuted by one or more mombers of the alkaline earth groups of elements (AE). and wherein the oxyoen content is adjusted such that the resulting crystal structure is distorted and comprises a phase of tho general composilion $\mathrm{RE}_{2 .} \mathrm{AE}_{4}$ TM.O4.y , wheroin TM represents a transition metal, and $x<0.3$ and $y<$ 0.5 .
2) Compound in accordance with claim 1 , wherein the rare earth (RE) is lanthanum and the Iranation molal (TM) is copper.
3) Compound in accordance with claim 1. wherein the rare oarth is corium and the transition metal is nickel.
4) Compound in accordance with claim 1. wherein the rare earth is lanthanum and the transition metal is nickel.
5) Compound in accordance with claim 1 , wherein barlum is used as a partlal substitute lor the rare earth, with $x<0.3$ and $0.1 \$ y \leq 0.5$.
B) Compound in accordance with claim 1. wherein calcium is used as a partial substitute for the rare earth, with $x<0.3$ and $0.1 \leq y \leq 0.5$.
6) Compound in accordance with claim 1. wherein strontium is used as a partial substitute for the rare earth, with $x<0.3$ and $0.1 \leq y \leq 0.5$.
7) Compound in accordance with claim 1. wherein the rare earth is lanthanum and the transition metal is chromium.
8) Compound is accordance with claim 1. wherein the rare earth is neodymium and the transition metal is copper.
9) Method for making superconductive compounds of the RE_{2} TM.O، type, with RE being a rare earth. TM being a transition metal. the compounds having a transition iemperature above 26 K , comprising the steps of:

- preparing aqueous solutions of the nitrates of the rare earth and transition metal constituents and of one or more of the alkaline earth metals and coprecipitation thereof in their appropriate ratios: - adding the coprecipitate to oxalic acid and forming an intimate mixture of the respective oxalates: - decomposing the procipitate and causing a solid. state reaction by neating the precipitate to a ternperature between 500 and $1200^{\circ} \mathrm{C}$ for a period of
lime between one and eight hours:
- allowing the resullant powder product 10 cool:
- pressing the powder al pressure of belween 2 and 10 hbar to form pellets:
s - re-sdjusting the iemperature of the pellets to a value between 500 and $1000^{\circ} \mathrm{C}$ for a period of lime between one half and three houre for sintering;
- subjecting the pellets 10 an additional annealing treatmont at a temperature between 500 and $1200^{\circ} \mathrm{C}$ for period of lime beiween one hall and 5 hours in a protected atmosphere permiting the adjusiment of the oxygen content of the final prod. uct which has a final composition of the form RE_{3}. . $\mathrm{TM.O}_{4}$. wherein $x<0.3$ and $0.1<y<0.6$.

11) Method in accordance with claim 10. wherein the protected atmosphere is pure oxygon.
12) Method in accordance wilh claim 10. wherein the protecled almosphere is a reducing almosphere with an oxyeen partial pressure between 10^{\prime} and 10^{9} bar.
13) Mothod in accordance with claim 10. wherein the decomposition step is performed at a temperature of $900^{\circ} \mathrm{C}$ for 5 hours. and wherein the annealing stop is performed at a temperature of $900^{\circ} \mathrm{C}$ for one hour in a reducing atmosphere with an oxygen partial pressure between 10^{\prime} and 10^{9} var.
14) Mothod in accordance with claim 10. wherein lanthanum is used as the rare earth and copper is used as the transition metal, and wherein barium is used to partialiy substitute for the lanthanum, with $\times<0.2$, wherain the decomposition step is pertormod at a tomperature of $900^{\circ} \mathrm{C}$ for 5 hours. and wherein the annealing step is pertormed
35 in a reducing atmosphere with an oxygen partial pressure on the order of 10^{3} bar and at a lem. perature ol $800^{\circ} \mathrm{C}$ for one hour.
15) Method in accordance with claim 10. wherein lanthanum is used as the rare earth and nickel is used as the transition metal, and wherein barium is used to partially substitute for the lanthanum, with $x<0.2$, wherein the decomposition step is pertormed at a temperature of $900^{\circ} \mathrm{C}$ for 5 hours, and wherein the annealing step is pertormed in a reducing atmosphere with an oxygen partial pressure on the order of 10^{3} bar and at a tem. perature of $900^{\circ} \mathrm{C}$ for one hour.
16) Method in accordance with claim 10. wherein lanthanum is used as the rare earth and copper is used as the transition metal. and wherein caicium is used to partially substitute for the lanthanum. with $x<0.2$. wherein the decomposition step is performed at a temperature of $900^{\circ} \mathrm{C}$ for 5 hours. and wherein the annealing step is performed in a reducing almosphere with an oxygen partial pressure on the order of 10^{3} bar and at a temperature of $900^{\circ} \mathrm{C}$ for one hour.
17) Mothod in accordance with clam 10. wherein lanthanum is used as the rare oarth and copper is used as the transition metal, and wherein strontium is used to partally substitute for the Ienthanum, with $x<0.2$, wherein the decomposition slep is performed at a lemperature of $900^{\circ} \mathrm{C}$ for 5 hours, and wherein the annealing stop is performod in a reducing atmosphere with an oxygen partial pressure on the order of 10) bar and at a tem. perature of $900^{\circ} \mathrm{C}$ lor one hour.
18) Method in accordance with clalm 10. wheren corium is used as the reve oarth and nickel is used as the transition molal, and wheroin barlum is used to partially substifute for the cerium, with x < 0.2 . wherein the decomposition stop is performed at a temperature of $900^{\circ} \mathrm{C}$ lor 5 hours, and wherein the annealing stop is pertormed in a roducing almosphere with an oxygen partial prossure on the order of 10^{3} bar and at a temperature of $900^{\circ} \mathrm{C}$ for one hour.

20

25

30

35

40

45

50

Oppendix B

Solid State Physics
 Neil W. Ashcroft
 N. David Mermin
 Cornell University

1

SAUNDERS COLLEGE
Philadelphia

$$
\therefore \quad \| \text { Pendix } C
$$

Theory of SUPERCONDUCTIVITY

By

M. von Liaue

Kaiser-Wilhelm-Institut für physikalische und Elektro-Chemie Berlin-Dahlem

Translated by
LOTHAR MEXER
University of Chicago, Chicago, Illinois
and
Wllllam Band
The State College of Washington, Pullman, Washington

ACADEMIC PRESS INC., PUBLISHERS

New York, 1952

ivpicerdy D

COPPER OXIDE SUPERCONDUCTORS

Charles P. Poole, Jr.
Timir Datta
Horacio A. Farach

with help from
M. M. Rigney
C. R. Sanders

Department of Physics and Astronomy
University of South Carolina
Columbia. South Carolina

Copyright © 1988 by John Wiley \& Sons, Inc.
All rights reserved. Published simultaneously in Canada.
Reproduction or translation of any part of this work beyond that permitted by Section 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. Requests for permission or further information should be addressed to the Permissions Department, John Wiley \& Sons, Inc.

Library of Congress Cataloging in Publication Data:

Poole, Charles P.
Copper oxide superconductors / Charles P. Poole, Jr., Timir Datta,
and Horacio A. Farach: with help from M. M. Rigney and C. R. Sanders. p. cm.
"A Wiley-Interscience publication."
Bibliography: p.
Includes index.

1. Copper oxide superconductors. 1. Datta. Timir. II. Farach, Horacio A. III. Title.

QC611.98.C64P66 1988
539.6'23-dc $19 \quad 88$-18569 CIP

ISBN 0-471-62342-3
Printed in the United States of America
The unpr taken plac mental da supercond to bring tc working is time have volume re' with trans discovery award of t tent exper conductin, CuO has ϵ extent to u apply to t posed. Wi with transi experimen

The fiel ideas and Neverthele progress, 1 future wor down enot

PREFACE

The unprecedented worldwide effort in superconductivity research that has taken place over the past two years has produced an enormous amount of experimental data on the properties of the copper oxide type materials that exhibit superconductivity above the temperature of liquid nitrogen. The time is now ripe to bring together in one place the results of this research effort so that scientists working in this field can better acquire an overall perspective, and at the same time have available in one place a collection of detailed experimental data. This volume reviews the experimental aspects of the field of oxide superconductivity with transition temperatures from 30 K to above 120 K , from the time of its discovery by Bednorz and Müller in April 1986 until a few months after the award of the Nobel Prize to them in October 1987. During this period a consistent experimental description of many of the properties of the principal superconducting compounds such as $\mathrm{BiSrCaCuO}, \mathrm{LaSrCuO}, \mathrm{TlBaCaCuO}$, and $\mathrm{YBa}-$ CuO has emerged. At the same time there has been a continual debate on the extent to which the BCS theory and the electron-phonon interaction mechanism apply to the new materials, and new theoretical models are periodically proposed. We discuss these matters and, when appropriate, make comparisons with transition metal and other previously known superconductors. Many of the experimental results are summarized in figures and tables.

The field of high-temperature superconductivity is still evolving, and some ideas and explanations may be changed by the time these notes appear in print. Nevertheless, it is helpful to discuss them here to give insights into work now in progress, to give coherence to the present work, and to provide guidance for future work. It is hoped that in the not too distant future the field will settle down enough to permit a more definitive monograph to be written.
in the bulk state, and also some that only become superconducting in thin films, under pressure, or after irradiation. This figure gives the transition temperature T_{c}, the Debye temperature θ_{D}, the Sommerfeld constant or normal state electronic specific heat constant γ from the expression $C_{\mathrm{n}}=\gamma \mathrm{T}$, the electronphonon coupling constant λ (cf. Section IV-B-1), and the density of states $N\left(E_{F}\right)$ at the Fermi level (cf. Sections IV-G and IX-C) for the various superconductors. The columns of the periodic table are labeled with the number of (valence) electrons N_{c} outside of closed shells. Table II-1 lists various properties of some of the transition elements. Figure II-2, which illustrates how T_{c} depends on N_{e}, has two peaks, one near $N_{\mathrm{e}}=5$ and the other near $N_{\mathrm{e}}=7$ (Matt2). Graphs of the specific heat constant γ, the magnetic susceptibility $\chi=M / B$ and the inverse Debye temperature squared $1 / \theta_{\mathrm{D}}{ }^{2}$ exhibit the same dependence on N_{c}, with the $N_{\mathrm{e}}=7$ peak somewhat suppressed in the Debye case (Glads, Vonso).

Among the elements niobium has the highest transition temperature, and perhaps not coincidently it also is a constitutent of higher T_{c} compounds like $\mathrm{Nb}_{3} \mathrm{Ge}$. Niobium has not appeared prominently in the newer oxide superconductors.

Of the transition elements most commonly found in the newer ceramic type superconductors lanthanum is superconducting with a moderately high $T_{c}(4.88$ K for the α or fec form and 6.3 for the β or hep form), yttrium becomes superconducting only under pressure ($T_{c} \approx 2 \mathrm{~K}$ for $110 \leq P \leq 160 \mathrm{kbar}$) and copper is not known to superconduct. Studies of the transition temperature of copper alloys as a function of the copper content have provided an extrapolated value of $T_{c}=6 \times 10^{-10} \mathrm{~K}$ for Cu , which is extremely low. The nontransition elements oxygen and strontium in these compounds do not superconduct, barium only does so under pressure ($T_{\mathrm{c}}=1-5.4 \mathrm{~K}$ for pressures from 55 to 190 kbar), bismuth likewise superconducts only under pressure, and thallium is a superconductor with $T_{c}=2.4 \mathrm{~K}$. Thus the superconducting properties of the elements are not always indicative of the properties of their compounds, although niobium seems to be an exception, as was mentioned above.

C. ALLOYS AND COMPOUNDS

Transition elements combine with a number of other elements to form superconducting materials that sometimes have higher transition temperatures than any of their constituents. These materials may be classified into alloys with the subdivisions solid solutions (with random atomic ordering) and intermetallic compounds or intermetallides (ordered crystallographically), and chemical compounds with the subdivisions ordinary compounds, semiconductors, layered compounds, and polymers. The intermetallides and ordinary compounds provide the highest transition temperatures, with solid solutions and layered compounds also moderately high.

These materials tend to be stoichiometric, and T_{c} is often sensitive to it. For example, the gradual approach of $\mathrm{Nb}_{3} \mathrm{Ge}$ to stoichiometry raised its measured T_{c}

Fig. II-2. The dependence of T_{c} on the number of valence electrons N_{c} in elements and solid solutions formed by neighboring transition metals. (From Glads, p. 736; see also Hamil and Vonso. pp. 184, 239.)
from 6 to 17 K and finally to 23.2 K . In contrast, there are cases such as $\mathrm{Cr}_{3} \mathrm{Os}$, $\mathrm{Cr}_{3} \mathrm{Ir}, \mathrm{Mo}_{3} \mathrm{Ir}, \mathrm{Mo}_{3} \mathrm{Pt}$, and $\mathrm{V}_{3} \mathrm{Ir}$ in which T_{c} is less composition dependent and the highest value does not occur at the stoichiometric composition. This latter case is quite common among the newer superconductors.

Systematic studies of mixed alloys of neighboring transition elements produce a graph similar to Fig. II-2 with intermediate points filled in and the same two maxima. Matthias interpreted these results in terms of the presence of favorable and unfavorable regions of N_{e} (Matt1). Amorphous alloys only exhibit one maximum for each series. Other properties such as the electronic specific heat factor γ, the magnetic susceptibility χ, the Debye temperature θ_{D}, and the electronphonon coupling constant λ have dependencies on electron concentration quite similar to the T_{c} versus N_{c} graph of Fig. II-2.

The highest transition temperatures of the older superconductors were ob-
tetragonal phase, and the metal-to-insulator transition occurs at the tetragonal-to-orthorhombic phase boundary $x \approx 0.35$ (Matt7, Sleil).

D. PEROVSKITE-TYPE SUPERCONDUCTING STRUCTURES

In their first report on high-temperature superconductors Bednorz and Müller referred to their samples as "metallic, oxygen deficient . . . perovskite like mixed valent copper compounds." Subsequent work has confirmed that the new superconductors do indeed have these characteristics. In this section we will comment on their perovskite-like aspects.

1. Atom Sizes

In the oxide superconductors Cu replaces the Ti^{4+} ions ($0.68 \AA$) of perovskite, and in most cases retains the CuO_{2} layering with two oxygens per copper in the layer. Other cationic replacements tend to be $\mathrm{Bi}, \mathrm{Ca}, \mathrm{La}, \mathrm{Sr}, \mathrm{Tl}$, and Y for the larger Ba, forming "layers" containing only one oxygen or none per cation. We see from the following list of ionic radii

Cu^{2+}	$0.72 \AA$
Bi^{5+}	$0.74 \AA$
Y^{3+}	$0.94 \AA$
Tl^{3+}	$0.95 \AA$
Bi^{3+}	$0.96 \AA$
Ca^{2+}	$0.99 \AA$
Sr^{2+}	$1.12 \AA$
La^{3+}	$1.14 \AA$
Ba^{2+}	$1.34 \AA$
O^{2-}	$1.32 \AA$

that there are four size groups, with all other cations significantly smaller then the Ba of perovskite. The common feature of CuO_{2} layers that are planar or close to planar establishes a fairly uniform lattice size in the a, b plane. The parameters of the compounds $\mathrm{LaSrCuO}(a=b=3.77 \AA), \mathrm{YBaCuO}(a=3.83 \dot{\mathrm{~A}}, b=$ $3.89 \AA$), $\mathrm{BiSrCaCuO}(a=b=3.82 \AA)$, and $\mathrm{TlBaCaCuO}(a=b=3.86 \AA)$ are all between the ideal fcc oxygen lattice value of $3.73 \dot{\mathrm{~A}}$ and the perovskite one of $4.01 \dot{\mathrm{~A}}$.

Table VI-2 gives the ionic radii of the positively charged ions of various elements of the periodic table. These radii are useful for estimating changes in lattice constant when ionic substitutions are made in existing structures. They also provide some insight into which types of substitutions will be most favorable.
bic, superconducting, and spin-density wave (SDW) regions for the barium compound (Fujit), and data points for the strontium compound (Moret, More8). An alternate phase diagram has been proposed (Ahar1). Alkaline metal contents much larger than those shown on the figure (e.g., $x \approx 0.5$) can be nonsuperconducting. The SDW region occurs below the minimum concentration for the onset of superconductivity. Another work (Geise) showed that $\mathrm{LaSr}(0.04)$ undergoes a structural phase transition between 180 and 300 K .

5. Generation of LaSrCuO Structures

The LaSrCuO tetragonal structures may be visualized as being derived from four LaCuO_{3} perovskite unit cells of the type illustrated in Fig. VI-1 stacked one above the other along the z or c axis. To generate $\mathrm{La}_{2} \mathrm{CuO}_{4}$ in the $\mathrm{K}_{2} \mathrm{NiF}_{4}$ structure the layers of CuO_{2} atoms on the $z=\frac{1}{4}$ and $z=\frac{3}{4}$ levels of this four-cell stacking are removed, La and O are interchanged on two other layers, and the middle layer Cu atom is shifted from the edge to the center point $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ of the unit cell. Then the cell is compressed vertically from 14.9 to $13.2 \AA$ (Table VI-4) to take up the space formerly occupied by the removed CuO_{2} layers. Finally, the lanthanums along the c axis and the oxygens along the side edges are shifted vertically to accommodate the new atom arrangement.

To generate $\mathrm{La}_{2} \mathrm{CuO}_{4}$ with the $\mathrm{Nd}_{2} \mathrm{CuO}_{4}$ arrangement from this same four-cell stacking all of the oxygens on the vertical edges are removed, and two lanthanums are moved to edge sites. Copper is handled the same way as before, so in both cases the generated structure lacks two CuO_{2} layers.

6. Layering Scheme of LaSrCuO

When we described the LaSrCuO structures we left out what is perhaps their most important characteristic, namely, their layered aspect. Lanthanum copper oxide may be looked upon as consisting of Cu -O layers of square-planar coordinated copper ions with lanthanum and O (2)-type oxygen ions populating the spaces between the layers. These Cu -O layers are stacked equally spaced, perpendicular to the c axis, as shown in Fig. VI-7, and their oxygens are aligned along the c axis, as indicated by the vertical dotted line on the left side of the figure. The copper ions, on the other hand, are not aligned vertically, but rather alternate between (000) and ($\frac{1}{2} \frac{1}{2} \frac{1}{2}$) sites in adjacent layers, as illustrated in Figs. VI-5 and VI-7.

The copper is actually octahedrally coordinated with oxygen, but the $\mathrm{Cu}-\mathrm{O}$ distance of $1.9 \dot{\mathrm{~A}}$ in the CuO_{2} planes is much less than the vertical distance of $2.4 \AA$ between copper and the oxygens above and below, as shown in Fig. VI-8. When the structure is distorted orthorhombically the $\mathrm{Cu}-\mathrm{O}$ spacings in both the planes and the c direction remain quite close to their tetragonal counterparts.

The copper ions and the $O(1)$-type oxygens in the planes are both in special sites in the tetragonal and orthorhombic forms, in accordance with Eqs. (VI-6) and (VI-9), and as a result the plane is perfectly flat in both cases. When the

for the barium ipound (Moret,). Alkaline metal 0.5) can be non:oncentration for that $\mathrm{LaSr}(0.04)$ s.
lerived from four /I-1 stacked one he $\mathrm{K}_{2} \mathrm{NiF}_{4}$ strucof this four-cell r layers, and the int $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ of the $2 \AA$ A (Table VI-4) yers. Finally, the sdges are shifted
is same four-cell d, and two lanwav as before, so
is perhaps their inthanum copper re-planar coordis populating the :ally spaced, pergens are aligned te left side of the ically, but rather lustrated in Figs.
n, but the $\mathrm{Cu}-\mathrm{O}$ rtical distance of own in Fig. VI-8. rcings in both the al counterparts.
e both in special with Eqs. (VI-6) cases. When the

Fig. VI-7. Layering scheme of the LaSrCuO superconducting structure. The layers are perpendicular to the c axis.
structure is tetragonal the square-planar arrangement is also perfect, and of course the planes are perfectly parallel to each other. These characteristics of the planes could influence the superconducting properties.

The copper-oxygen planes are bound together by $\mathrm{Cu}-\mathrm{O}$ and $\mathrm{La}-\mathrm{O}$ bonds, as indicated on Fig. VI-5, and Fig. VI-8 shows the spacial arrangement of the CuO_{6} octahedra. This figure also makes clear how the copper ions alternate along the c axis. The superconducting properties are probably less influenced by the way the planes are bound together than by the internal characteristics of the planes themselves.

F. YTTRIUM-BARIUM-COPPER OXIDE

The YBaCuO compounds such as $\mathrm{Y}_{1-x} \mathrm{Ba}_{2-y} \mathrm{Cu}_{3} \mathrm{O}_{7-\delta}$, like their LaSrCuO counterparts, come in tetragonal and orthorhombic varieties, and both will be described in turn. Then we will show how to generate the structures from their perovskite prototypes, we will explain the layering scheme, and finally related defect structures will be discussed.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of J. Bednorz et al.

Serial No.: 08/303,561
Filed: September 9, 1994 : Examiner: D. McGinty
FOr: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, AND METHODS FOR THEIR USE AND PREPARATION

Commissioner of Patents and Trademarks Washington, D. C. 20231

Sir:
In response to the final rejection dated March 29, 1995, please consider the following:

The above-identified application has been pending for at least two years as of June 8, 1995 and has been finally rejected and a Notice of Appeal has not been filed. Applicants request that the amendment submitted herewith be considered on the merits under 37 CFR 1.129 (a).

Please charge deposit account 09-0468 the fee of $\$ 730.00$ under 37 CFR $1.17(r)$ and any other fee nécessary to enter this paper and the amendment submitted herewith.

If applicants are not entitled to entry of the amendment YO9 87-074BY
S.N. 08/303,561
submitted herewith, applicants request this paper be considered a Notice of Appeal and request that deposit account 09-0468 be charged any fee necessary to enter this Notice of Appeal.

Respectfully submitted,

IBM CORPORATION
Intellectual Property Law Dept.
P.O. Box 218

Yorktown Heights, NY
Tel. (914) 945-3217
FAX (914) 945-3281
/ma

In re Patent Application of Bednorz et al.
 Serial No.: 08/303,561
 Filed: September 9, 1994
 :
 $:$
 : Examiner: D. McGinty
 FOT: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, AND METHODS FOR THEIR USE AND PREPARATION

AFFIDAVIT UNDER 37 C.F.R. 1.132

Commissioner of Patents and Trademarks

 washington, D. C. 20231Sir:
I, Timothy Dinger, being duly sworn, do hereby depose and state:

That I received a B.S. degree in Ceramic Engineering (1981) from New York State College of Ceramics, Alfred University, an M.S. degree (1983) and a PhD. degree (1986), both in Material Science from the University of California at Berkley.

That I have worked as a research staff member in Material Science at the Thomas watson Research Center of the International Business Machines Corporation in Yorktown Heights, NY from 1986 to the present.

That I have worked in the fabrication of and characterization of high temperature superconductor materials from 1987 to 1991.

That I have reviewed the above-identified patent application and acknowledge that it represents the work of Bednorz and Müller,
which is generally recognized as the first discovery of superconductivity above $26^{\circ} \mathrm{K}$ and that subsequent developments in this field have based on this work.

That all the high temperature superconductors which have been developed based on the work of Bednorz and Muller behave in a similar way, conduct current in a similar manner and have similar magnetic properties.

That once a person of skill in the art knows of a specific transition metal oxide composition which is superconducting above $26^{\circ} \mathrm{K}$, such a person of skill in the art, using the techniques described in the above-identified patent application, which includes all known principles of ceramic fabrication, can make the transition metal oxide compositions encomposed by claims 24-26, 8690 and 96-108, without undue experimentation or without requiring ingenuity beyond that expected of a person of skill in the art. This is why the work of Bednorz and Müller was reproduced so quickly after their discovery and why so much additional work was done in this field within a short period of their discovery.

By :

Sworn to before me this 26 th day of September, 1995

DANIEL P. MORRIS NOTARY PUBLIC, State of New No. 4889676 Qualified in Westchester Count e 97
ommilssion Expires March 16,1

AFFIDAVIT UNDER 37 C.F.R. 1.132

Commissioner of Patents and Trademarks Washington, D. C. 20231

Sir:
I, David B. Mitzi, being duly sworn, do hereby depose and state:

That I received a B.S.E. degree in Electrical Engineering/Engineering Physics (1985) from Princeton University and a PhD. degree, in Applied Physics (1990) from stanford University, California.

That I have worked as a research staff member in solid state Chemistry at the Thomas watson Research Center of the International Business Machines Corporation in Yorktown Heights, NY from 1990 to the present.

That I have worked in the fabrication of and characterization of high temperature superconductor and related materials from 1990 to the present.

That I have reviewed the above-identified patent application and

That I have reviewed the above-identified patent application and acknowledge that it represents the work of Bednorz and Muller, which is generally recognized as the first discovery of superconductivity above $26^{\circ} \mathrm{K}$ and that subsequent developments in this field have been based on this work.

That all the high temperature superconductors which have been developed based on the work of Bednorz and Müller behave in a similar manner, conduct current in a similar manner and have similar magnetic properties.

That once a person of skill in the art knows of a specific transition metal oxide composition which is superconducting above $26^{\circ} \mathrm{K}$, such a person of skill in the art, using the techniques described in the above-identified patent application, which includes all known principles of ceramic fabrication, can make the transition metal oxide compositions encomposed by claims 24-26, 8690 and 96-108, without undue experimentation or without requiring ingenuity beyond that expected of a person of skill in the art. This is why the work of Bednorz and Muller was reproduced so quickly after their discovery and why so much additional work was done in this field within a short period of their discovery.

Swarm betaine me this 26 th day of September, 1985

DANIEL P. MORES
notary public, state of Now York
No. 4888676
Qualified in Westenester County 97
commission Expires March 16,10

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of : J. Bednorz et al.
Serial No. : 08/303,561
Filed: September 9, 1994
For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, AND METHODS FOR THEIR USE AND PREPARATION
Group Art Unit: 1105
Examiner: D. McGinty

PETITION AND FEE FOR EXTENSION OF TIME (37 CFR 1.136(a))

Commissioner of Patents and Trademarks
Washington, DC 20231
Sir:

1. This is a petition for an extension of the time to respond to the Office Letter mailed on March 29, 1995 for a period of \qquad months.
2. Applicant is other than a small entity.
3. Extension period and fee:

(months)	Fee for other than small entity
\square one month	$\$ 110.00$
\square two months	$\$ 370.00$
\square three months	$\$ 870.00$
\square four months	$\$ 1,360.00$

$$
\text { Fee: } \$
$$

4. An amendment

is filed herewith.

has been filed.
5. Fee Payment

Charge fee to Deposit Account No.09-0468 and for any additional extension fee required or credit for any excess fee paid. A duplicate copy of this sheet is enclosed.

Date: September 26,1995

Telephone: (914) 945-3217
Fax: (914) 945-3281

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of: J. Bednorz et al.
Serial No.: 08/303,561
Filed: September 9, 1994
For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, AND METHODS FOR THEIR USE AND PREPARATION

ASSOCIATE POWER OF ATTORNEY

Commissioner of Patents and Trademarks
 Washington, D.C. 20231

Sir:

Please recognize Daniel P. Morris, No. 32,053 as associate attorney in the prosecution of the above-identified application for Letters Patent, with full power: to prosecute said application; to make alterations and amendments therein; to receive all notices, communications and said Letters Patent at the address indicated below; and to transact all business in the U.S. Patent and Trademark Office connected therewith.

Please forward all correspondence to:
Daniel P. Morris
IBM CORPORATION
Intellectual Property Law Dept.
P.O. Box 218

Yorktown Heights, NY 10598
Tel. (914) 945-3217

Please address any telephone calls to Daniel P. Morris at (914) 945-3217, and send any facsimile transmissions to (914) 945-3281.

Date: September 26, 1995
Respectfully submitted,

From:
IBM Corporation
Intellectual Property Law
P.O. Box 218

Yorktown Heights, N.Y. 10598

Telephone: (914) 945-3186
Fax: (914) 945-3281

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of: Bednorz et al.
Serial No.: 08/303,561
Filed: September 9, 1994
Group No.: 1105

For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, AND METHODS FOR THEIR USE AND PREPARATION

ASSOCIATE POWER OF ATTORNEY

Commissioner of Patents and Trademarks
Washington, D.C. 20231

Sir:

Please recognize William B. Porter, Reg. No. 33,135 as associate attorney in the prosecution of the above-identified application for Letters Patent, with full power: to prosecute said application; to make alterations and amendments therein; to receive all notices, communications and said Letters Patent at the address indicated below; and to transact all business in the U.S. Patent and Trademark Office connected therewith.

Please forward all correspondence to:

William B. Porter
IBM CORPORATION
Intellectual Property Law Dept.
P.O. Box 218

Yorktown Heights, NY 10598
Please address any telephone calls to William B. Porter at (914) 945-3255, and send any facsimile transmissions to (914) 945-3281.

Date: September 26, 1995
Respectfully submitted,

From:
IBM Corporation
Intellectual Property Law
P.O. Box 218

Yorktown Heights, N.Y. 10598

Telephone: (914) 945-3186
Fax: (914) 945-3281

Serial Number: 08/303,561
Art Unit: 1105

Part III DETAILED ACTION

1. The text of those sections of Title 35, U.S. Code not included in this action can be found in a prior Office action. Priority
2. Acknowledgment is made of applicant's claim for priority under 35 U.S.C. $\$ 119$. The certified copy has been filed in parent application, Serial No. 08/053,307, filed on April 23, 1993 as paper no. 28.
3. However, a review of that certified copy, which is in English, indicates that it does not support the present assertion of priority. Support is not found in that certified copy for the invention as presently claimed. See MPEP 201.13 et seq. and 201.14 et seq.

Claim Rejections - 35 USC \$ 112
4. The specification is objected to under 35 U.S.C. § 112, first paragraph, as the specification, as originally filed, does not support the invention as is now claimed.
a. The language of claim 103 is not supported by the original specification.
b. Claims 103-108 are rejected under 35 U.S.C. § 112, first paragraph, for the reasons set forth in the objection to the specification.
5. The specification is objected to under 35 U.S.C. § 112, first paragraph, as failing to provide an enabling disclosure commensurate with the scope of the claims.
a. The present specification is only enabled for compositions comprising $\mathrm{Ba}_{x} \mathrm{La}_{5-x} \mathrm{Cu}_{5} \mathrm{O}_{y}$. The art of high temperature (above $30^{\circ} \mathrm{K}$) superconductors is an extremely unpredictable one.
Small changes in composition can result in dramatic changes in or loss of superconducting properties. The amount and type of examples necessary to support broad claims increases as the predictability of the art decreases. See In re Fisher, 166 USPQ 18, 24; and In re Angstadt and Griffen, 190 USPQ 214, 218.

Art Unit: 1105

See also, In re Colianni, 195 USPQ 150, 153, 154 (CCPA 1977) (J. Rich). Claims broad enough to cover a large number of compositions that do not exhibit the desired properties fail to satisfy the requirements of 35 USC 112. See In re Cook, 169 USPQ 298, 302; and Cosden Oil v. American Hoechst, 214 USPQ 244, 262,. Merely reciting a desired result does not overcome this failure. See In re Corkill, 226 USPQ 105, 1009. In particular, the question arises: Will any layered perovskite material containing copper exhibit superconductivity? Also, does any stoichiometric combination of rare earth, an alkaline earth, and copper elements result in an oxide superconductor?
b. It should be noted that at the time the invention was made, the theoretical mechanism of superconductivity in these materials was not well understood. That mechanism still is not understood. Accordingly, there appears to be little factual or theoretical basis for extending the scope of the claims much beyond the proportions and materials actually demonstrated to exhibit high temperature superconductivity. A "patent is not a hunting license. It is not a reward for the search, but a reward for its successful conclusion", Brenner v. Manson, 383 US 519, 148 USPQ 689.
c. Claims 24-26, 86-90, and 96-108 are rejected under 35 U.S.C. § 112, first paragraph, for the reasons set forth in the objection to the specification.
6. Claims 86-87 and 96-108 are rejected under 35 U.S.C. § 112 , second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which applicant regards as the invention.
a. The terms "layer-type", "perovskite-like", "rare-earthlike" are vague and confusing. The question arises: What is meant by these terms?
b. Claims 101 and 107 recite "at least one element in a nonstoichiometric atomic proportion". The question arises: How can any element be of nonstoichiometric atomic proportion?
c. The language of claim 103 is confusing. The question arises: What is meant by the term "the composition having a superconductive/resistive transition defining a superconductive/resistive-transition temperature range"?

Claim Rejections - 35 USC § 102
7. Claims 24-26, 86-90, and 96-108 are rejected under 35 U.S.C. § $102(a)$ as being anticipated by Asahi Shinbum, International Satellite Edition (London), November 11, 1986 (hereinafter, "the Asahi Shinbum article").
a. As discussed in paper no. 20 of the ancestral application, 07/053,307, it is not fully clear to what exact date applicants are entitled. Based on the record, nonetheless, that date would appear to be no later than around December 13, 1986, the date samples were tested in the US to show superconductivity. See MPEP 715 et seq. The Asahi Shinbum article was published on November 28, 1986.
b. The reference confirms superconductivity in an oxide compound of La and Cu with Ba having a structure of the so-called perovskite structure. Although the reference fails to teach use of the testing of zero resistance for confirming superconductivity, it inherently must have been used because it is one of two methods used for testing for superconductivity (the other being diamagnetism). Accordingly, the burden of proof is upon the applicants to show that the instantly claimed subject matter is different from and unobvious over that taught by this reference. See In re Brown, 173 USPQ 685, 688; In re Best, 195 USPQ 430; and In re Marosi, 218 USPQ 289, 293.

Serial Number: 08/303,561
Art Unit: 1105

Claim Rejections - 35 USC $\$ 103$

8. Claims 24-26, 86-90, and 96-108 are rejected under 35 U.S.C. $\S 103$ as being unpatentable over the Asahi Shinbum article.
a. The reference is relied upon as set forth in the previous rejection. This reference may differ from the present claims in that it may fail to disclose the presently claimed method of "causing an electric current to flow in the superconductor element". It was notoriously well-known in the art of superconductors that a method of utilizing superconductive materials was to cause an electric current to flow in the material while it is cooled below its transition temperature. See MPEP $706.02(\mathrm{a})$. Accordingly, it would have been well within the purview of one of ordinary skill to use the present claimed method with the materials disclosed by the reference. One would have been motivated to cool the material of the reference to below the transition temperature and cause electric current to flow in the material to provide electricity without resistance. Accordingly, the present claims are unpatentable in view of the prior art of record.

Possibly Allowable Subject Matter
9. It is noted that the applicants were awarded the Nobel Prize for their work in this area. The record is not deemed to indicate, however, that the Asahi Shinbum article was predated by the applicants' earlier conception and/or reduction to practice in this country. The presently claimed invention also is nonenabling and indefinite for the reasons set forth above.

Serial Number: 08/303,561
Art Unit: 1105
10. To possibly overcome the above rejections, the following amendments are suggested:
a. 109 (New). A method comprising the steps of:
, forming a composition of the formula $\mathrm{Ba}_{x} \mathrm{La}_{5-x} \mathrm{Cu}_{5} \mathrm{O}_{y}$, wherein x is from about 0.75 to about 1 and y is the oxygen deficiency resulting from annealing said composition at temperatures from about $540^{\circ} \mathrm{C}$ to about $950^{\circ} \mathrm{C}$ and for times of about 15 minutes to about 12 hours, said composition having a metal oxide phase which exhibits a superconducting state at a critical temperature in excess of $26^{\circ} \mathrm{K}$;
maintaining the temperature of said composition at a temperature less than said critical temperature to induce said superconducting state in said metal oxide phase; and
passing an electrical supercurrent through said composition while said metal oxide phase is in said superconducting state.
b. Cancel claims 24-26, 86-90, and 96-108.
11. The following is an Examiner's statement of reasons for the indication of possibly allowable subject matter:
a. The Asahi Shinbum article teaches in general that perovskite-like compounds of La, Cu, and Ba have a T_{c} of $30^{\circ} \mathrm{K}$, but that article apparently does not teach the particular formula in the amendment suggested above. The examples in the present specification are deemed to show criticality for that formula in that suggested amendment.
b. Support for the proposed amendment is found at p. 20, line 1, through p. 25, line 5, and in Figure 3. 12. This indication of possibly allowable subject matter is subject to further consideration and review.

Conclusion

h13. This is a file wrapper continuation of applicant's earlier application S.N. 08/060, 470. All claims are drawn to the same invention claimed in the earlier application and could have been finally rejected on the grounds or art of record in the next Office action if they had been entered in the earlier application. Accordingly, THIS ACTION IS MADE FINAL even though

Art Unit: 1105
it is a first action in this case. See M.P.E.P. § 706.07 (b). Applicant is reminded of the extension of time policy as set forth in 37 C.F.R. § $1.136(a)$.

A SHORTENED STATUTORY PERIOD FOR RESPONSE TO THIS FINAL ACTION IS SET TO EXPIRE THREE MONTHS FROM THE DATE OF THIS ACTION. IN THE EVENT A FIRST RESPONSE IS EILED WITHIN TWO MONTHS OF THE MAILING DATE OF THIS FINAL ACTION AND THE ADVISORY ACTION IS NOT MATLED UNTIL AFTER THE END OF THE THREE-MONTH SHORTENED STATUTORY PERIOD, THEN THE SHORTENED STATUTORY PERIOD WILL EXPIRE ON THE DATE THE ADVISORY ACTION IS MAILED, AND ANY EXTENSION FEE PURSUANT TO 37 C.F.R. § $1.136(\mathrm{a})$ WILL BE CALCULATED FROM THE MAILING DATE OF THE ADVISORY ACTION. IN NO EVENT WILL THE STATUTORY EERIOD FOR RESPONSE EXPIRE LATER THAN SIX MONTHS FROM THE DATE OF THIS FINAL ACTION.
14. Any amendment in response to this Office Action must NOT include any new matter. See MPEP 608.04 and $706.03(0)$.
15. All of the references cited in this application indicate the level of skill in the relevant art at the time the invention was made.
16. Any inquiry concerning this communication or earlier communications from the examiner should be directed to Douglas J. McGinty, whose telephone number is (703) 308-3805. The examiner normally can be reached on Monday through Friday from 8:30 A.M. to 5:00 P.M., Eastern time. If reasonable attempts to reach the examiner by telephone are unsuccessful, however, the examiner's supervisor, Mr. Paul Lieberman, can be reached at (703) 308-2523. Any inquiry of a general nature or relating to the status of this application should be directed to the Group receptionist whose telephone number is (703) 308-0661.
17. The fax number for this Group is (703) 305-3599.

ARN

Douglas J. McGinty
March 28, 1995
303561 . 1
Paull lfeberman
SUPERVISORY PRIMARY EXAMINER
ART UNIT 115

Filing: Claim to Priority Under 35 USC 119 w/European Patent Priority Under 35 US 119 w/European Patent 7 ny, Info. Discl.
Filing: Claim to Priority Under 35 USS 119 w/European Pat ion Discl. time (4 mos.) State. PTO 1440 Form, 41 references, Ext: of time (4 mos.) In re application of: J. Georg Bednorz and, K. Alex Mueller For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING_HICH...
 Reoolved in the U.S. Patent \& Trademark office: \qquad
\therefore Alex Mueller VINE. HIGH.. 78. 2 IDE
\qquad
of claire \qquad No. of pages of specification \qquad : No. of A. of sheets of drawings: \qquad con tor is attached to yooification a de charged to our Account No.

4/23/92

Express Mail Certificate Express Mail label No. 7 TBO90055746 US

SEE REVERSE FOR SERVICE GUARAN INSURANCE COVERAGE AND CLAIMS. THANK YOU FOR CHOOSING EXPRESS MAIL SERVICE.

Commissioner of Patents E
Trademarks
Washington, D.C. 20231

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of: J. Georg Bednorz and K. Alex Mueller
Serial No: 07/053,307 Group No.: 115

Filed: 22 May 1987 Examiner: John Boyd
For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION
TEMPERATURE, AND METHODS FOR THEIR USE AND PREPARATION Commissionẹr of Patents and Trademarks
Washington, D.C. 20231

EXPRESS MAIL CERTIFICATE

"Express Mail" label number_TB090055746US
Date of Deposit April 23, 1992
I hereby certify that the following attached paper or fee
(1) Claim to Priority Under 35 U.S.C. Section 119 with certified copy of European Patent Application Serial No. 8710.0961.9 and supplemental Declaration and Power of Attorney attached;
(2) Information Disclosure Statement with Appendices A and B and Form PTO 1449 attached;
(3) Copies of 41 references listed in Form PTO 1449
(4) Petition and Fee for Extension of Time; and
(5) Return Post Card
is being deposited with the United States Postal Service "Express Mail Post Office to Ad. dressee" service under 37 CFR 1.10 on the date indicated above and is addressed to the Commissioner of Patents and Trademarks, Washington, D.C. 20231.
J. David Ellett, Jr. (Reg. No. 27,875)

NOTE: Each papermust have its own certificate and tho "Express Mail"labelnumber as a part thereolor atached thereto. When, as here, the cenification is presented on a separate sheet, that sheet must (1)be signed and (2) fully ldently and be securely attached to the paper or fee lt accompanies. Identification should include the serial number and filing date of the application as well as the type of paper being filed, e.g. complete application, specification and drawings, responses to rejection or refusal, notice of appeal, erc. II the seria/ number of the application is norknown, the identification should include atleast the name or the inventor(s) and the title of the invention.

NOTE: The label number need not be placed on each page. It should, however, be placed on the first page or each separate document, such as, a new application, amendment, assignment, and fransmittal letter lor a lee. along with the cerificate of mailing by "Express Mail. "Although the label number may be on checks, such a practice is not required. In order not to deface formal drawings it is suggested that the label number be placed on the back oleach formal drawing or the drawings be accompanied by a setolinformal drawngs on which the label numberis placed.

DOCKET NO. \qquad

SATEST
IN THE UNCIED STATES PNTPNT ND TRNDEAF CFYICE

```
In re application of
    J. Georg Bednorz and
    K. Alex Mueller
Serial No,: 07/053,307
Flled: 22 May }198
: Date: April 23, 1992
```

: Group Art Undt: 115 Examiner: John Boyd
:
IEM Corporation
: Intellectual Property Law Department P.O. Box 218
: Yorktown Helghts, N.Y. 10598

```
For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HICH TRANSITION TEMPERATURE, AND METHODS FOR THEIR USE AND PREPARATION
```

Cominissioner of Patents and Trademarks
Washington, D.C. 20231

i. This is a petition for an extension of the time to file an Appellant's Brief in an appeal dated 28 October 1991 of a Decision by the Primary Examiner finally rejecting claims 1 through 11 inclusive, 27 through 35 inclusive, 40 through 54 inclusive, 60 through 63 inclusive, and 65 through 68 inclusive of the application identified above for a period of four (4) months from 28 December 1991 to and including 28 April 1992.
2. Applicant is other than a small entity.
3. Extension: Four months;

Fee (for other than a small entity). $\quad \$ 1.280 .00$
4. An Information Disclosure Statement and a Claim for Priorlty Under 35 U.S.C. Section 119 are filed herewith. A Request for Filing a File-Wrapper-Continuing Divisional Application Under 37 CFR 1.62 and a Preliminary Amendment are to be filed on or before 28 April 1992. The subject application on appeal is to be abandoned in favor of the divisional application upon the granting of a filing date to the divisional application.
5. Fee payment
x. Charge fee to Deposit Account No. 09-0468 and for any additional extension fee required or credit for any excess fee paid. A cuplicate of this petition is attached.

Respectfully subnitted,

Docket No.:

PATENT
in the united states patent and trademark office

```
In re Patent Application of
    J. GEORG BEDNORZ and
        K. ALEX MUELLER
Serial No.: 07/053,307
Filed: 22 May }198
For: NEW SUPERCONDUCTIVE COMPOUNDS
    HAVING HIGH TRANSITION
    TEMPERATURE, AND METHODS EOR
    THEIR USE AND PREPARATION
```

CLAIM TO PRIORITY UNDER 35 U.S.C. Section 119
Honorable Commissioner of Patents
and Trademarks
Washington, D.C. 20231
Sir:

Abstract

By their attorneys, the applicants in the application identified above hereby claim under 35 U.S.C. Section 119 the priority of an application filed on 23 January 1987 in their behalf in the European Patent office as European patent application Serial No. 87100961.9 ("the European '961 patent application"). Submitted herewith are: (1) a certified copy of the European '961 application upon which the claim to priority is based; and (2) a supplemental Declaration and Power of Attorney for the application duly executed by the applicants, Drs. Bednorz and Mueller on 4 February 1992 and 28 February 1992, respectively, in which a claim of priority under 35 U.S.C. Section 119 to the European ' 961 application is made.

\qquad

As noted in an Information Disclosure statement filed herewith, three persons were identified as joint inventors in the European '961 application: J. Georg Bednorz and K. Alex Mueller - the applicants in the subject United States application - and Masaaki Takashige, a Japanese citizen residing in Ruschlikon, Switzerland at the time of filing the '961 application. The difference in inventorship arose under the circumstances of the present case because patent laws of the United States and the European patent convention differ, as discussed in the Information Disclosure statement.

23 April 1992

Europäisches	
Patentamt	European Patent Office

Of: 2 européen
Patentamt Office de. revets

Bescheinigung

Certificate

Die angehetteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der aut dem nächsten Blatt bezeichneten europaischen Patentanmeldung überein.

The attached documents are exact copies of the European patent applicafion described on the following page, as originally filed.

Attestation

Les documents tixes a cette altestation sont contormes à la version initialemen deposeje de la demande de brevet euro peen specifié a la page suivante

Den Haag. den The Hague. La Haye, le

20 1783 1987

Der Präsident des Europäischen Patentamts Im Auftrag
For the President of the European Patent Office Le President de roffice europeen des brevets p. 0

Y. VAN DER WOUDE-ZOLLER Patentanmeldung Nr . Patent application no Demande de brevel $n^{\circ} \quad 87100961.9$

DECLARATION AND POWER OF	YO987-074
As a below named inventor, I hereby declare that:	
My residence, post ottice address and citizenship are as stated below next to my name:	
I betigve I am the original, tirst and sole inventor (iI only one name is listed below) or an original, lirst and foint inventor (il plural names are liste of the subject matter which is claimed and for which a patent is sought on the Invention entitled NEW SUPERCONDUCTIVE OOMPONDS HAVING HIGH TRANSITION TEMPERATURE, AND METHODS FOR THEIR USE AND PREPARATION	
the specilication of which (check one)	
\square is attached hereto.	
【 was tiled on 22 May 1987	

DECLARATION AND POWER OF TORNEY FOR PATENT APPLICATIC \quad YO987-074
As a below named inventor, I hareby declare that:
My residence, post oftice address and citizenship are as stated below next to my name:
I betiove lam the original, first and sole inventor (il only one name is listed below) or an original, lirst and foint inventor (it plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the Invention entitled
NEW SUPERCONDUCTIVE OOMPONDS HAVING HIGH TRANSITION TEMPERATURE, AND METHODS FOR
THEIR USE AND PREPARATION
the specilication of which (check one)
is attached hereto.
X was tiled on 22 May 1987
07/053,307
Application Serial No. \qquad
and was amended on \qquad
(i) applicabla)

I hereby state that I have reviewed and understand the contents of the above identified specification, Including the claims, as amended by any amendment raterrad to above.
I acknowledge the duty to disclose information which is material to the examination of this application in accordance with Titie 37, Code of Federal Regulalions, $51.56(\mathrm{a})$.
Thereby claim foreign priority benetils under Title 35, United States Code, $\mathbf{\$ 1 1 9}$ of any foreign application(s) for patent or lnventor's certificate listed below and have also identified below any forelgn application for patent or inventer's certilicate having a filing date before thet of the appllcation on which priority is claimed:

I hereby claim the benelit under Titte 35, United States Code, 5120 of any United States application(s) listed beiow and, Insolar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the lirst paragraph of Title 35 , Unitad States Code, 5112, I acknowladge the duty io disclose material Information as delined In Title 37, Code of Federal Regulations, 51.56(a) which occurted between the filing date of the prior application and the national or PCT internatlonal filing date of this application:

Direct Telephone Calls to: (name and telephone number) J._David_Ellet, Tr_ (914) 241-4060.

IN THE UNITED STATES PATENT AND TRADEMARK OEEICE

In re Patent Application of
J. GEORG BEDNORZ and
K. ALEX MUELLER

Serial No.: 07/053,307
Filed: 22 May 1987
For: NEW SUPERCONDUCTIVE COMPOUNDS
HAVING HIGH TRANSITION
TEMPERATURE, AND ME'THODS FOR
THEIR USE AND PREPARATION

INEORMATION DISCLOSURE STATEMENT UNDER 37 CER 1.97

Honorable Commissioner of Patents
and Trademarks
Washington, D.C. 20231

Sir:

Pursuant to 37 CER 1.97, the attorneys for the applicants submit the following statement.

The attorneys for the applicants hereby bring to the attention of the United States Patent and Trademark Office the following publications and unpublished manuscripts which are broadly related to the field of the instant invention:

Publications and Unpublished Manuscripts

```
J. B. Goodenough and J. M. Longo, Magnetic and Other
Properties of Oxides and Related Compounds, in
Landolt-Bornstein New Series, vol III/4a, K.-H.
Hellwege and A. M. Hellwege, eds. (Springer-Verlag
1970), pages 261-314;
P. W. Anderson, Comments on Solid State Physics, vol.
II, pages 193-197, (Eebruary/March 1970);
```

R. Englman, The Jahn-Teller Effect in Molecules and Crystals, (Wiley-Interscience, 1972), pages 139-141. 164-181, 249-265;
B. K. Chakraverty, Journal de Physique-Lettres, vol. 40, pages L-99 - L-100, (March 1979);
G. Deutscher et al. Physical Review B, vol. 21, pages 5041-5047, (1 June 1980);
K. A. Muller et al., Physical Review Letters, vol. 45, pages 832-835, (8 Séptember 1980):
R. A. Buhrman et al., in AIP Conference Proceedings, Inhomogeneous Superconductors - 1979, (Berkeley Springs, W. V.), D. U. Gubser et al., pages 207-215 (1980);
T. D. Thanh et al., Applied Physics, vol. 22, pages 205-212 (1980);
C. Methfessel and S. Methfessel, in Proceedings of the IV Conference on Superconductivity in d-and f - Band Metals, W. Buckel and W. Weber, eds. Kernforschungszentrum, Karlsruhe, 1982), pages 393-399;
A. Baratoff et al., in Proceedings of the IV Conference on Superconductivity in d- and f- Band Metals, W. Buckel and W. Weber, eds. Kernforschungszentrum, Karlsruhe, 1982), page 419 ;
J. Muller, Rep. Prog. Phys., vol. 43, pages 642-687, (1980);
M. Suzuki et al., Shinku, vol. 24 pages 67-75, (1981), [in Japanese];
K. A. Muller et al., Physical Review Letters, vol. 47, pages 138-142, (13 July 1981);
Y. Enomoto et al. Japanese Journal of Applied Physics, vol. 20, pages L661-L664, (September 1981);
B. K. Chakraverty, Journal de Physique vol. 42, pages 1351-1356, (September 1981);
L. Er-Rakho et al., Journal of Solid State Chemistry, vol. 37, pages 151-156, (1981);
A. Baratoff and G. Binnig, Physica, vol. 108B, pages 1335-1336, (1981);
L. F. Mattheiss and D. R. Hamann, Physical Review B, vol. 26, pages 2686-2689, (1 September 1982);
L. F. Mattheiss and D. R. Hamann, Physical Review B, vol. 28, pages 4227-4241, (15 October 1983);
K.-H. Hock et al., Helvetica Physica Acta, vol. 56, pages 237-243, (198́3);
N. Nguyen et al., Journal of the Physics and Chemistry of Solids vol. 44, pages 389-400, (1983);
D. R. Bowman and D. Stroud, Physical Review Letters, vol 52, pages 299-302, (23 January 1984);
M. Tinkham et al., Workshop on Problems in Superconductivity, Copper Mountain, CO, pages 12-22, (1984):
B. Batlogg, physica, vol. 126B, pages 275-279, (1984);
C. Ebner and D. Stroud, Physical Review B, vol. 31, pages 165-171، (1 January 1985);
M. R. Harrison et al., Philosophical Magazine B, vol: 52, pages 679-699, (1985);
E. Stocker and J. Buttet, Solid State Communications, vol. 53, pages 915-917, (1985);
C. Van Haesendonck and Y. Bruynseraede, Physical Review B, vol. 33, pages 1684-1690, (1 February 1986);
H. R. Ott, Unconventional Superconductivity, Zurich Physical Sóciety Seminar, Zurich, (13 February 1986), [in German];
T. Ogushi and Y. Osono, Applied Physics Letters, vol. $4 \dot{8}$, pages 1167-1168, (28 April 1986);
S.-I Uchida et al. "High T_{c} Superconductivity of
La-Ba-Cu Oxides" unpublished nine-page manuscript
bearing date of 22 November 1986 ;

Asahi Shinbum, International Satellite Edition (London), 28 November 1986, (in Japanese with English translatíon);
H. Takagi et al., "High-Tc Superconductivity of La-Ba-Cu Oxides. " II-Specification of the Superconducting Phase", unpublished manuscript bearing date of 8 December 1986;
S.-I. Uchida et al., "High-Tc Superconductivity of La-Ba-Cu Oxides. III-Electrical Resistivity Measurement" unpublished nine-page manuscript (page 7 missing) bearing date of 22 December 1986 ;
K. Kishio et al., "New High temperature Superconducting oxides. $\left(L^{\prime} a_{1}-x S r_{x}\right)_{2} C u O_{4-\delta}$ and $\left.\left(L_{1} x_{1} C a_{x}\right)_{2} C u\right)_{4}-\delta_{2}^{\prime \prime}$ unpublished four-page manuscript bearing date of 22 December 1986;

"Superconductivity Above 52K in the unpublished fourteen-page manuscript December 1986;	
W. Sullivan, New York Times, 31 December 1986, page A1, cols. 2-3 and A13, cols. 1-2;	
unpublished ten-page manuscript bearing date of 8	
S. Kanbe et al., "Superconductivity and Lattice Parameters in $\left(\mathrm{La}_{1}-\mathrm{x}^{\mathrm{S}} \mathrm{Sr}_{\mathrm{x}}\right)_{2} \mathrm{CuO}_{4}-\delta$ Solid Solution System unpublished four-page manuscript bearing date of 13	
z. Zhao et al. "High T_{c} Superconductivity of Sr(Ba)La-Cu oxides" unpublished eleven-page manuscript bearing date of 21 January 1987.	

The publications and unpublished manuscripts identified above are listed on form PTO 1449 which accompanies this statement. Copies of the publications and unpublished manuscripts are being submitted with this statement.

The attorneys for the applicants take no position on whether or not any particular document cited in the present Disclosure Statement and listed on form PTO 1449 constitutes prior art relative to the subject invention with respect to some particular provision of Title 35 of the United States Code. As discussed in detail below, for example, it is the position of the attorneys that a number of the documents identified above bearing dates of less than a year before the filing date of the subject application to the extent they include material which might otherwise appear to be relevant to the invention of the application are essentially only describing the work of the applicants in the

Abstract

subject application and so do not constitute prior art against the application under United States law.

The two publications discussed briefly in the following two paragraphs concerned certain families of lanthanum copper oxide compounds.

The publication by Er-Rakho et al. in Journal of Solid State Chemistry, volume 37, pages 151-156 (1981), concerned a series of defect perovskites having the general formula $\mathrm{La}_{3-x} \mathrm{Ln}_{x} \mathrm{Ba}_{3} \mathrm{Cu}_{6} \mathrm{O}_{14+y}$, where $\mathrm{Ln}=\mathrm{Y}, \operatorname{Pr}, \mathrm{Nd}, \mathrm{Sm}, \mathrm{Eu}, \mathrm{Gd}$, Er, and Yb . In the case of $\mathrm{La}_{3} \mathrm{Ba}_{3} \mathrm{Cu}_{6} \mathrm{O}_{14+y}$, the value of y reportedly varied with oxygen pressure to which the compound was exposed during an anneal at $400^{\circ} \mathrm{C}$.

According to an English-language abstract, the publication by N. Nguyen et al. in the Journal of the Physics and Chemistry of Solids, volume 44 , pages 389-400 (1983), concerned the magnetic and electron transport properties of certain mixed valence copper oxides having the general formula $\operatorname{La}_{2-x} \mathrm{Sr}_{x} \mathrm{CuO}_{4-x / 2+\delta, ~ w h e r e ~} 0 \leq x \leq 1.20$. The publication is in French and the attorneys for the applicants do not have an English translation. Table 1 on page 390 appears to give the unit cell dimensions for the compound with various specific values for x and 2δ. According to the abstract, a progressive evolution of the conductivity from a semiconductor to a semimetallic behavior was observed as the amount of copper in the trivalent state increased.

In response to a request in section 24 of the Office Action of 8 August 1990 for the subject application regarding so-called "preprints," the nine unpublished manuscripts identified below have been located which bear on their face

dates in advance of the priority date to which the subject

 application is entitled:
AUTHORS

DATE EROM EACE OF MANUSCRIPT

| 1) S. I. Uchida et al. | 22 November 1986 |
| :--- | ---: | :--- |
| 2) H. Takagi et al. | 8 December 1986 |
| 3) S. I. Uchida et al. | 22 December 1986 |
| 4) K. Kishio et al. | 22 December 1986 |
| 5) C. W. Chu et al. | 30 December 1986 |
| 6) S.-I. Uchida et al. | 8 January 1987 |
| 7) S. Kanbe et al. | 13 January 1987 |
| 8) H. Takagi et al. | 17 January 1987 |
| 9) Z. Zhao et al. | 21 January 1987. |

An electronic-mail note dated 17 December 1986 from Dr. Richard Greene of IBM to the applicants suggests that the unpublished manuscripts bearing the dates 22 November and 8 December were in the hands of Dr. Greene on 16 December 1986. A copy of a printout of the note of 17 December 1986 is attached as Appendix A.

An electronic-mail note dated 7 January 1987 from Dr. Paul Grant of IBM to the applicants and Dr. Greene described a meeting of an Applied Physics Journal Club at Stanford University held on the day of the note. A copy of a printout of the 7 January 1987 note is attached as Appendix B. Reference was made to a "Bell preprint" and to two preprints of Chu. Reference was also made to an article in the New York Times and to an article in the Biejing People's Daily of mid-December.

A copy of an unpublished manuscript by Chu et al. bearing the date 30 December 1986 is submitted with this statement. The attorneys for the applicants do not have copies of any unpublished manuscript which might correspond to a second "preprint" of Chu or to the "Bell preprint" referred to in the note of 7 January 1987. A copy of an article in the New York Times edition of 31 December 1986 concerning superconductivity is submitted with this statement. The attorneys for the applicants do not have a copy of the article in the Beijing People's Daily referred to in the note of 7 January 1987.

Each of the nine unpublished manuscripts identified above expressly attributes the discovery of superconductivity in copper oxide materials to the present applicants. For example, the unpublished manuscript by Uchida et al. bearing the date 22 November 1986 stated on page 1, line 21 through page 2, line 3 as follows:

Another candidate [superconducting material] is La-Ba-Cu oxide. This material has been investigated extensively by Michel and his coworkers. Quite recently Bednorz and Muller have reported that the
Ba-La-Cu-O system with the composition
$\mathrm{Ba}_{x} \mathrm{La} a_{5} \mathrm{Cu}_{5} \mathrm{O}_{5(3-x)}$ is a potential material as the third
high-Tc oxide. The resistivity measurement on the
polycrystalline samples showed that the sample prepared
in a certain condition is superconducting befow 13 K .
The most interesting fact is that the resistivity
starts to decrease at 30 K with lowering temperature.
They suggested that this might correspond to an onset
of superconductivity in a part of the sample.
[References omitted]
The reference to Bednorz and Muller in the quotation above was accompanied by a citation to the article by the applicants in Zeitschrift fur Physik B-Condensed Matter, Vol. 64, pages 189-193 (September 1986) ("the Bednorz and Muller publication") which is of record in the subject application.

See also the unpublished manuscripts by Takagi et al. bearing the date 8 December 1986 at page 2, lines 1-4 and reference 2; Uchida et al. bearing the date 22 December 1986 at page 2, lines 5-10; Kishio et al. bearing [on the last page] the date 22 December 1986 at page 1 , lines $18-21$ and references 2 and 3; Chu et al bearing the date 30 December 1986 at page 3, lines 13-25 and reference 1; Uchida et al. bearing the date 8 January 1987 at page $2,1 i n e s 1-3$ and reference 1 [evidently a preprint of an article by the applicants and a coworker which appeared in Europhysics Letters , volume 3, pages 379-389 (1987) which in turn refers to the Zeitschrift fur Physik article of the applicants]; Kanbe et al. bearing the date 13 January 1987 at page 1 , lines 13-14 and references 1 and 2; Takagi et al. bearing the date 17 January 1987 at page 2 , lines $1-6$ and reference 1 ; and Zhao et al. bearing the date 21 January 1987 at page 1 , lines 12-14 and reference 1 .

Thus, such disclosed in each of the manuscripts identified above as might otherwise appear to be relevant to the invention of the subject application is in fact the work of the applicants Drs. Bednorz and Mueller or derived from the prior work of the applicants, as acknowledged in the manuscripts themselves. As a result, none of the unpublished manuscripts constitutes prior art against the subject application irrespective of whether or not any of the manuscripts might constitute a publication under United States patent law and irrespective of the date the invention was reduced to practice in the United States by or on behalf
of the applicants. The Court of Appeals for the Federal
Circuit has held that
Rule 131 ... is only one way of overcoming a reference that is not a statutory bar. An applicant may also overcome a reference by showing that the relevant disclosure is a description of the applicant's own work. [Citations omitted.]
In re Costello and McClean, 219 USPQ 389,391 (Fed. Cir. 1983).

The article in the 28 November 1986 edition of Asahi Shinbun noted that the "possibility of high Tc-superconductivity has been reported by scientists in Switzerland in this spring" and went on to report that Professor Shoji Tanaka had "confirmed" that an oxide of La and Cu with Ba exhibited the Meissner effect, an indication of superconductivity, up to 30 K . The article in the 31 December 1986 edition of the New York Times after referring to developments reported by researchers at the University of Houston and A.T.\& T. Bell Laboratories, noted that

> These developments follow a discovery reported last April by researchers at the I. B.M. Zurich Research Laboratory in Switzerland. Using a combination of copper, oxygen, barium and lanthanium, they achieved superconductivity at 30 degrees Kelvin, opening a new line of attack on the problem.

Later in the article, the I.B.M. findings were attributed to an article by J. G. Bednorz and K. A. Mueller in Zeitschrift fur zeitschrift fur Physik, Series B. (Contrary to the implication in the New York Times and Asahi Shudron articles, the first publication by Drs. Bednorz and Mueller concerning high Tc superconductivity did not appear in April 1986 or otherwise in the spring of 1986, but appeared in September 1986 with the publication of their Zeitschrift fur Physik B article cited above.) Neither the Asahi Shinbun nor the New York Times article constitutes prior art against the present application since - as evident from the articles themselves

- such as otherwise might appear to be relevant to the subject application was derived from the prior invention of the applicants. Under the doctrine of the Costello and McLean case cited in the preceding paragraph, the articles do not constitute references against the subject application.

The remaining publications identified above were cited either in the Bednorz and Mueller publication or in a publication by Bednorz, Mueller and M. Takashige, in Europhysics Letters, volume 3, pages 379-385 (1987), both of which publications are of record in the subject application. The publications are included in the present Information Disclosure Statement for completeness.

Submitted with this Information Disclosure Statement is a Claim to Priority Under 35 U.S.C. Section 119 for the application. The priority claim is based on European application Serial No. 87100961.9, filed 23 January 1987 ("the European '961 application"). The European '961 application identified as joint inventors Dr. Bednorz and Dr. Mueller - the applicants in the subject United States application - and Masaaki Takashige, a Japanese citizen residing in Ruschlikon, Switzerland at the time of filing the European application. The difference in inventorship between the subject United States application and the European '961 application arose under the circumstances of the present case because patent laws of the United States and the European patent convention differ, as discussed in the following paragraph.

The European patent convention has generally an "absolute novelty" standard of patentability with regard to divulgation of an invention in a publication by the
inventors, whereas United States patent law provides a one-year grace period for filing a patent application following the first description of an invention by the inventors in a publication. In the present case, basic aspects of the invention were described in an article by Drs. Bednorz and Mueller in zeitschrift fur Physik B-Condensed Matter, Volume 64, pages 189-193 which, as noted above, was published in September 1986. Since the Bednorz and Mueller publication appeared before the ' 961 European application was filed, aspects of the invention described in the publication were ineligible for patent protection in the European application under the European "absolute novelty" patentability standard. The '961 European application therefore included other material in addition to that described in the Bednorz and Mueller article in support of patentability under the European patent law. In accordance with standard European patent practice, Drs. Bednorz, Mueller and Takashige were designated joint inventors of the subject matter for which patent protection was sought under the European patent convention in the ' 961 European patent application. In the case of the subject United States application, basic aspects of the invention described in the Bednorz and Mueller publication were not ineligible for patent protection by virtue of the one-year grace period provided by United States patent law. The subject United States application is intended to secure patent protection for fundamental aspects of the invention for which Drs. Bednorz and Mueller are jointly the inventors under principles of United States patent law. A United States patent application may secure the benefit of priority under the International Convention of a foreign patent application having a different inventive entity if the foreign application was regularly filed and the designation of

```
inventorship in the United States application is correct.
Payne V. Natta, Pino and Mazzanti, 172 U.S.P.Q. 687, 693
(Pat. Off. Bd. of Pat. Inter. 1971).
```

Respectfully submitted,
Attorneys for the Applicants

IBM Thomas J. Watson Research Center Intellectual Property Law Department P.O. Box 218 Yorktown Heights, N.Y. 10598

Tel. (914) 241-4060

23 April 1992

Hi Alex and George;
Yesterday I sent you the two Japanese preprints. They find a 30%
Meissner effect at 5 K and a sharp resistive transition at 29 K in their best material. They have identified the same phase as you find but they make their samples by reacting La203, $\mathrm{BaCO3}$, and CuO in various ratios at 1100 degrees C in air for 24 hours. Annealing in a reduced atmosphere destroys the SC.Call me if you want more info but thexe is not much more in these papers....submission dates 8 DEc and 22 Nov.

Best regards, Rick

Date: 7 January 1987, $21: 10: 27$ PST		
From: Paul Grant	GRANT	
To: KAM at ZURLVM1		
	BED ALMVMC	
	Rick Greene	

Here's a synopsis of the Stanford Journal Club talk today. Rick, Ted said you had received the Bell preprint...could you send me a copy by Federal Express?

Today I attended the Applied Physics Journal Club session at Stanford, where Ted Geballe reviewed the situation on BaLaCuo superconductivity. I attend these sessions fairly often, and this was the largest audience I have seen for some time...perhaps in excess of 100 people. Throughout the first part of Ted's presentation, a lot of skepticism was evinced by the audience... Loughlan of quantum hall effect fame was particularly vocal. At the end, although, I think most people were rather bowled over by what they heard. Mac Beasley admitted he wished he was the one who had discovered it. The main points brought out follow (Geballe is well-known for his rambling and disconnected presentation style...but I think I got most things straight):
--The Japanese (and perhaps AT\&T Bell) have made the strontium compound with a sharp transition that starts at 40 K and is 2 K wide with an almost bulk Meissner effect...I am not sure whether this was in resistance, susceptibility or both. The information came to Mac Beasley by phone either today or yesterday.
--A low temperature critical field of 80 tesla (yes; eighty) was measured at the Japanese equivalent of the Bitter National Magnet Lab (didn't get the exact name of the institute).
--The Chu work from both preprints was reviewed. To me, the data did not seem the best quality. Chu defined the onset temperature as that when the sample resistance fell 1% below its "plateau value." Beasley remarked with this convention, the Takagi resistance data implied a threshold value of 45 K .

Miscellaneous comments:
I asked Geballe what he thought of the NY Times article. I got the strong impression he felt the Zurich work should have been stressed more and in fact I think he passed this feeling on to the Murray Hill people.

FILE: ALL NOTEBOOK AO

VM/SP CONVERSATIONAL MONITOR SYSTEM

I asked whether he or Mac had done any film work yet. They have a student (Sun) working on preparation for the last $3-4$ weeks. I don't think they've had success yet...to press further would have been indelicate. They are trying both sputtering and e-beam evaporation.

What was news to me is that Goodenough at Lincoln Lab worked on the 1:1 BaLaCuO in the 50^{\prime} s or $60^{\prime} \mathrm{s}$. Even its resistance was measured, but only down to 100 K .

Finally, Geballe showed a foil proving the NY Times had been scooped! The Beijing People's Daily ran in mid-December an article that claimed the local university/institute had obtained a BaLaCuO compound with a .Tc $=70 \mathrm{~K}$! The foil was in Chinese characters but one of the students in the audience provided a spontaneous translation.

Page 2 of 5

Page 4 of 5

[^62]


```
O,On Era 2b
```



```
    B%%,
O-N
```

\qquad days from the date of this letter. Failure to respond within the period for response will cause the application to become abandoned. 35 U.S.C. 133

Part I THE FOLLOWING ATTACHIMENT(S) ARE PART OF THIS ACTION:

1. \square Notice of References Cited by Examiner, PTO-892.
2.

\square Notice re Patent Drawing, PTO-948.
4. \square Notice of Informal Patent Application, Form PTO-152
6.
\qquad

Notice of Art Cited by Applicant, PTO-1449.Information on How to Effect Drawing Changes, PTO-1474 ,

1. Applicant's election with traverse of Group I in Paper No. 22. is acknowledged. The traversal is on the ground (s) that the claims of Groups I, II and III are not distinct. This is not found persuasive because the Examiner maintains that the superconductive product, process of making and method of use are directed to patentaljy djstinct jnventions. Although there are broad "process" and "method" claims that appear to encompass a great deal of subject matter, the jimitations in the dependent clajms distinguish the claims of the Groups $I, T I$ and TIT.

The requirement is still deemed proper and is therefore made FINAL.
2. The objection to the specification and objection of claims 111, $27-35,40-54,60-63$ and $65-68$ under 35 USC 112, first paragraph, is maintained.
3. The following is a quotation of the first paragraph of 35 U.S.C. § 112:

The specification shall contain a written description of the invention, and of the manner and process of making and using it, in such full, clear, concjse, and exact terms as to enable any person skilled in the art to which jt pertajns, or with which it. is most nearly connected, to make and use the same and sha] 1 set. forth the best mode contemplated by the jnventor of carrying out his invention.

The specjfjcation is objected to under 35 U.S.C. § 112 , first. paragraph, as failing to provide an enabling disclosure commensurate with the scope of the clajms.
4. The Applicants assert that. "the scope of the claims as presently worded is reasonable and ful]y merjted" (page 17 of
response). The Examiner disagrees. The present claims are broad enough to include a substantia] number of inoperable composjtions.
5. The rejection of claims 1-11, 27-35, 40-54, 60-6.3 and 65-68 under 35 USC 112, second paragraph is maintained.

6
Claims $1-11,27-35,40-54,60-63$ and $65-68$ are rejected under 35 U.S.C. $\S 112$, second paragraph, as being indefinjte for failing to particularly point out and distinctly claim the subject matter which applicant regards as the invention.
7. The amended term "rare earth-like" is vague. With respect to the lack of stoichiometry, Applicants argue the superconductive properties can be measured as the composition is varied. This is unpersuasjve because the present claims broad enough to require an undue amount of experimentation.
8. The Fxaminer maintains that the term "doping" is vague. Neither the claim or the sperification discuss the limits of the effective amounts of doping.
9. The Applicants assert that a discussion of "electron-phonon interactions to produce superconductivity" js found in the sperification. The Examiner majntains that the term is not adequately explajned. The specifjcation fails to teach bow one determines how to enhance the "electron-phonon" interactions?
10. The term "at least four elements" js jndefinjte considerjng the number of elements in the periodic table.

Art Unit. 115
11. The rejection of claims $1-11,27-35,40-54,60-6.3$ and 65-68 under 35 USC $102 / 103$ is maintained.
12. Claims $1-11,27-35,40-54,60-6.3$ and $65-68$ are rejected under 35 U.S.C. $\S 102(\mathrm{~b})$ as anticipated by or, in the alternative, under 35 U.S.C. § 103 as obvious over each of Shaplygin et.al., Nguyen et. a]., Michel et.a]. (Mat. Res. Bull. and Revue de Chimie).
13. The Applicants argue that "no prima facie case has been made that the composition anticjpates or renders obvious the subject. matter" (page 28 of response). The Examiner maintains that these materjals appear to be identical to those presently claimed except that the superconductive properties are not disclosed. Applicants have not provided any evidence that the compositions of the cited references are in any way excluded by the languange of the present claims, i.e. Appljcants have fajled to show that these materials are not superconductive. Applicant's composition claims do not. appear to exclude these materjals.
14. Applicants further argue that under United states patent law they are entitjed to claim compositions which mjght happen to overlap a portion of the concention ranges broadly recited in the cited references. "The broad statement of a concentration range in the prior art does not necessarily preclude later invention within the concentration range" (page 29 of response). The Examiner fai]s to understand how Applicant's incredibly broad claims. some of

Art. Unit. 115
which requice only the presence of a "doped transition metal oxide" (see claim 42), in anyway fal] "within" the scope of the compositions disclosed in the prior art. The cited references disclose very specifjc compostions that not only fall within the scope of the claims, but appear to be identical to those composjtions disclosed in the specification as being superconducting. The Examiner maintains that these materials are inherently superconductive and therefore render the clajm unpatentable.
15. With respect to Applicants arguements under 35 USC 10.3 regarding the "question of non-analogous art" and the assertion the cited prior art is irrevelant to the present claim, the Examiner maintains that for the present "composition" c]aims the references directed to what appear to be identical materials (both in composition and inherent properjties) are clearly relevant. The cited individual disclosures appear to be sufficient to maintain the rejection, the Examjner js not rejying on any secondary references to modify the teachings in the references.
16. The rejection of cjajms $1-2,5-11,40-44,46,48,51-54,60$, 62 and 66 under 35 USC. $102 / 103$ is maintained.
17. C]ajms 1-2, 5-11, 40-44, 46, 48, 51-54, 60, 67, and 66 are rejected under 35 U.S.C. $\S 102(b)$ as anticipated by or, in the alternative, under 35 U.S.C. $\$ 10.3$ as obvious over each of Perron-

Art. Unjt. 115

Simon et.al., Mossner et.al., Chincholkar et.al., Amad et.al.,
Blasse et. al., Kurihara et.al. and Anderton et.al.
18. This rejection is maintained for the reasons set forth in the previous paragraphs. The Examjner majntains that the cited references appear to disclose materials which inherently provide superconductive properties and therefore render the present claims unpatentable.
19. THTS ACTION IS MADE FTNAI. Applicant is reminded of the extension of time policy as set forth in 37 C.F.R. § $1.136(a)$.

A SHORTENED STATUTORY PERTOD FOR RESPONSE TO THTS FTNAL ACTION IS SET TO EXPIRE THREE MONTHS FROM THE DATE OF THIS ACTION. IN THE EVENT A FIRST RESPONSE TS FILED WITHIN TWO MONTHS OF THE MAILTNG DATE OF THIS FTNAL ACTION AND THE ADVISORY ACTION IS NOT MAILED UNTIL AFTER THE END OF THE THREE-MONTH SHORTENFD STATUTORY PERTOD, THFN THE SHORTENED STATUTORY PERIOD WJLI, EXPJRE ON THE DATE THE, ADVISORY ACTTON LS MATLFFD, AND ANY EXTFNSTON FEF PURSUANT TO 37 C.F.R. §]. $1.36($ (a) WJLJ, BF CALCUJ,ATFD FROM THF, MATITNG DATE OF THE ADVTSORY ACTTON. TN NO FVENT WTI, THF STATUTORY PERTOD FOR RESPONSE EXPJRF I,ATER THAN STX MONTHS FROM THF DATF, OF THJS FINAI, ÁCTTON.

Any inquiry concerning this communication or eartier communications from the examjner should be djrected to John Royd whose telephone number is (70.3) 308-3.314.

Any inqujry of a general nature or rejating to the status of this application should be directed to the Group receptionist whose telephone number is (70.3) 308-066].

Serial No. 07/53, 307
Art Unit 115
T. BQYd

April 2.4, 1991
$-7-$

PAULL LIEBERMAN SUPERVISORY PRIMARY EXAMINER ART UNIT 115
Certificate of Mailing -- Date of Deposit: 8 February 1991
Petition and Fee for Extension of Time (in triplicate)
Amendment Transmittal Letter (in triplicate)
Appointment of Associate Attorney
: Return
rleinse stamp \& RITURN to us
Post Card.
in re application of: J. G. Bednerz and K. A. Mueller.
For: New Superconductive Compounds Having_High Temp.....
Serial No.: 07/053, 307 Docket No.: Yo987-074 Atty.:__ل_
Received in the U.S. Patent \& Trademark office:
No. of pages of spooification
: No. of pages of claims_
No. of sheets of drawings:
declaration is attached to specification.
if feel are charged to our Account No. 09-0468

Certificate of Marivitg -- Date of Deposit: 8 February1991

Petition and Fee? ar Extension of Time (in triplicate)
Amendmentamansittal Letter (in triplicate)
Appointment of ASsociate Attorney
Response to an: Office Action
Return (e) felice stall \& Return to us
Post Card.
in re application of: J. G. Bednorz and K. A. Mueller
For: New Superconductive Compounds Having High Temp.
Serial No.: 07/053. 307 Docket No.: Y Y 0987-074 Atty.:__JDE
Received in the U.S. Patent \& Trademark office:
No. of pages of spoo1fication \qquad : No. of cAd BOO
No. of sheets of drawings:
declaration is attached to specification
il fees are charged to our Account No. 0 0 dem

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of: J. Georg Bednorz and K. Alex Mueller
Serial No: 07/053,307 \quad Group No: 115
Filed: $\quad 22$ May 1987
For: New Superconductive Compounds Having High Transition
Commissioner of Patents and Methods for Their Use and Preparation
Cashington, D.C. 20231

CERTIFICATE OF MAILING UNDER 37 CFR 1.8(a)

I hereby certify that the attached correspondence comprising:

1. Amendment Transmittal Letter (in triplicate)
2. Petition and Fee for Extension of Time (in triplicate)
3. Appointment of Associate Attorney
4. Response to an Office Action
5. Return Post Card
is being deposited with the United States Postal Service as first class mail in an envelope addressed to:

Commissioner ot Palents and Trademarks
Washington, D.C. 20231
on _ 8 February 1991

DOCKET NO. YO987-074

IN THP CRITED SLMTES PNUTNI ND TRANENARK OFFICE

In re application of
J. Georg Bednorz and
K. Alex Mueller

Serial No.: 07/053,307
Filed: 22 May 1987
For: NEW SUPERCONDUCTIVE
COMPOUNDS HAVING HIGH
TRANSITION TEMPERATURE, AND
METHODS FOR THEIR USE AND PREPARATION
Camissioner of Patents and Trademarks
Washington, D.C. 20231

1. This is a petition for an extension of the time to respond to the office Letter mailed on 8 Auqust 1990 for a period of three (3) momths from
8 November 1990 to and including 8 February 1991.
2. Applicant is other than a small entity.
3. Extension:

(months)	Fee for other than s.lall entity
one marth	$\$ 100.00$
\square two months	$\$ 300.00$
\square three months	$\$ 730.00$
\square four manths	$\$ 1150.00$

Fee $\$ 730.00$
4. An amendment

X is filed herewith
has been filed.
5. Fee payment
x. Charge fee to Deposit Acrount No. 09-0468 and for any additional extension fee required or credit for any excess fee paid. A duplicate of this petition is attached.

Respectfully subnitted,

Docker: W.: Y0987-074
Telephare vio.: (914) 241-4060

In re application of:
J. Georg Bednorz and K. Alex Mueller

Serial No.: 07/053,307
Filed: 22 May 1987
For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH
TRANSITION TEMPERATURE, AND
METHODS FOR THEIR USE AND PREPARATION

THE COMMISSIONER OF PATENTS \& TRADEMARKS
WASHINGTON, D.C. 20231
Sir:
Transmitted herewith is an Amendment in the above-identified application.
\square No additional fee is required.
\square The fee has been calculated as shown below:

(Col. 1)		(col. 21	(Col. 3)
$\begin{aligned} & \text { CAINS } \\ & \text { REMANING } \\ & \text { AFTER } \\ & \text { AMPNRINT } \end{aligned}$		HIGTEST NO. PREVIOUSLY PAD FOR	$\begin{gathered} \text { PRESENT } \\ \text { EXTRA } \end{gathered}$
$\text { TOWL } \quad 95$	MIMUS	** 95	$=0$
INEP.	Mmous	**	$=0$
$15 T$ presentation of mutiple dep. Cami			

* If the entry.in Col.1 is less than the entry in Col.2, write "0" in Col.3.
** If the "Highest Number Previously Paid For" IN this space is less than 20, write " 20 " in this space.
*** If the "Highest Number Previously Paid For" IN THIS SPACE is less than 3, write " $3^{\prime \prime}$ in this space.
The "Highest Number Previously Paid For" (Total or Independent) is the highest number found from the equivalent box in col. 1 of a prior amendment or the number of claims originally filed.

Please charge my Deposit Account No. 09-0468 in the amount of s_o. A DUPLICATE COPY OF THIS SHEET IS ENCLOSED.
The commissioner is hereby authorized to charge payment of the following fees associated with this communication or credit any overpayment to Deposit Account No. 09-0468. A DUPLICATE COPY OE THIS SHEET IS ENCLOSED.
\boxtimes Any additional fees required under 37 CFR 1.16 for the presentation of extra claims.
Any patent application processing fees under 37 CFR 1.17.
Respectfully submitted,

IN THE UNITED STATES PATEN'T AND TRADEMARK OFFICE

RESPONSE TO AN OFFICE ACTION UNDER 37 CFR 1.111

Honorable Commissioner of Patents and Trademarks Washington, D.C. 20231

Sir:
This is submitted in response to an Office Action issued on 8 August 1990 in connection with the patent application identified above. Pursuant to a petition for an extension of time submitted with this response, the time for fesponse has been set for 8 February 1991.

$$
\underline{A} \underline{M} \underline{N} \underline{D} \underline{M} \underline{N} \underline{T}
$$

Please amend the subject application as set forth below.

Serial No. 07/053

In the claims

Claim 1, line 3, delete "neas."
Claim 32, line 3 , for "composite" substitute -- composition --.

R EMARES

A. Summary of the Present Invention

The present invention broadly concerns a ceramic-like material which is superconductive with a superconductive/resistive transition temperature of about $26^{\circ} \mathrm{K}$ or greater. Preferred examples of such superconductive ceramic-like materials have a layer-like crystalline structure and an elemental composition of RE-AE-TM-O, where RE is a rare earth or rare earth-like element, AE is an alkaline earth element, $T M$ is a transition metal element, and O is oxygen.
.

B. Summary of the Outstanding Office Action

In the Office Action of 8 August 1990, restriction was required under 35 U.S.C. Section 121 to one of the following three groups of claims:
I. Claims 1 through 11 inclusive, 27 through 35 inclusive, 40 through 54 inclusive, 60 through 63 inclusive, and 65
through 68 inclusive, assertedly drawn to a superconducting composition, classified in Class 423, Subclass 604;
II. Claims 24 through 26 inclusive, 73 through 76 inclusive, 82, 83 and 86 through 90 inclusive, assertedly drawn to a method of making, classified in Class 505, Subclass 725; and
III. Claims 12 through 23 inclusive, 36 through 39 inclusive, 55 through 59 inclusive, 64,69 through 72 inclusive, 77 through 81 inclusive, 84, 85, and 91 through 95 inclusive, assertedly drawn to a superconductor apparatus, classified in Class 505, Subclass 825.

It was asserted In the office Action that the inventions of the claims of Group I and Group II were related as process of making and product made. It was asserted that such inventions would be distinct if (1) the processes claimed could be used to make other and materially different products, or (2) if the product as claimed could be made by another and materially different process. Section $806.05(f)$ of the Manual of Patent Examining Procedure ("the MPEP") was cited. It was asserted that in the instant case the product as claimed could be made by a process such as sputtering, which was characterized as materially different.

The inventions of the claims of Group I and Group III were asserted to be related as mutually exclusive species in an intermediate-final product relationship. It was asserted that distinctness would be established for claims in such a relationship if the intermediate product were useful to make other than the final product and the species were patentably distinct. Sections 806.04(b), third paragraph, and 806.04(h) of the MPEP were cited. It was asserted that, in the instant case, the intermediate product was deemed to be useful as a dianagnetic material used for bulk levitation. It was further asserted that the inventions were deemed patentably distinct since there was nothing in the present record to show the inventions to be obvious variants.

It was asserted in the Office Action that the inventions of the claims of Group II and Group III were related as process of making and product made. It was asserted that the inventions would be distinct if (1) the process claimed could be used to make another and materially different product, or (2) the product as claimed can be made by another and materially different process. Section 806.05(f) of the MPEP was cited. It was asserted that in the instant case the process could be used to make an assertedly materially different product such as a bulk diamagnetic material used for levitation.

It was asserted that because the inventions of Groups I, II, and III were distinct and had acquired a separate status in the art because of their assertedly recognized divergent subject matter, restriction for examination purposes was proper. It was stated that during a telephone conversation on 17 July 1990 with Mr. Jackson E. Stanland, an attorney for the applicants, a provisional election was made - with traverse - to prosecute the invention of Group I. It was indicated that affirmation of the provisional election must be made in the response to the outstanding office Action. It was stated that claims 12 through 26 inclusive, 36 through 39 inclusive, 55 through 59 inclusive and 64 were withdrawn from further consideration as being drawn to a non-elected invention. The status of claims 69 through 95 inclusive was not indicated, although claims 69 through 95 had been assigned to the provisionally non-elected Groups II and III.

In the outstanding Office Action, the specification was objected to under 35 U.S.C. Section 112 , first paragraph, as assertedly failing to provide an enabling disclosure commensurate with the scope of the claims. It was asserted that the subject specification was enabled only for compositions comprising $\mathrm{Ba}_{\mathrm{x}} \mathrm{La}_{5-x} \mathrm{Cu}_{5} \mathrm{O}_{\mathrm{y}}$. It was asserted that the art of high temperature superconductors characterized as greater than $30^{\circ} \mathrm{K}$ - was unpredictable one. It was asserted that small changes in composition could result in dramatic changes in or loss of superconducting properties. It was stated that the amount and

Serial No. 07/053,
type of examples necessary to support broad claims increased as the predictability of the art decreased. In re Fisher, 166 USPQ 18, 24 and In re Angstadt and Griffin, 190 USPQ 214,218 were cited in this connection. It was asserted that claims broad enough to cover a large number of compositions that did not exhibit the desired properties failed to satisfy the requirements of $35 \mathrm{U} . \mathrm{S} . \mathrm{C}$. Section 112. In re Cook, 169 USPQ 244,262 was cited. It was stated that reciting a desired result did not overcome such asserted failure. In re Corkill, 266 USPQ 1005, 1009 was cited.

It was questioned whether any material containing copper would exhibit superconductivity. It was questioned whether Cuo was a superconductor. It was questioned whether any stoichiometric combination of a rare earth, an alkaline earth, and copper was a superconductor. It was questioned whether $\mathrm{Ce}_{15} \mathrm{Mg}_{0.05} \mathrm{Cu}_{0.5} \mathrm{O}_{\mathrm{x}} \quad \mathrm{Ba}_{\mathrm{x}} \mathrm{La}_{5-x} \mathrm{Ni}_{5} \mathrm{O}_{\mathrm{y}}$ a and $\mathrm{Mg}_{10} \mathrm{Y}_{0.05} \mathrm{Fe}_{0.05} \mathrm{O}_{1}$ were superconductors.

It was asserted that, at the time the invention was made, the theoretical mechanism of superconductivity in these materials was not well understood. It was asserted that there was little factual or theoretical basis for extending the scope of the claims beyond the proportions and materials actually demonstrated to exhibit high temperature superconductivity. Quoting Brenner v. Manson, 383 US 519, 148 USPQ 689, it was stated that a patent is
not a hunting license. It is not a reward for the search, but a reward for its successful conclusion."

Claims 1 through 11 inclusive, 27 through 35 inclusive, 40 through 54 inclusive, 60 through 63 inclusive, and 65 through 68 inclusive were rejected under 35 U.S.C. Section 112, first paragraph, with a reference to the objection to the specification.

In the outstanding office Action, claims 1 through 11 inclusive, 27 through 35 inclusive, 40 through 54 inclusive, 60 through 63 inclusive, and 65 through 68 inclusive were rejected under 35 U.S.C. Section 112, second paragraph, with the assertion that the claims were indefinite for assertedly failing to particularly point out and distinctly claim the subject matter which the applicants regarded as their invention.

The term "near rare earth-like element" was questioned. What elements this term excluded and included was questioned.

It was asserted that the rejected claims were indefinite insofar as each assertedly failed to recite any stoichiometric limitation. How the metes and bounds of the invention would be determined was questioned.

With respect to a recitation of "doping" in claim 11, it was questioned how much dopant was required.

The phrase "enhances electron-phonon interactions to produce superconductivity" was questioned.

It was stated that there was no antecedent basis for the term "composite" recited in claim 32.

It was stated that claim 62 recited an "oxygen excess." What the "excess" was in relation to and how it would be determined was questioned.
It was asserted that the term "transition temperature"
was indefinite. It was questioned whether "transition
temperature" corresponded to a temperature at which resistivity
was zero or a temperature at which resistivity began to drop.

It was asserted that the term "said superconductor being comprised of at least four elements" recited in claim 40 was vague and indefinite. It was asked how one selected the elements and would any combination of four elements in any stoichiometric ratio produce the desired result.

It was noted in the office Action that the subject application had been filed in the United States on 22 May 1987. Declarations to establish an earlier conception and reduction to practice date submitted for the present application by and on behalf of the inventors were acknowledged. Although it was
asserted in the office Action that the exact date to which the applicants were entitled was not fully clear, it was asserted that such date appeared to have been no earlier than about 17 october 1986, a date on which a sample and enabling disclosure was brought to the United States from Switzerland by Praveen Chaudhari. The Declaration of Praveen Chaudhari was cited in this connection. It was asserted further that such date would appear to be no later than 13 December 1986, a date on which samples were tested in the United States to show superconductivity. The Declaration of Richard L. Greene was cited. It was indicated that no prior art of record disclosed $L a-B a-C u-0$ as a superconducting system prior to 1 January 1987 and that there was no need to make a judgement as to what date represented a reduction to practice. A number of publications having a filing date later than 1 January 1987 were cited for purposes of record. It was acknowledged that one of the publications, a publication by Ganguly and Rao in volume 97 of the Proceedings of the Indian Academy of Sciences which purported to have a publication date in December 1986, had to have been published later than 1 January 1987, since the publication cited other references which were not published until 1987.

In the outstanding office Action, claims 1 through 11 inclusive, 27 through 35 inclusive, 40 through 54 inclusive, 60 through 63 inclusive, and 65 through 68 inclusive were rejected under 35 U.S.C. Section $102(\mathrm{~b})$ as anticipated by, or, in the alternative, under 35 U.S.C. Section 103 as assertedly obvious

Serial No. 07/053,
over, each of a publication by Shaplygin et al. in the Russian Journal of Inorganic Chemistry, volume 24, pages 820-824. (1979) ("the Shaplygin et al. publication"); a publication by Nguyen et al. in the Journal of Solid State Chemistry, volume 39, pages 120-127 (1981) ("the Nguyen et al. publication"); a publication by Michel et al. in the Materials Research Bulletin, volume 20 , pages 667-671 (1985) ("the 1985 Michel et al. publication"); and a publication by Michel and Raveau in the Revue de Chimie Minerale, volume 21, pages 407-425 (1984) ("the 1984 Michel and Raveau publication"). It was asserted that the Shaplygin et al.
 Sr, Ba and Pb and Ln was Lar $\operatorname{Pr}, \mathrm{Nd}, \mathrm{Sm}, \mathrm{Eu}$, and Gd . It was asserted that $\mathrm{La}_{2-\mathrm{x}} \mathrm{Ca}_{x} \mathrm{CuO}_{4}$ was disclosed on page 823. It was asserted that the Nguyen et al. publication disclosed the composition $\mathrm{La}_{2-x} \mathrm{Sr}_{\mathrm{x}} \mathrm{CuO}_{4-\mathrm{y}}$. It was asserted that 1984 Michel and Raveau publication disclosed the composition $\operatorname{La}_{2-x} \mathrm{~A}_{1+} \mathrm{XCu}_{2} \mathrm{O}_{4}$, where A was Ca, Sr, Ba. It was further asserted that the 1985 Michel et al. publication disclosed the compositions $\mathrm{BaLa}_{4} \mathrm{Cu}_{5} \mathrm{O}_{13.4}$ and $\mathrm{La}_{3} \mathrm{Ba}_{3} \mathrm{Cu}_{6} \mathrm{O}_{14+\mathrm{x}}$. Although it was conceded in effect in the Office Action that none of the four publications disclosed superconductivity, it was asserted that each of the four publications appeared to fall within the scope of the subject matter as presently claimed. It was asserted that the burden of proof was upon the applicants to show that the subject matter differed from and was unobvious over that disclosed in the publications. In re Brown, 173 USPQ 685, 688; In re Best, 195 USPQ

Serial No. 07/053,

430 and In re Marosi, 218 USPQ 289, 293 were cited in this connection.

Claims 1, 2, 5 through 11 inclusive, 40 through 44 inclusive, $46,48,49,51$ through 54 inclusive, 60,62 , and 66 were rejected under 35 U.S.C. Section 102 (b) as assertedly anticipated by, or, in the alternative, under 35 U.S.C. Section 103 as assertedly obvious over, each of the following: a publication by Perron-Simon et al. in C. R. Acad. Sc. Paris, volume 283, pages 33 through 35 (12 July 1976) ("the Perron-Simon et al. publication"); a publication by Mossner and Kemmler-Sack in the Journal of the Less-Common Metals, volume 105, pages 165 through 168 (1985) ("the Mossner and Kemmler-Sack publication"), a publication by Chincholkar and Vyawahare in Thermal Analysis 6th, volume 2, pages 251 through 256 (1980) ("the Chincholkar and Vyawahare publication"); a publication by Ahmad and Sanyal in Spectroscopy Letters, Volume 9, pages 39 through 55 (1976) ("the Ahmad and Sanyal publication"); a publication by Blasse and Corsmit in the Journal of Solid State Chemistry, volume 6, pages 513 through 518 (1973) ("the Blasse and Corsmit publication"); United States patent No. 3,472,779 to Kurihara et al. ("the Kurihara et al. ' 779 patent"); and a publication by Anderton and Sale in Powder Metallurgy No. 1, pages 14 through 21 (1979) ("the Anderton and Sale publication"). It was asserted that the Perron-Simon publication disclosed the composition $\mathrm{Ba}_{2} \mathrm{La}\left(\mathrm{Nb}_{13 / 3}\right) \mathrm{O}_{15}$. It was asserted that the Mossner and Kemmler-Sack publication
disclosed the composition $\mathrm{Ba}_{6} \mathrm{YNb}_{4.5} \mathrm{O}_{18}$. The Chincholkar and Vyawahare publication assertedly disclosed the composition $\mathrm{Ba}\left(\ln _{0.5} \mathrm{~B}_{0.5}\right) \mathrm{O}_{3}$. It was asserted that the Ahmad and Sanyal publication disclosed $\mathrm{Ba}_{2} \mathrm{YNbO}_{6}$ on page 43. It was asserted that the Blasse and Corsmit publication disclosed the composition Ba $_{2} \mathrm{GdNbO}_{6}$. The Kurihara et al. ' 779 patent assertedly disclosed the composition $\mathrm{Ba}\left(\mathrm{Y}_{\mathrm{Nb}}\right)_{0.5 \mathrm{O}_{3}}$. The Anderton and Sale publication assertedly disclosed the composition $\mathrm{La}_{0.5} \mathrm{Sr}_{0.5} \mathrm{CoO}_{3}$. Although it was conceded in the Office Action that none of the references cited in this paragraph discussed superconductivity, it was asserted that each appeared to fall within the scope of the claims. It was asserted that a 1987 publication by Ogushi et al. in the Journal of Low Temperature Physics, volume 69, pages 451 through 457 (1987)("the Ogushi et al. publication") disclosed that La-Sr-Nb-O systems were superconducting. Reference was made to the case law cited in the previous paragraph.

It was asserted in the outstanding Office Action that in the field of high temperature superconductors, many scientific developments were "available" as preprints prior to publication in a journal. It was further asserted that such a preprint was prior art as a printed publication under 35 U.S.C. Section $102(a)$ or (b) as of the date it was first distributed. The case $3 \mathrm{M} v$. Ansul 213 USPQ 1024, 1037 was cited in this regard. It was requested that any information of the type noted above which was material to the subject matter presently claimed available prior
to the effective filing date of the present application of which the applicants were aware be promptly made of record.

It was suggested that any evidence to be presented in accordance with 37 C.F.R. 1.131 or 1.132 be submitted before final rejection to be considered timely.
C. Summary of the Present Amendments

Claim 1 has been amended to delete the term "near" from the expression "near rare earth-like element." The expression "rare earth-like element" conforms to the expression used in claim 2 as originally filed.

Claim 32 has been amended to correct a minor typographical or other clerical error. Specifically, the term -- composition -- has been substituted for the term "composite."

Reconsideration of the present application as amended and in the light of the comments below is respectfully requested.
D. The Restriction Requirement Under 35 U.S.C. Section 121

The applicants by their attorneys hereby affirm the previous provisional election to prosecute the invention of the claims denominated Group I in the Office Action of 8 August 1990

Serial No. 07/053.

- specifically, claims 1 through 11 inclusive, 27 through 35 inclusive, 40 through 54 inclusive, 60 through 63 inclusive, and 65 through 68 inclusive.

The requirement for restriction is respectfully traversed. It is submitted that the claims of Groups I, II and III are directed to inventions which are not "distinct" as that term is used for purposes of 35 U.S.C. Section 121 , as explained below.

Turning first to the relationship between the subject matter of the claims of Group I and the claims of Group IT, it is noted that - in contrast to the assertion in the office Action Group II is not limited to claims directed to a process of making. In addition to claims directed to a process of making a composition of the type which is the subject of claims of Group I, Group II includes claims directed to a method for using such a composition. See, for example, claims 24 through 26 inclusive and claims 86 through 90 inclusive. Furthermore, with regard to the assertion in the outstanding office Action that the product as claimed in Group I could be made by a process such as sputtering, which is characterized as being materially different from the method for making claimed in Group II, it is submitted that such a sputtering process could well fall within the scope of one or more claims of Group II. See claim 75 in this regard, for example. For the reasons set forth above, it is submitted that the
inventions of the claims of Groups I and II are not distinct for restriction purposes. It is submitted therefore that the requirement of restriction between the claims of Groups I and II was unwarranted and should be withdrawn.

With respect to the relationship of the subject matter of the claims of Groups I and III, it was asserted that the so-called intermediate product of the claims of Group I would be useful as a diamagnetic material used for bulk levitation. However, it is submitted that levitation of superconductive diamagnetic material generally involves generating a magnetic field and immersing the material in the magnetic field. Immersing the superconductive diamagnetic material in such a magnetic field generally causes a supercurrent to be induced in the material which tends to oppose penetration of the magnetic field into the material, giving rise to the levitation effect. It is submitted that such a levitation system involving a dialectric material of the claims of Group I would meet the limitations of one or more claims of Group II. Consider claim 12, for example. A magnet used to generate the magnetic field for such a levitation system would constitute means for passing a superconducting electrical current through the composition, as called for in claim 12. It is submitted, therefore, that the subject matter of the claims of Group I and $I I I$ is not distinct for restriction-requirement purposes. It is thus submitted that the requirement for
restriction under 35 U.S.C. Section 121 between the claims of Groups I and III was not justified.

The comments in the preceding paragraphs regarding the subject matter of the claims of Groups II and III also apply with respect to the relationship between the subject matter of the claims of those two Groups. Specifically, it is noted again that not all of the claims of Group II are directed to a process of making, in contrast to the assertion in the outstanding office Action. Furthermore, it is submitted that use of a process for making material to be employed as a bulk diamagnetic material for levitation would constitute a use which would fall within the scope of at least one of the claims of Group III - in contrast to an assertion in the outstanding office Action. It is submitted, therefore, that the inventions of the claims of Group II and III are not distinct for restriction-requirement purposes and therefore that the requirement of restriction between the two groups in the Office Action was without justification.

In summary, for the reasons given above it is submitted that the requirement for restriction among the claims of Groups I, II and III in the outstanding office Action was unwarranted and should be withdrawn.
E. The Rejection Under 35 U.S.C. Section 112 , First Paragraph

The rejection under 35 U.S.C. Section 112, first paragraph, involves in one way or another the matter of the scope of the claims to which the present applicants are entitled. The Fisher case was cited in the outstanding Office Action in support of a contention that the applicants were not entitled to claims of the scope of the claims presently under examination. However, it is demonstrated below that if the advance in the art represented by the subject invention and the teachings of the subject application are properly taken into account as provided in the fisher case, the doctrine of the fisher case compels the conclusion that the scope of the claims as presently worded is reasonable and fully merited.

The court in the fisher case analyzed the matter of the scope of patent protection to which an inventor was entitled in the following words:

The issue thus presented is whether an inventor who is the first to achieve a potency of greater of greater than 1.0 for certain types of compositions, which potency was long desired because of its beneficial effect on humans, should be allowed to dominate all such compositions having potencies greater than 1.0, including future compositions having potencies far in excess of those obtainable from his teachings plus ordinary skill.

It is apparent that such an inventor should be allowed to dominate the future patentable inventions of others where those inventions were based in some way on his teachings. Such improvements, while unobvious from his teachings, are still within his contribution, since the improvement was made
possible by his work. It is equally apparent, however, that he must not be permitted to achieve this dominance by claims which are insufficiently supported and hence not in compliance with the first paragraph of 35 U.S.C. 112. That paragraph requires that the scope of the claims must bear a reasonable correlation to the scope of enablement provided by the specification to persons of ordinary skill in the art. In cases involving predictable factors, such as mechanical or electrical elements, a single embodiment provides board enablement in the sense that, once imagined, other embodiments can be made without difficulty and their performance characteristics predicted by resort to known scientific laws. In cases involving unpredictable factors, such as most chemical reactions and physiological activity, the scope of enablement obviously varies inversely with the degree of unpredictability of the factors involved.

Fisher 1009.

According to the court in the Fisher case, "the scope of the claims must bear a reasonable correlation to the scope of enablement provided by the specification to persons of ordinary skill in the art." Thus the standard against which the scope of claims is to be judged is the scope of enablement provided by the specification, not to persons in the abstract, but to persons of ordinary skill in the art. In the instant case, the scope of enablement provided by the specification to persons of ordinary skill in the art can readily be judged by the impact an article describing the invention had on such persons. Specifically, the present invention was disclosed in an article published by the present applicants in the Zeitschrift fur Physik - Condensed Matter in September 1986. The article is incorporated by reference in the specification of the instant application. Scientists throughout the world recognized the importance of the
invention and within only a few months of the publication had found numerous examples of the ceramic-like high temperature superconductors of the type disclosed in the article. Attached to this response as Exhibit A^{*} is a graph of the transition temperatures of the superconductive materials with the highest known transition temperatures versus the date of discovery of the superconductivity of such materials. As may be seen in Exhibit A, the rate of discovery of materials with higher temperatures increased dramatically in a short time after 1986, the date of publication of the Zeitschrift fur Physik article by the present applicants. It is submitted that whatever truth there may be to the generalization that chemical inventions tend to be less predictable than mechanical inventions, in the instant case, the evidence is plain that persons skilled in the relevant arts were able to build on the disclosure of the present invention as set forth in the Zeitschrift fur Physik article extremely productively and extremely rapidly relative to the rate of previous development in the field of superconductivity.
*Exhibit A was taken from a report entitled "High Temperature Superconductivity: Perseverance and Cooperation on the Road to Commercialization" prepared under the auspices of the White House Science Council by the Committee to Advise the President on High Temperature Superconductivity. It should be noted the chairman and the executive secretary of the committee are or had been affiliated with the assignee of the instant application.

It is submitted therefore that under the doctrine of the Fisher case, the applicants are entitled to claims of the scope of the claims as presently worded, given the scope of enablement provided to persons of ordinary skill in this field by the specification of the subject application.

The Court of Customs and Patent Appeals has indicated that unpredictability of the relevant art is not the only factor to be considered in in determining the breadth to which claims of a patent application are entitled. Specifically, a patent application is entitled to claims of broader scope to the extent that the application is directed to a pioneer invention. In re Hogan and Banks, 194 USPQ 527,537 (CCPA, 1977). As stated by the Court:

Rejections under [Section] 112, first paragraph, on the ground that the scope of enablement is not commensurate with the scope of the claims, orbit about the more fundamental question: To what scope of protection is this applicant's particular contribution to the art entitled?

Though we do not reach the point on this appeal, we note appellants' argument that their invention is of 'pioneer' status. The records reflects no citation of prior art disclosing a solid polymer of [the relevant monomer], which we may suggest that appelants at least broke new ground in a broad sense. On remand, appelants may be found to have been in fact the first to conceive and reduce to practice 'a solid polymer' as set forth in [the rejected claim on appeal.]. As pioneers, if such they be, they would deserve broad claims to the broad concept. What were once referred

Abstract

to as 'basic inventions' have led to 'basic patents,' which amounted to real incentives, not only to invention and its disclosure, but to its prompt, early disclosure.

Hogan and Banks, page 537. Thus in addition to considering the degree of unpredictability of the art, the advance the claimed invention has made over the prior art must be evaluated in determining the scope to which the claims are entitled.

In the instant case, the advance of the invention was of such a significant and pioneering nature that the inventors were awarded the Nobel Prize for Physics in 1987.

In response to the assertion in the outstanding office Action that a claim which is so broad as to cover a large number of compositions which do not exhibit the desired properties fails to satisfy the requirements of 35 U.S.C. Section 112 , it is noted that each of the composition claims of the subject application includes an express limitation with respect to desired superconductivity properties. Claim 1 of the application, for example, is directed to "a superconductive composition having a transition temperature greater than $26^{\circ} \mathrm{K} . "$ Each of claims 2 through 11 inclusive, 27 through 35 inclusive, 40 through 54 inclusive, 60 through 63 inclusive, and 65 through 68 inclusive includes directly or by reference analogous language with respect to superconductive properties.

With a citation to the Corkill case, it was asserted in effect in the outstanding office Action that reciting a desired result in a claim does not remedy the problem of the claim's covering a large number of compositions which do not exhibit the desired result. The attorneys for the applicants, however, respectfully submit that the Corkill case does not support this proposition. In the Corkill case, the court affirmed a rejection under 35 U.S.C. Section 112 , second paragraph, of certain claims in a continuation application under review which were drawn to a detergent composition. According to declarations submitted on behalf of the applicants, the rejected claims read on certain detergent compositions which led to "unacceptable deposition on clothing and washing machine surfaces." The specific claims in question were not set out in the decision in the Corkill case. However, a representative claim of a parent application of the continuation application made no mention of the desired result of avoiding deposition on clothing and washing machine surfaces. On page 1008, right hand column, last full sentence, the court stated that the only difference between the claims of the parent application and the continuation application was an upper limit on the size of certain particles in the detergent composition. In any event, the court made no reference to any recitation of a desired result in the rejected claims of the continuation application, nor did it state that such a recitation would be futile. It is would appear therefore that the Corkill case does not support the proposition that recitation of a desired result
somehow does not serve to exclude compositions which do not achieve the recited desired result.

In the instant case, the property of superconductivity is a physically measurable property of the composition being claimed. That the property is also useful and hence desirable should not exclude the property from serving to define the claimed composition. It is submitted that the recitations in the composition claims under rejection regarding superconductive properties serve to exclude compositions which do not have the required superconductive properties.

For the reasons given above, it is submitted that claims 1 through 11 inclusive, 27 through 35 inclusive, 40 through 54 inclusive, 60 through 63 inclusive, and 65 through 68 inclusive are fully supported by an enabling disclosure and that the scope of such claims is reasonably correlated with the scope of enablement provided by the specification to those of ordinary skill in the art and is merited by the revolutionary advance in the art represented by the invention of the claims. It is submitted therefore that the rejection of claims 1 through 11 inclusive, 27 through 35 inclusive, 40 through 54 inclusive, 60 through 63 inclusive, and 65 through 68 inclusive under 35 U.S.C. Section 112, first paragraph, was unjustified and should be withdrawn.

G. The Rejections Under 35 USC Section 112 , Second Paragraph

The comments in the outstanding office Action in connection with the rejection under 35 U.S.C. Section 112 , Second Paragraph, will be considered in turn.

Although it is submitted that the term expression "near rare earth-like element" questioned in the outstanding office Action is completely clear and would be understood by a person of even only ordinary skill in the art, claim 1 has been amended to delete the term "near" from the expression. The terminology in claim 1 as amended and claim 2 is consistent. The expression "rare earth-like element" is discussed, for example, on page 7 , lines 8 through 12 in the application as originally filed.

With regard to the comment in the Office Action relating to the recitation of a stoichiometric limitation in the composition claims, the attorneys for the applicants point out that each of the claims in question includes a language specifying that the composition be superconductive with a transition temperature of greater than $26^{\circ} \mathrm{K}$, or generally analogous language. The properties of superconductivity and the transition temperature are physical properties of a material which can be measured as certainly as the chemical composition of the material can be measured. It is submitted that, a claim directed to composition defined in part by superconductivity properties is not
indefinite. The metes and bounds of the invention are defined with the particularity and distinctness required by the second paragraph of 35 U.S.C. Section 112 in each of the composition claims of the present invention.

With respect to the recitation of doping in claim 11, the specification provides a discussion of such doping on page 17 , line 12 through page 19, line 12. Moreover, claim 11 depends upon claim 1 and thus incorporates the limitations of clajim 1 by reference. It is submitted that claim 11, as presently worded, would be completely clear and definite to one of ordinary skill in the art, particularly in light of the discussion in the specification and in view of the limitations of claim 1 incorporated by reference.

Claim 31 of the present application is a dependent claim which depends upon independent claim 27. Claim 31 states that the claimed composition "has a crystalline structure which enhances electron-phonon interactions to produce superconductivity at a temperature in excess of $26^{\circ} \mathrm{K} . "$ Electron-phonon interactions favorable to the occurrence of superconductivity at higher critical temperatures is discussed in the specification, for example, on page 15 , line 20 through page 14 , line 9 . It is submitted that claim 31 incorporating the limitations of claim 27 upon which it depends and when read in the light of the specification is completely clear and definite.

Claim 32 has been amended to deJete the term "composite" questioned in the outstanding office Action. As amended, claim 32 refers to a composition for which there is an antecedent basis.

The term "oxygen excess" referred to in claim 62 refers to an excess of the oxygen content over a stoichiometric amount. See, for example, the discussion on page 27 , line 13 through page 28, line 5 of the application as filed. It is submitted that the reference to oxygen excess would be understood by one of ordinary skill in the art and that claim 62 as presently worded is clear and definite.

The term "transition temperature" questioned in the outstanding office Action refers to the transition in superconductive materials between a resistive state and the superconducting state. As used in the present application, the term is consistent with conventional usage. The transition temperature does not conventionally refer to the low temperature end of the transition, i.e. the temperature at which zero resistivity is achieved, but rather conventionally refers to a point in the transition from a resistive state to the superconducting state.

With respect to selection of "at least four elements" recited in claim 40 , reference is made to the specification of the application which provides examples of superconductive
compositions comprising at least four elements. See, for example, page 12, lines 4 through 19 of the application. Claim 40 does not state or imply that any four elements in the periodic table in any stoichiometric ratio will result in a superconductor which exhibits a superconducting onset at a temperature in excess of $26^{\circ} \mathrm{K}$. Claim 40 is directed to a superconductor which exhibits a superconducting onset at a temperature in excess of $26^{\circ} \mathrm{K}$ which is comprised of at least four elements, none of which itself is superconducting. That such superconductors exist was discovered by the present applicants and constitutes an invention which, it is submitted, they are entitled to claim.

For the reasons set forth above, it is submitted that the claims of the present application, as amended, meet the standards of 35 U.S.C. Section 112 , second paragraph. The rejection of claims 1 through 11 inclusive, 27 through 35 inclusive, 40 through 54 inclusive, 60 through 63 inclusive, and 65 through 68 inclusive under 35 U.S.C. Section 112, second paragraph, was without foundation and should be withdrawn.
H. The Rejections Under 35 U.S.C. Section 102 (b)

It was conceded in the outstanding office Action that none of the eleven references cited against the claims under examination discussed superconductivity. None of the references disclosed or in any way suggested that any composition disclosed
in the reference was superconductive at any temperature, let alone that the composition had a superconductive transition temperature of $26^{\circ} \mathrm{K}$ or greater.

The position taken in the Office Action was that even if a cited reference did not disclose or suggest that a composition disclosed in the reference was superconductive, the burden was upon the applicants to establish that the composition was not within the scope of the claims.

It is the position of the attorneys for the applicants that the comments in the outstanding office Action do not so much as make out a prima facie case that any of the specific compositions disclosed in the cited references falls within the scope of any of the claims of the subject application. Absent some showing that one of the specific compositions disclosed in one of the eleven references is a material which is superconductive with a transition temperature of $26^{\circ} \mathrm{K}$ or greater, no prima facie case has been made that the composition anticipates or renders obvious the subject matter of a claim of the subject application.

Four of the references cited in the outstanding Office Action disclosed materials in terms of compositions which could vary over specified ranges. Specifically, the Shaplygin et al. publication, the Nguyen et al. publication, the 1984 Michel and Raveau publication and the 1985 Michel et al. publication each
disclosed certain compositions in which it was specified that one or more of the elements of the compensation could vary over a certain range.

However, under United States patent law, the applicants are fully entitled under 35 U.S.C. Section 102 to claim compositions which might happen to overlap a portion of the concentration ranges broadly recited in the Shaplygin et al., Nguyen et al, Michel and Raveau and Michel et al. publications, because they have discovered that the subject matter claimed has remarkable high-temperature superconductive properties totally unexpected in view of the publications.

The broad statement of a concentration range in the prior art does not necessarily preclude later invention within the concentration range. Whether or not a material subsequently discovered falling within the concentration range is patentable depends upon what the prior art teaches people skilled in the art about the properties of substances falling within that range; if the properties of the newly discovered material are unobvious in view of what the prior art teaches, it may be patentable. In re Waymouth and Koury, 182 USPQ (CCPA 1974). Thus "ranges which overlap or lie inside ranges disclosed by the prior art may be patentable if the applicant can show criticality in the claimed range by evidence of unexpected results." In re Wertheim 191 USPQ 90, 100 (CCPA 1976).

A case decided by the court of Customs and Patent Appeals, In re Waymouth and Koury, 182 USPQ 290 (CCPA. 1974), provides an example of a critical difference which supported patentability of subject matter falling within a range broadly disclosed in a prior-art patent.

The claims at issue in the waymouth case related to high-pressure electric discharge lamps of a type used for outdoor lighting. The lamps included an arc tube which contains mercury and halogen atoms. Conventional high pressure electric discharge lamps emitted a bluish light, which was a drawback. The appelants found that maximum white light emissions could be achieved when the ratio of halogen atoms to mercury atoms was restricted to certain values. The claims at issue recited a range for the ratio of from about 0.08 to 0.75 . Reference to Fig. 2 of the Waymouth and Koury application, which was reproduced in the opinion of the court, will show that the recited range for the ratio of halogen atoms to mercury atoms limited the intensity of white light emission to no less than approximately 0.5 of its highest value.

The claims on appeal had been rejected as unpatentable over an issued United States patent to Reiling. According to the court,

The Reiling patent discloses a device similar to that of appellants' and also seeks to produce white light. The Reiling device incorporates the halogen and mercury atoms used by appellants; however, the claimed ratio is not specifically disclosed in the reference. Appellants have calculated the ratios of halogen to mercury atoms inherently disclosed by

Reiling, which ratios span the range from 0.0000001 to 1.3 . These ratios have not been contradicted by the board of solicitor.

Observe that over fifty percent of the range inherently disclosed by by Reiling was claimed by the appellants.

In spite of the overlap between the claimed range and the range inherently disclosed in the Reiling patent, the court found that the claims were patentable over Reiling. The court based its decision in part on a finding that the claimed range of ratios was critical for the attainment of maximum white light emission. In the words of the court:

Although Reiling's range of possible ratios envelops the range claimed by appellants, we believe that the appellants' graph in figure 2 demonstrates the necessary unexpected results. Those results follow from the selection of appellants' critical range, which is narrower than the extremely broad inherently disclosed range of Reiling. We cannot agree with the board's holding that since appellants' lamp is also operable over other ranges of the halogen atom to mercury atom ratio, figure 2 does not demonstrate an unexpected result. In order to show an unexpected result, we do not believe that the lamp must be inoperable over other ranges, but rather that over the claimed critical range there be a difference in kind, rater that a degree. We believe that figure 2 demonstrates such a marked improvement, over the results achieved under other ratios, as to be classified as a difference in kind, rather than one of degree. [Citations omitted.]

The discussion concerning criticality in the Waymouth case applies directly to the: question of the criticality of the difference between the subject matter of the claims under discussion in the present application and the disclosures of the

Shaplygin et al., Nguyen et al., Michel and Raveau and Michel et al. publications. It is submitted, therefore, that the reasoning of the court in the Waymouth case compels a finding that the present invention represents a critical, and hence patentable, advance over the disclosures of the four publications.

A second case, In re Duva, 156 USPQ 90 (CCPA, 1967), like the Waymouth case, compels a finding that the claims under discussion are patentable over the Shaplygin et al., Nguyen et al. Michel and Raveau and Michel et al. publications. In the following discussion, the page, column, and line numbers refer to the opinion in the Duva case as reported in 156 USPQ.

The invention in the Duva case concerned a process for the "electroless" deposition of gold on a metal article immersed in a chemical solution. Since gold was deposited by direct chemical action, the process did not require electrodes or a source of electric current as did conventional electroplating processes. The two claims specifically analyzed by the court were directed to "a process for depositing gold on a workpiece" and to the chemical solution used in the process. The two claims had been rejected under 35 U.S.C. Section 103 as unpatentable over a reference which disclosed a process for the electrodeposition of a gold-palladium alloy and an electroplating bath for use in the process. The claim directed to the solution is reproduced below with paragraphing and lettering added for convenience.

1. As a composition for chemically depositing gold and aqueous solution consisting essentially of:
(a) $0.5-30 \mathrm{~g} / 1$ of a soluble gold cyanide,
(b) 0.01 to $30 \mathrm{~g} / 1$ of a soluble palladous salt,
(c) absent sufficient $C N$ ions to prevent deposition induced by said palladous salt, and
(d) sufficient alkali to provide a pH of 8-11.

It is clear from the opinion in the Duva case that the concentration ranges to which the claims on appeal were directed overlapped to concentrations of the prior-art electroplating bath. The court pointed out that the examiner had noted that the proportions of gold cyanide and palladium salt in the claims "overlapped" those of the prior-art electroplating bath. Page 92, column 2, lines 25-28. In addition, the claims called for "sufficient alkali to provide a pH of 8-11," which overlapped with a teaching in the prior-art reference that the electroplating bath preferably have a pH of between 10 and 10.5. Page 92 , column 2, lines 16-19. Finally, there was an overlap between the concentration range of cyanide ions called for in the claims and the concentration range of cyanide ions disclosed in the prior-art reference. The reference disclosed a single specific example of an electroplating bath. Page 92, column 2, footnote 6. In addition to the compound gold cyanide, the bath included four base-metal cyanide compounds in specified proportions. The reference further stated that the concentrations of the example could be increased up to three times the quantities recited. However, the patent also stated that the base-metal cyanide compounds were optional and that one or more base metals could be omitted. Page 93, column 1, lines 7-16. Were all four of the
base-metal cyanide compounds to be omitted from the electroplating bath, for example, the cyanide-ion concentration of the resulting bath would overlap the concentrations specified in the claims at issue. In part for this reason the Board of Appeals stated that it did not accord patentable distinction to the limitations in the claims relating to cyanide content and upheld the rejection. Page 93, column 1, lines 20-23.

The Court of Customs and Patent Appeals reversed the decision of the Board of Appeals in spite of the overlap of concentrations. Concerning the cyanide-ion concentration, the court held:

The prior art reference evinces no criticality about the concentration of the cyanide ions whereas appellant's invention depends upon using 'a soluble palladous salt, absent sufficient $C N$ ions to prevent deposition induced' by the palladous salt.

Appellant asserts there is a critical aspect to his invention concerning the concentration of: cyanide ions in the bath composition. The solicitor, however, urges that the amount of potassium cyanide used in the prior art reference satisfied the 'broad language' of the claims before the court. We do not agree with this position. When fairly considered for what it teaches one of ordinary skill in the art, the prior art patent. does not make obvious the cyanide limitations present in the appealed claims.

Page 94, column 2, lines 17-37. Thus, by looking at the invention as a whole, the court recognized a patentable distinction with respect to the cyanide-ion limitations in the claims at issue, even though these limitations permitted an overlap with the cyanide-ion concentration disclosed in the prior art. It is
important to recognize that the court reached its decision by comparing the claimed subject matter as a whole with the teachings of the prior-art reference, taken for what it fairly taught people of ordinary skill in the art. The existence of an overlap in concentrations did not preclude such an analysis.

Turning now to the compositions of the claims under examination, it is submitted that the superconductive properties of the compositions of the claims represent' a critical distinction over the properties disclosed for the compositions of the Shaplygin et al., Nguyen et al., Michel and Raveau and Michel et al. publications. Consequently, the compositions of the claims are patentable under the doctrine of the Waymouth and Duva cases over the four publications whether or not an overlap might exist between a claimed composition and a range of compositions disclosed in one of the Shaplygin et al., Nguyen et al.r Michel and Raveau and Michel et al. publications.

For the reasons set forth above, it is submitted that the subject matter of claims 1 through 11 inclusive, 27 through 35 inclusive, 40 through 54 inclusive, 60 through 63 inclusive, and 65 through 68 inclusive of the subject application is not anticipated, by any of the eleven references cited in the outstanding office Action. The rejections of the claims just recited under 35 U.S.C. Section $102(b)$ as unpatentable over the Shaplygin et al. publication, the Nguyen et al. publication, the

Serial No. 07/053,

Michel and Raveau publication and the Michel et al publication and the rejections of claims 1, 2, 5 through 11 inclusive, 40 through 44 inclusive, $46,48,49,51$ through 54 inclusive, 60, 62 and 66 under 35 U.S.C. Section $102(b)$ as unpatentable over the Perron-Simon et al. publication, the Mossner and Kemmler-Sack publication, the Chincholkar and Vyawahare publication, the Ahmad and Sanyal publication, the Blasse and Corsmit publication, the Kurihara et al, '779 patent and the Anderton and Sale publication were unjustified and should be withdrawn.

I. The Rejections Under 35 USC Section 103

It was conceded in the outstanding office Action that none of the prior art references cited in connection with the rejection under 35 U.S.C. Section 103 disclosed superconductivity. It is submitted, therefore, that all of the patents and publications in question are non-analogous art and therefore not relevant to an analysis the subject matter claimed in the present application under 35 U.S.C. Section 103. A two-fold test for determining whether a reference is from a non-analogous art was stated in In re Deminski 230 USPQ 313, 315 (Fed. Cir. 1986). Under the Deminski test, it must first be determined whether or not the reference in question is within the field of the inventor's endeavor. If.it is not, then it must be determined whether the reference is reasonably pertinent to the particular problem with which the inventor was involved.

With respect to the eleven references cited against the present claims in the outstanding office Action, inasmuch as none of the references mentioned superconductivity, none was within the field of the endeavor of the inventors. Moreover, there is nothing to suggest that any of the eleven cited references was in any way pertinent to the problem of searching for a high-Tc superconductor. Specifically, no prior art patent or publication was cited in the outstanding office Action which would have suggested that any of the materials disclosed in any of the cited references might be superconductive at any temperature, let alone at temperatures in excess of $26^{\circ} \mathrm{K}$. Under the Deminski test, therefore, each of the eleven references cited in connection with the rejections under 35 U.S.C. Section 103 represents non-analogous and may not be used to establish obviousness of the claimed invention.

For the reasons set forth above, it is submitted that the composition of claims 1 through 11 inclusive, 27 through 35 inclusive, 40 through 54 inclusive, 60 through 63 inclusive, and 65 through 68 inclusive were neither disclosed nor suggested by the eleven cited references, taken either alone or in any combination. The rejection of the claims under 35 U.S.C. Section 103 as unpatentable over the references was unjustified and should be withdrawn.

J. Conclusion

It is submitted that the subject matter of the claims of the present application as amended is neither disclosed nor suggested by the art of record considered singly or in any combination and that the claims of the application meet the standards of 35 U.S.C. Section 112 , first and second paragraph. Early allowance of the application is therefore earnestly requested.

Respectfully submitted,

Attorneys for the Applicants

IBM Thomas J. Watson Research Center Intellectual Property Law Department P.O. Box 218

Yorktown Heights, N.Y. 10598
Telephone No.: (914) 241-4060
8 February 1991

High Temperature Superconductivity: Perseverance and Cooperation on the Road to Commercialization

by

The Committee to Advise the President on High Temperature Superconductivity
(Under the Auspices of The White House Science Council)

The members of the advisory committee are:
R.E. Gomory - Chairman
P. Chaudhari - Executive Secretary
H.K. Bowen
J.S. Foster
T.H. Geballe
M.K. Oshman
J.R. Schrieffer

The advisory committee was ably assisted in organizing, in writing and in scheduling its meetings by Dr. A.H. Nethercot and Ms. Lorraine Miro.

CHAPTERS OF THE REPORT

1. Introduction

Since the remarkable discovery by G. Bednorz and K.A. Müller (in the Swiss laboratory of a U.S. corporation) of superconductivity at temperatures as high as 40 K , there has been an explosive growth in the amount of research done and in the number of important new results found in this field. Prior to this discovery, it was generally believed that it was unlikely for the transition to the superconducting state to occur at temperatures much higher than 30 K . Today, it is not possible to predict what the ultimate temperature limit to superconductivity may be. The rapid pace of recent developments and the previous history of superconducting transition temperatures stretching over the past seventy-seven years are shown in Fig. 1.

Rarely before have so many disciplines come together in such a short time in so many countries to work on one scientific and technological subject. Physicists, chemists, ceramists and metallurgists, frequently working together, are involved in understanding and controlling the
 properties of these complex materials. This research is being carried out at industrial, university and government laboratories in the U.S., Europe and Japan. Furthermore, both major recognized groups as well as recently instituted smaller groups with
ideas and with initiative are playing important roles. An entirely new information network has grown up in this area and operates in parallel with conventional research publication procedures: a very active and organized distribution of pre-publication results is occurring which has greatly hastened the pace of progress.

This worldwide interest in superconductivity is intense. The two most prominent countries in terms of research results are the United States and Japan, but the USSR, France, W. Germany, China, and India also have made significant contributions and even smaller countries such as Portugal and Hungary are publishing results. At a recent international conference held in Europe there were over 800 papers authored by scientists from 39 countries.

In re Patent Application of

Applicant: J. GEORG BEDNORZ and K. ALEX MUELLER

Serial No.: 07/053,307
Filed: 22 May 1987
For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, : AND METHODS FOR THEIR USE AND : PREPARATION

Group Art Unit: 115
Examiner: John Boyd

APPOINTMENT OF ASSOCIATE ATTORNEY

Honorable Commissioner of Patents and Trademarks Washington, D.C. 20231

Sir:

The undersigned attorney, who has been appointed as an attorney in the Declaration and Power of Attorney for the patent application identified above, hereby appoints J. David Ellett, Jr. (Registration No. 27,875) of IBM Corporation, Intellectual Property Law Department, Post Office Box 218 , Yorktown Heights, New York 10598, telephone number (914) 241-4060, his associate attorney to prosecute the application and to transact all business in the Patent and Trademark office in connection therewith.
J. David Ellett, Jr. at the address noted above.

Respectfully submitted,

IBM Corporation
Intellectual Property Law Department
Post office Box 218
Yorktown Heights, New York 10598
Telephone No.: (914) 241-4059
8 February 1991

Serial No. 053,307
Art Unit 115

1. Restriction to one of the following inventions is required under 35 U.S.C. § 121:
I. Claims 1-11, 27-35, 40-54, 60-63, and 65-68, drawn to a superconducting composition, classified in Class 423, subclass 604.
II. Claims 24-26, 73-76, 82-83 and 86-90, drawn to a method of making a method of making, classified in Class 505 , subclass 725.
2. III. Claims 12-23, 36-39, 55-59, 64, 69-72, 77-81, 84-85 and 91-95, drawn to a superconductor apparatus, classified in Class 505, subclass 825.
3. The inventions are distinct, each from the other because of the following reasons:

Inventions I and II are related as process of making and product made. The inventions are distinct if either or both of the following can be shown: (1) that the process as claimed can be used to make other and materially different product or (2) that the product as claimed can be made by another and materially different process (M.P.E.P. § 806.05(f)). In the instant case the product as claimed can be made by a materially different process such as sputtering.
4. Inventions I and III are related as mutually exclusive species in intermediate-final product relationship. Distinctness is proven for claims in this relationship if the intermediate

```
Art Unit 115
```

product is useful to make other than the final product (M.P.E.P. $\S 806.04(\mathrm{~b}), 3 \mathrm{rd}$ paragraph), and the species are patentably distinct (M.P.E.P. § 806.04(h)).

In the instant case, the intermediate product is deemed to be useful as a diamagnetic material used for bulk levitation and the inventions are deemed patentably distinct since there is nothing on this record to show them to be obvious variants. Should applicant traverse on the ground that the species are not patentably distinct, applicant should submit evidence or identify such evidence now of record showing the species to be obvious variants or clearly admit on the record that this is the case. In either instance, if the examiner finds one of the inventions anticipated by the prior art, the evidence or admission may be used in a rejection under 35 U.S.C. § 103 of the other invention. 5. Inventions II and III are related as process of making and product made. The inventions are distinct if either or both of the following can be shown: (1) that the process as claimed can be used to make other and materially different product or (2) that the product as claimed can be made by another and materially different process (M.P.E.P. § 806.05(f)). In the instant case the process can be used to make a materially different product such as a bulk diamagnetic material used for levitation.
6. Because these inventions are distinct for the reasons given above and have acquired a separate status in the art because of

Art Unit 115
their recognized divergent subject matter restriction for examination purposes as indicated is proper.
7. During a telephone conversation with Mr. Jackson B. Stanland on July 17, 1990 a provisional election was made with traverse to prosecute the invention of I, claim s 1-11, 27-35, 40-54, 60-63 and 65-68. Affirmation of this election must be made by applicant in responding to this Office action. Claims 12-26, 3639, 55-59 and 64 are withdrawn from further consideration by the Examiner, 37 C.F.R. § $1.142(b)$, as being drawn to a non-elected invention.
8. The following is a quotation of the first paragraph of 35 U.S.C. § 112:

The specification shall contain a written description of the invention, and of the manner and process of making and using it, in such full, clear, concise, and exact terms as to enable any person skilled in the art to which it pertains, or with which it is most nearly connected, to make and use the same and shall set forth the best mode contemplated by the inventor of carrying out his invention.

The specification is objected to under 35 U.S.C. § 112 , first paragraph, as failing to provide an enabling disclosure commensurate with the scope of the claims. The present s specification is enabled only for compositions comprising

$$
\mathrm{Ba}_{x} \mathrm{La}_{5-x} \mathrm{Cu}_{5} \mathrm{O}_{y}
$$

The art of high temperature (above $30^{\circ} \mathrm{K}$) superconductors is an extremely unpredictable one. Small changes in composition can result in dramatic changes in or loss of superconducting

Art Unit 115
properties. The amount and type of examples necessary to support broad claims increases as the predictability of the art decreases. See In re Fisher, 166 U.S.P.Q. 18, 24 and In re Angstadt and Griffin, 190 U.S.P.Q. 214, 218. Claims broad enough to cover a large number of compositions that do not exhibit the desired properties fail to satisfy the requirements of 35 U.S.C. 112. See In re Cook, 169 U.S.P.Q. 244, 262. Merely reciting a desired result does not overcome this failure. In re Corkill, 226 U.S.P.Q. 1005, 1009. In particular, the examiner questions if any material containing copper will exhibit superconductivity? Is CuO a superconductor? Is any stoichiometric combination of a rare earth, an alkaline earth and copper a superconductor? Is $\mathrm{Ce}_{15} \mathrm{Mg}_{0.05} \mathrm{Cu}_{0.5} \mathrm{O}_{\mathrm{x}}$ a superconductor? Is $\mathrm{Ba}_{\mathrm{x}} \mathrm{La}_{5-\mathrm{x}} \mathrm{Ni}_{5} \mathrm{O}_{\mathrm{y}}$? Is $\mathrm{Mg}_{10} \mathrm{Y}_{0.05} \mathrm{Fe}_{0.05} \mathrm{O}_{1}$? It should be noted that at the time the invention was made, the theoretical mechanism of superconductivity in these materials was not well understood. (This is still the case today). Accordingly, there appears to be little factual or theoretical basis for extending the scope of the claims much beyond the proportions and materials actually demonstrated to exhibit high temperature superconductivity. A "patent is not a hunting license. It is not a reward for the search, but a reward for its successful conclusion", Brenner v. Manson, 383 U.S. 519, 148 U.S.P.Q. 689.
9. Claims 1-11, 27-35, 40-54, 60-63 and 65-68 are rejected

Serial No. 053,307
Art Unit 115
under 35 U.S.C. § 112 , first paragraph, for the reasons set forth in the objection to the specification.
10. Claims $1-11,27-35,40-54,60-63$ and $65-68$ are rejected under 35 U.S.C. § 112, second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which applicant regards as the invention.
11. What does the term "near rare earth-like element" mean? What elements does this language exclude? What does it include? 12. These claims are indefinite as each fails to recite any stoichiometric limitation. How does one determine the metes and bounds of the present invention?
13. Claim 11 recites "doping". How much dopant is required? Will using 0.0001% produce the desired result?
14. What is meant by "enhances electron-phonon interactions to produce superconductivity"?
15. Claim 32 recites "in said composite". There is no antecedent basis for "composite"? In addition, composite implies a material made up of distinct components, such as a cermet. Is applicant claiming such a material?
16. Claim 62 recites an "oxygen excess"? What is this "excess" in relation to? How does one determine this?
17. The term "transition temperature" is indefinite. Does this term correspond to the temperature at which resistivity is zero? Or does it relate to the temperature at which the resistivity

Art Unit 115
begins to drop? If the latter is true, at what temperature is zero resistivity reached?
18. claim 40 recites "said superconductor being comprised of at least four elements". This term is vague and indefinite. How does one select these elements? Will any combination of four elements in any stoichiometric ratio produce the desired result? 19. The present application was filed in the United states on May 22, 1987. Applicants have submitted declarations from the inventors and various U.S. researchers to establish an earlier conception and reduction to practice data. It is not fully clear what exact date Applicants are entitled to. It would appear to be no earlier than the date at which a sample and enabling disclosure (Z. Phys. B-Condensed matter article) was brought to the United states from switzerland by Praveen Chaudhari on approximately October 17,1986 (see Chaudhari Declaration). It would also appear to be no later than the date at which the in U.S.
samples were tested to show superconductivity on approximately December 13, 1986 (see Green Declaration, page 1 of Exhibit D). In view of the fact that there is no art of record that discloses Ba
La-Cu-O as a superconducting system prior to January $1,1987, ~$ there is no need for us at this time to make a definite judgement as to which date represents reduction to practice. For the purpose of record a number of references having a filing date later than January 1,1987 are cited here. Each clearly teaches

Art Unit 115
superconductivity in a material containing lanthanum, alkaline earth, copper and oxygen but are not considered prior art by this Office. It should be noted that the Ganguly reference recites December 1986 at the top of the article. This was not the date of publication as shown by the 1987 references cited at the end of the article. An exact date has not been established, however, it is certain to be later than January 1, 1987.
20. The following is a quotation of the appropriate paragraphs of 35 U.S.C. § 102 that form the basis for the rejections under this section made in this office action:

A person shall be entitled to a patent unless -(a) the invention was known or used by others in this country, or patented or described in a printed publication in this or a foreign country, before the invention thereof by the applicant for a patent.
(b) the invention was patented or described in a printed publication in this or a foreign country or in public use or on sale in this country, more than one year prior to the date of application for patent in the United States.
21. The following is a quotation of 35 U.S.C. $\S 103$ which forms the basis for all obviousness rejections set forth in this office action:

A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

Subject matter developed by another person, which qualifies as prior art only under subsection (f) or (g) of section 102 of this title, shall not preclude patentability under this section where the subject matter and the claimed invention were, at the time the invention was made, owned by the same
person or subject to an obligation of assignment to the same person.

The "person having ordinary skill" in this art has the capability of understanding the scientific and engineering principles applicable to the claimed invention. The references of record in this case reasonably reflect this level of skill. 22. Claims $1-11,27-35,40-54,60-63$ and $65-68$ are rejected under 35 U.S.C. § $102(b)$ as anticipated by or, in the alternative, under 35 U.S.C. § 103 as obvious over each of Shaplygin et al, Nguyen et al, Michel et al. (Mat. Res. Bull. and Revue de Chimie). Shalygin discloses $\operatorname{Ln}_{Z-4} \mathrm{M}_{\mathrm{X}} \mathrm{CuO}_{4}$ where M is $\mathrm{Ca}, \mathrm{Sr}, \mathrm{Ba}$ and Pb and Lu is La, $\mathrm{Pr}, \mathrm{Nd}, \mathrm{Sm}, \mathrm{Eu}$ and $\mathrm{Gd} . \mathrm{La}_{2-\mathrm{x}} \mathrm{Ca}_{\mathrm{x}} \mathrm{CuO}_{4}$ is disclosed on page 823. Nguyen discloses $\mathrm{La}_{2-\mathrm{x}} \mathrm{Sr}_{\mathrm{x}} \mathrm{CuO}_{4-y}$. Michel (Revue de chimle) discloses La $_{2-x^{A}}{ }_{1+x} \mathrm{Cu}_{2} \mathrm{O}_{4}$ where $\mathrm{A}=\mathrm{Ca}, \mathrm{Sr}, \mathrm{Ba}$. Michel (Mat.Res.Bull.) discloses $B a L a_{4} \mathrm{Cu}_{5} \mathrm{O}_{13.4}$ and $\mathrm{La}_{3} \mathrm{Ba}_{3} \mathrm{Cu}_{6} \mathrm{O}_{14+\mathrm{x}}$. Although these references fail to disclose superconductivity, each appears to fall within the scope of the presently claimed subject matter. Accordingly, the burden of proof is upon applicants to show that the instantly claimed subject matter is different from and unobvious over that taught by this reference. See In re Brown, 173 U.S.P.Q. 685, 688; In re Best, 195 U.S.P.Q. 430 and In re Marosi, 218 U.S.P.Q. 289, 293.
23. Claims 1-2, 5-11, 40-44, 46, 48, 49, 51-54, 60, 62, and 66 are rejected under 35 U.S.C. $\S 102(b)$ as anticipated by or, in the alternative, under 35 U.S.C. $\$ 103$ as obvious over each of

Serial No. 053,307.
Art Unit 115

Perron-Simon et al, Mossner et al, Chincholkar et al, Amad et al, Blasse et al, Kurihara et al and Anderton et al. Perron-Simon discloses $\mathrm{Ba}_{2} \mathrm{La}\left(\mathrm{Nb}_{13 / 3}\right) \mathrm{O}_{15}$. Mossner discloses $\mathrm{Ba}_{6} \mathrm{YNb}_{4.5} \mathrm{O}_{18}$. Chincholkar discloses $\mathrm{Ba}\left(\operatorname{Ln}_{0.5} \mathrm{~B}_{0.5}\right) \mathrm{O}_{3}$. Ahmad discloses $\mathrm{Ba}_{2} \mathrm{YNbO}_{6}$. (page 43). Blasse discloses $\mathrm{Ba}_{2} \mathrm{GdNbO}_{6}$. Kurihara discloses $\mathrm{Ba}(\mathrm{yNb})_{0.5} \mathrm{O}_{3}$. Anderton discloses $\mathrm{La}_{0.5} \mathrm{Sr}_{0.5} \mathrm{CoO}_{3}$. Although none of the cited references discuss superconductivity, each appears to fall within the scope of the claims. Furthermore, Ogashi (not considered prior art) teaches that $\mathrm{La}-\mathrm{Sr}-\mathrm{Nb}-\mathrm{O}$ systems are superconducting. The case law cited at the end of the previous paragraph applies here as well.
24. Because of the fast moving pace of research in the field of high temperature superconductors, many scientific developments in this area are available as "preprints" many weeks or months prior to publication in a journal. It is the Examiner's position that such preprints are prior art as a printed publication under 35 U.S.C. 102(a) or (b) as of the date they are first distributed. © See 3 M V. Ansul, 213 U.S.P.Q. 1024, 1037. Any information of the above noted type that is material to the presently claimed sujfect matter available prior to the effective filing date of this application that applicant(s) are aware of should promptly be made of record pursuant to M.P.E.P. 609 and 37 CFR 1.56. 25. Any evidence to be presented in accordance with 37 CFR 1.131 or 1.132 should be submitted before final rejection in order to

Art Unit 115
be considered timely. It is anticipated that the next office Action $\operatorname{may}^{2} \neq 1$ be a final rejection.
26. Any inquiry concerning this communication or earlier communications from the examiner should be directed to John Boyd whose telephone number is (703) 557-8777.

Any inquiry of a general nature or relating to the status of this application should be directed to the Group receptionist whose telephone number is (703) 557-2517.

FOREIGN PATENT DOCUMENTS

OTHER REFERENCES (Including Author, Title, Date, Pertinent Pages, Etc.)

EXAMINER

- EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

\#xaminer

FOR FILING: TRANSMITTAL LETTER RE: INVENTOR'S DECLARATION

PLEASE STAMP \& RETURN TO US

In re application of: \qquad J.G. BFDNORZ ET AL

For: \qquad
\qquad .

Serial No. 06/053,307, Docket. No.Y0987-074

Received in the U.S. P tent $\&$ Trademark Office:
No. of pages of speoifipation \qquad : No. of path
Wo. of sheets of drawings: \qquad $\stackrel{\square}{\circ}$
Declaration is attached to specification.

4. ll fees are charged to our Account No. 09-0468

FOR FILING: TRANSMITTAL LETTER RE: INVENTOR'S DECLARATION

PLEASE STAMP \& RETURN TO US
In re application of :_J.G. BEDNORZ ET AL
 For:

NEW SUPERCONDUCTIVE COMPOUNDS HAVING HQQH GEANPTETION Some No $06 / 053$ 307. AND -METHODS HOR-THEER Recolvod in the U.S. Patent \& Trademark Office
\qquad No. of pages of specification \qquad : No. of pages of er hiss No. of sheets of drawings: \qquad Declaration is attached to specification.

111 fees are charged to our Account No. 09-0468

TO SEPARATE, HOLD TOP AND BOTTOM EDGES, SNAP-APART AND DISCARD CARBON

TO SEPARATE, HOLD TOP AND BOTTOM EDGES, SNAP-APART AND DISCARD CARBON

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of: J.G. BEDNORZ ET AL

EXPRESS MAIL CERTIFICATE

"Express Mail" label number $\frac{\text { B33592766 }}{\text { Date of Deposit } \ldots \text { June 22, } 1988}$

I hereby certify that the following attached paper or fee

```
Transmittal Letter Re: Inventor's Declaration with Respect to
    High Tc Superconductivity
Declaration
Return Postcard
```

is being deposited with the United States Postal Service "Express Mail Post Office to Addressee' service under 37CFR 1.10 on the date indicated above and is addressed to the Commissioner of Patents and Trademarks, Washington, D.C. 20231.

Jackson E. Stanland
(Typed or printed name of person mailing paper or fee)

NOTE: Each papermust haveits own certificate and the "Express Mail" labelnumber as a part thereof or aftached thereto. When, as here. the certification is presanted on a separate sheet, that sheet must(t) be signed and (2) tully /dentify and be securtly attached to the paper or foe It aceompantea ldentification should include the senial number and filing date of the application as well as the type of paper being filed, e.g. complete application, specification and drawings, responses to rejection or refusal, notice of appeat, etc. If the serial number of the application is not known, the identification shouldinclude at least the name of the invertor(s) and the title of the invention.
NOTE: The label number need not be placed on each page. It should, however. be placed on the first page of each separate document, such as, a new application, amendment. assignment. and transmittal letter for a tee. along with the certificate of mailing by "Express Mail. "Although the label number may beon checks, such a practice is not required. In order nor to detace formal drawings it is suggested that the label number be placed on the back ofeach formal drawing or the drawings be accompanied by a set ofinformaldrawings on which the label number is placed

DOCKET NO. Y0987-074

Applicants: J.G. BEDNORZ ET AL.	: Date: June 22, 1988
Filed: 05/22/87	$:$ Serial No.: $06 / 053,307$
Group Art Unit: 115	$:$ Examiner: Dennis Albrecht
FOR: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE,	
AND METHODS FOR THEIR USE AND PREPARATION	

Commissioner of Patents and Trademarks
Washington, D.C. 20231
Sir:

Enclosed is an executed declaration of the inventors in further support of their activities in the United States in 1986. Submission of this declaration completes the material to be forwarded to the U.S. Patent and Trademark Office. Although only Dr. Mueller's signature was omitted from the earlier filed inventors' declaration, both inventors have signed the enclosed declaration.

```
Respectfully submitted,
```

By Jocion C, S (che
Jackson E. Stanland - Attormey Registration No. 24,444 (914) 241-4059

IBM Corporation
Intellectual Property Law Dept.
P.O. Box 218

Yorktown Heights, N.Y. 10598

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: J.G. BEDNORZ ET NL. : Date: March 21, 1988
Filed: 05/22/87 : Serial No.: 06/053,307
Group Art Unit: 115 : Examiner: Dennis Albrecht

FOR: NEW SUPERCONDUCTIVE COMPOUNDS IIAVING IIIGH TRANSITION TEMPERATURE, AND METHODS FOR THEIR USE AND PREPARATION

DECLARATION OF J. GEORG BEDNORZ AND K. . MUELLER WITH RESPECT TO HIGH Tc SUPERCONDUCTIVITY

Commissioner of Patents and Trademarks
Washington, D. C. 20231

Sir:

We, J. Georg Bednorz and K.A. Mueller, hereinafter say and declare the following:

1. We are the inventors of the contribution described and claimed in the subject U.S. patent application. This application describes our earlier discovery of high temperature superconductivity in ceramic copper oxide materials. In particular, one of the earlier systems in which we worked was comprised of $\mathrm{Ba}-\mathrm{La}-\mathrm{Cu}$-oxides which exhibited superconducting onset temperatures in the mid \mathcal{A} Wheter thirty K range.
2. We conducted extensive research on these materials to establish their superconductivity in our laboratory in Zurich, Switzer- land. This work traced back to carly 1986 and was described in a publication by us that appeared in Z. Phys. B - Condensed Matter 64, 189-193 (1986). This article describes, among other items, resistivity versus temperature measurenents that we made on samples of this material to show its superconductive behavior. We subsequently submitted for publication and had published additional articles describing these high $\Gamma \mathrm{c}$ oxide superconductors.
3. On approximately October 16, 1986, we gave Praveen Chaudhari (Vice-I'resident, Science at the Yorktown Research Laboratory of IBM Corporation) six samples of the high temperature superconductive ceramic oxide material that we had described in our aforementioned 7. Physik B. publication. Praveen Chaudhari brought these samples back to the U.S. when he returned after
visiting with us on or about October 16, 1986. These samples were given to him so that experimentation and measurement could be performed on the samples in the United States. We knew the individuals (Richard Greene and Chang C. Tsuei) who would be involved in the measurements in the United States and discussed the measurements with these individuals in approximately the third week of October, 1986. We maintained telephone and computer communications with these individuals from that time continually through the remainder of 1986 and into 1987.
4. It was decided by us that Richard Greene would do specific heat measurements on these samples while magnetic measurements would be done by us in our Zurich laboratory. Greene worked for Chang Tsuei and discussed with him the nature of the experiments and development activi- ties to be performed at the aforementioned Yorktown lab. We provided guidance to Richard Greene and Chang Tsuei by describing the nature of these superconducting samples and the types of properties that we had measured relative to these samples. One of us (K. \wedge. Mueller) also discussed confirmation of our resistivity versus temperature measurements with said Chang Tsuci in a telephone converation in October, 1986.
5. The early work conducted by the individuals in the Yorktown laboratory on our superconducting samples occurred with the supervision and guidance that we furnished to these Yorktown scientists. Addition-ally, we provided a preprint to Richard Greene of an article that we subsequently published in Europhysics Letters 3, (3), pp. 379-385 (1987). This article was given to Greene in October, 1986 and described magnetic measurements on these superconducting samples.
6. We were aware of the work being conducted on our samples at the Yorktown lab and were in contact with the individuals there, and particularly Richard Greenc, who reported to Chang Tsuei. Since the specif-ic heat measurements generally take longer, we had considerable interac-tions with Rick Green over a period of time from about October 22, 1986 through Deceinher, 1986, concerning his specific heat measurements. We also were made aware of Chang Tsuci's measurements of resistivity versus temperature of the Ba-la-Cu-oxide samples, which eonfirmed our carlier resistivity versus temperature measurements.
7. We further declare that all statements made hereinabove based on our own knowledge are true and that all statements made on information and belicf are believed to be true. We further declare
that these statements are made with the knowledge that willful false state- menes and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of our Patent Application or any patent issuing thereon.

ont

$$
\text { May } 30
$$

K.ACex madden

KA. MUELLER
Date: Mag 27. 1988

FOR FILING: SUBMISSION OF DECLARATION OF J. GEORG BEDNORZ
EXPRESS MAILING: \#B29953175 Date of Deposit: 5/25/88

PLEASE STAMP \& RETURN TO US

In re application of: J.G. Bednorz et al.
For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION-TEMP.
Serial No. : 06/053, 307 Docket No. : Y0987-074
Received in the U.S. Patent \& Trademark Office
No. of pages of specification \qquad

No. of sheets of drawings: \qquad
Declaration is attached to specification.
Q11 fees are charged to our Account No. 09-8468

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: J.G. BEDNORZ ET AL. : Date: May 25, 1988
Filed: 05/22/87
Group Art Unit: 115
FOR: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE,
AND METHODS FOR THEIR USE AND PREPARATION

SUBMISSION OF DECLARATION OF J. GFORG BEDNORZ

Commissioner of Patents and Trademarks
Washington, D.C. 20231
Sir:
!
Enclosed is an executed declaration of J. Georg Bednorz, relative to his activities toward a completion of his invention in the United States. Dr. K.A. Mueller, his co-inventor, is unavailable for execution of the declaration until June, 1988.

A previously prepared declaration, identical to the enclosed declaration, was sent Air Express from Zurich on about March 30, 1988, but was lost and never arrived at the office of the undersigned. That declaration was executed by both Drs. Bednorz and Mueller.

As soon as Dr. Mueller is available, he will be contacted and his executed declaration will be sent to the Patent and Trademark Office.

The enclosed declaration sets forth the cooperation and guidance given by Drs. Bednorz and Mueller to individuals in the United States, in order to enable those U.S. workers to duplicate the previous accomplishments of the inventors in Zurich, Switzerland.

Respectfully submitted,

Jackson E. Stanland - Attorney Registration No. 24,444 (914) 241-4059

IBM Corporation
Intellectual Property Law Dept.
P.O. Box 218

Yorktown Heights, N.Y. 10598
\because
\vdots

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: J.G. BEDNORZ ET AL. : Date: March 21, 1988

Filed: 05/22/87	: Scrial No.: 06/053,307
Group Art Unit: 115	: Examiner: Dennis Albrecht

FOR: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGII TRANSITION TEMPERATURE, AND METHODS FOR THEIR USE AND PREPARATION

DECLARATION OF J. GEORG BEDNORZ AND K.A. MUELLER WITH RESPECT TO HIGH Tc SUPERCONDUCTIVITY

Commissioner of Patents and Trademarks
Washington, D. C. 20231
Sir:

We, J. Georg Bednorz and K.A. Mueller, hereinafter say and declare the following:

1. We are the inventors of the contribution described and claimed in the subject U.S. patent application. This application describes our earlier discovery of high temperature superconductivity in ceramic copper oxide materials. In particular, one of the earlier systems in which we worked was comprised of Ba-La-Cu-oxides which exhibited superconducting onset temperatures in the mid to upper thirty K range.
2. We conducted extensive research on these materials to establish their superconductivity in our laboratory in Zurich, Switzer- land. This work traced back to early 1986 and was described in a publication by us that appeared in Z. Phys. B - Condensed Matter 64, 189-193 (1986). This article describes, among other items, resistivity versus temperature measurements that we made on samples of this material to show its superconductive behavior. We subsequently submitted for publication and had published additional articles describing these high Tc oxide superconductors.
3. On approximately October 16, 1986, we gave Praveen Chaudhari (Vice-President, Science at the Yorktown Research Laboratory of IBM Corporation) six samples of the high temperature superconductive ceramic oxide material that we had described in our aforementioned Z. Physik B. publication. Praveen Chaudhari brought these samples back to the U.S. when he returned after
visiting with us on or about October 16, 1986. These samples were given to him so that experimentation and measurement could be performed on the samples in the United States. We knew the individuals (Richard Greene and Chang C. Tsuei) who would be invoived in the measurements in the United States and discussed the measurements with these individuals in approximately the third week of October, 1986. We maintained telephone and computer communications with these individuals from that time continually through the remainder of 1986 and into 1987.
4. It was decided by us that Richard Greene would do specific heat measurements on these samples while magnetic measurements would be done by us in our Zurich laboratory. Greene worked for Chang Tsuei and discussed with him the nature of the experiments and development activi- ties to be performed at the aforementioned Yorktown lab. We provided guidance to Richard Greene and Chang Tsuei by describing the nature of these superconducting samples and the types of properties that we had measured relative to these samples. One of us (K.A. Mueller) also discussed confirmation of our resistivity versus temperature measurements with said Chang Tsuei in a telephone converation in October, 1986.
5. The early work conducted by the individuals in the Yorktown laboratory on our superconducting samples occurred with the supervision and guidance that we furnished to these Yorktown scientists. Addition-ally, we provided a preprint to Richard Greene of an article that we subsequently published in Europhysics Letters 3, (3), pp. 379-385 (1987). This article was given to Greene in October, 1986 and described magnetic measurements on these superconducting samples.
6. We were aware of the work being conducted on our samples at the Yorktown lab and were in contact with the individuals there, and particularly Richard Greene, who reported to Chang Tsuei. Since the specif-ic heat measurements generally take longer, we had considerable interac-tions with Rick Green over a period of time from about October 22, 1986 through December, 1986, concerning his specific heat measurements. We also were made aware of Chang Tsuci's measurements of resistivity versus temperature of the Ba-La-Cu-oxide samples, which confirmed our earlier resistivity versus temperature measurements.
7. We further declare that all statements made hercinabove based on our own knowledge are true and that all statements made on information and belief are believed to be true. We further declare
.. . . !

-

that these statements are made with the knowledge that willful false state-ments and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of our Patent Application or any patent issuing thereon.
f. Geory Becluons

DATE:

FOR FILING: SUBMISSION

FOR FILING: SUBMISSIO OF TCLARATIONS (ORR \& CHAUDHARI)

J.G. BEDNORZ ET AL. 事.

In ro am NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION. ${ }^{\circ}$
For : TEMPERATURE AND METHODS FOR THEIR USE AND PREPARATION
Serse vo 05/053,307; \because, \quad YO987-074 bity JES
 \qquad

$\therefore 1$ fees are charged to our ecount Nong-046p

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

```
In re application of: J.G. BEDNORZ ET AL
Serial No: 06/053,307 Group N
Filed: 05/22/87
Examiner Dennis Albrecht
Filed: 05/22/87 Examiner Dennis Albrecht For: NEW SUPERCONDUCIVE COMPOUNDS MEIHODS FOR THEIR USE, AND PREPARATION Commissioner of Patents and Trademarks
Washington, D.C. 20231
```


CERTIFICATE OF MAILING UNDER 37 CFR 1.8(a)

I hereby certity that the attached correspondence comprising:
Transmittal Letter
Tro (2) Declarations in support of invention in the United States

Nr
$\therefore \operatorname{Cn}$ an
is being deposited with the United States Postal Service as first class mail in an envelope addressed to:

Commissionerof Patents and Trademarks
Washington, D.C. 20231
on \qquad April 22, 1988

(Type or print name of person mailing paper)Jaceran \& Y Cor

DOCKET NO. YO987-074

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
Applicants: J.G. BEDNORZ ET AL.
Filed: 05/22/87
Group Art Unit: 115
FOR: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, April 22, 1988
AND METHODS FOR THEIR USE AND PREPARATION

SUBMISSION. OF DECLARATIONS RE: ACTS OF INVENTION IN THE UNITED STATES

Commissioner of Patents and Trademarks Washington, D.C. 20231

Sir:

Enclosed are declarations of Bradford G. Orr and Praveen Chaudhari relative to activities in high T_{c} superconductivity. These declarations were mentioned in applicants' transmittal letter dated March 31, 1988. Because Dis. Orr and Chaudhari were not available as quickly as it was believed they would be, their declarations were delayed relative to the expected times of delivery noted in applicants' 3-31-88 letter.

The declarations of Bednorz and Mueller have not been received yet, but I have been informed that they were executed and mailed to the United States. These remaining declarations will be filed in the Patent and Trademark Office upon receipt.

[^63]Respectfully submitted,

By

Jackson E. Stanland - Attorney Registration No. 24,444
(914) 241-4059

APPLICANTS: J. G. Bednorz et al

SERTAL NO.: 06/053,307
FILING DATE: 05/22/87
DATE: April 18. 1988
ART UNIT: 111
EXAMINER:
FOR: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE AND METHODS FOR THEIR USE AND PREPARATION

DECLARATION OF PRAVEEN CHAUDHARI RELATIVE TO HIGH T C_{C} SUPERCONDUCTIVITY

TO: The Commissioner of Patents and Trademarks Washington, D.C. 20231

I, Praveen Chaudhari, hereby declare and say that:

1. During 1986 I was Vice President, Science, for the Research Division of International Business Machines Corporation, the assignee of the subject patent application. In my capacity as vice president, I had operational responsibility for all of the activities relating to science in the Research Division's main laboratory at Yorktown Heights, New York, and additionally had responsibility and control concerning the strategy, growth, and

Fsources in the general area of science in the IBM Research laboratories located in Zurich, Switzerland and Almaden, California. It was my general responsibility to determine the research projects to be conducted at these various laboratories and to routinely check with the personnel at these laboratories to determine that the strategy was being followed. Additionally, through my own communications and examination of regular progress reports concerning activities in science in the three research laboratories, each laboratory was aware of the activities in science at each other laboratory, and in many instances collaboration between scientists at 2 or 3 of the laboratories could and did occur. In many instances, the science activities at the different laboratories complement the activities at the other laboratories in order to provide a cohesive and directed research effort.
2. The work of Alex Mueller and J. Georg Bednorz at IBM's Zurich Research laboratory which lead to their discovery of high temperature superconductivity as revealed in their paper in Z. Phys. B-Condensed Matter 64, 189-193 (1986) was known to me, dating back to 1982 . I spoke with Alex Mueller at that time about techniques which may be

Abstract

used to increase the electron concentration in oxide materials in order to obtain higher critical transition temperatures in such materials. One technique which we discussed for accomplishing this was the application of an electric field to essentially create an inversion layer having an increased electron density. At that time, he and I believed that the provision of higher critical transition temperatures in these materials would require higher electron density and the application of an electric field was one of the techniques we discussed for achieving this. In the time period between our 1982 conversation and 1986, I followed the work of Alex Mueller and J. Georg Bednorz and, having responsibility in my role as vice president, science, I was aware of their work through the issuance of monthly progress (activity) reports from the Zurich Research laboratory. I also visited the Zurich laboratory on a regular basis to confer with scientific personnel at the laboratory in order to review their programs and the progress in these programs.

3. In July, 1986, I visited the Zurich laboratory of Alex Mueller and J. Georg Bednorz and talked with Alex Mueller concerning his experiments on what are now known as high
T_{c} oxide superconductors. More specifically, I was shown the data of Mueller and Bednorz relative to the superconducting La-Ba-Cu-O oxide superconductors that they had discovered and measured.
4. While I was visiting with Mueller and Bednorz in July, 1986, they gave me a copy of the aforementioned technical paper that they had submitted to Z. Phys. B. At that time, Alex Mueller asked me to withhold dissemination of the paper until the end of August or beginning of September 1986. This I did.
5. I returned to the United States from the Zurich laboratory shortly thereafter, and held my copy of the submitted Mueller and Bednorz paper until the date indicated by them for dissemination to other scientists at IBM's research laboratory in Yorktown Heights New York. At that time, I gave a copy of this paper to Alex Malozemoff, a senior manager in the Physical Sciences Department at the Yorktown Laboratory. Alex Malozemoff, who reported to me, said that he gave a copy of the paper to Chang Tsuei and Richard L. Greene, both of whom reported to Alex Malozemoff and are scientists at the Yorktown Research Laboratory.
6. I: Mid October, 1986 , I made a return trip to the IBM Zurich Research Laboratory and again met with Alex Mueller, who told me that magnetic measurements had been completed on the superconducting materials that he described and showed me in July 1986. Alex Mueller told me that his magnetic measurements convinced him of the superconductivity present in these materials. Our meeting occurred in the time frame October 15-17, 1986. While in Zurich, I discussed possible experiments that Mueller and Bednorz would do concerning these newly discovered superconductors and suggested an experiment in which persistent currents could be established in these new materials, the persistent currents then being measured using a SQUID device. Later, I received a computer message from Mueller and Bednorz relative to this experiment, indicating that it seemed to work as we had proposed.
7. Esdnorz and Mueller told me that the magnetic measurements they made indicated to them the diamagnetic response of these superconducting materials. These measurements made even more convincing to them and to me -" their earlier contention that they had discovered a new class of superconducting materials having critical tran-
sition temperatures higher than any of those previously reported.
8. While I was at the Zurich Research Laboratory in October 1986, Alex Mueller gave me samples of the superconducting material discovered by himself and J. Georg Bednorz to bring to the United States for evaluation in the United States. These materials were samples of $\mathrm{La}-\mathrm{Ba}-\mathrm{Cu}-0$ oxides as described in the aforementioned Bednorz and Mueller technical paper appearing in Z. Phys. B. I returned to the United States on approximately October 17 , 1986, bringing with me samples of Bednorz and Mueller's superconducting materials, and their resistivity and diamagnetic measurement data which proved high temperature superconductivity.
9. Prior to October 17, 1986, and in the general time period between about September 1, 1986 to October 17, 1986, I was aware (based on conversations with them) that Richard Greene and Chang Tsuei were in contact with Alex Mueller and J. Georg Bednorz in order to discuss work that could be done in the United States by Greene and Tsuei, using the Mueller and Bednorz samples. These samples had been requested from Mueller and Bednorz by Richard Greene and

Chang Tsuei, and I carried the samples from Zurich to the United States at their request.
10. Upon my return to the United States, I gave these samples to Richard Greene, who proceeded to do specific heat and resistivity measurements on these samples, under the general guidance of Mueller and Bednorz in Zurich, Switzerland. I met Chang Tsuei within approximately two weeks after I had given Greene the samples in order to ask him how the data and measurements were progressing. Chang Tsuei replied that he had done resistivity versus temperature measurements on the samples, and that the resistivity data was good, indicating a drop to zero resistivity at an onset temperature above $30^{\circ} \mathrm{K}$. The specific heat data of Richard Greene was a bit inconclusive as I recall, but the resistivity data was excellent in indicating a resistivity drop substantially identical to that reported in the Mueller and Bednorz publication appearing in Z. Phys. B.
11. In October, 1986, I also asked Alex Mueller about his work with Bednorz dealing with the replacement of Ba by Ca and Sr. Alex Mueller informed me that experiments were in progress using these elements and that Sr substitution
\%-se promising results and that Ca substitution was also being done. These compositions were $\mathrm{La}-\mathrm{Sr}-\mathrm{Cu}-0$ oxides and La-Ca-Cu-O oxides.
12. In November and December 1986, I had further discussions with Alex Malozemoff, Richard Greene and Chang Tsuei regarding their work on these high T_{C} superconducting samples. I also contacted the Zurich Research laboratory in order to propose a press release on the Zurich discovery, which was recognized to be a significant achievement in science.
13. I know of no other facts which would present a factual situation different than that described hereinabove, and assert that the facts described hereinabove are based on my own experience and recollection concerning the events occurring relative to the discovery of high T_{c} superconductivity and the activities in the United States winich were directed by me to re-establish the results first accomplished by Mueller and Bednorz in Zurich, Switzerland. With the exception of the acts conducted in Zurich by Mueller and Bednorz and my acts while visiting IBM's Zurich Laboratory, all acts described hereinabove occurred in the United States.
14. I. further declare that all statements made hereinabove are of my own knowledge and are true and that all statements made on information and belief are believed by me to be true. Further, I declare that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of a Patent Application or any patent issuing thereon.

FOR FILING: SUBMISSION OF DECLARATIONS

PIEAGS SHATP \& REMURN TU UE
In re Nat Sinatyon of: J.G. BEDNORZ ET AL
For: TERPERATURE, AND
Seriai Wo. 06/053, 307: MOTHODS FOR THEIR USE AND PREPARATION

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Washington. D.C. 20231

CERTIFICATE OF MAILING UNDER 37 CFR 1.8(a)

I hereby certity that the attachedcorrespondence comprising:

Transmittal Letter
Seven (7) Declarations in support of invention in the United States
is being deposited with the United States Postal Service as first class mail in an envelope addressed to:

Commissioner of Patents and Trademarks

Washington, D.C. 20231
on March 31, 1988
\qquad
Jorhon \& shane
(Signature of person mailing paper)

DOCKET NO. Y0987-074
$\cdots \cdots=-\cdots-\cdots-\cdots-\cdots=$
Applicants: J.G. BEDNORZ ET AL. : Date: March 31, 1988
Filed: 05/22/87 : Serial No.: 06/053,307
Group Art Unit: 115 : Examiner: Dennis Albrecht
FOR: NEW SUPERCONDUCTIVE COMPOUNDS HAVTNG HIGH TRANSITION TEMPERATURE,
AND METHODS FOR THEIR USE AND PREPARATION
SUBMISSION OF DECLARATIONS
RE: ACTS OF INVENTION IN THE UNITED STATES
Commissioner of Patents and Trademarks
Washington, D.C. 20231
Sir:
Declarations in support of invention in the United States are offered by the following:
J. Georg Bednorz, inventor
Carl A. Mueller, inventor
Richard L. Greene
Albert M. Torressen
Chang C. Tsuei
Sung Il Park
Praveen Chaudhari
Alexis P. Malozemoff
Paul M. Horn
Cheng-Chung John Chi
Bradford G. Orr

These declarations describe acts of inventorship in the United States by and on behalf of the inventors Bednorz and Mueller, establishing the attainment of superconductivity in samples of Ba-La-Cu-O at onset temperatures greater than $23^{\circ} \mathrm{K}$. These acts duplicate and extend the work first described by Bednorz and Mueller in Z. Phys. B-Condensed Matter, Vol. 64, p. 189, September, 1986. This technical article, as well as an IBM internal activity report describing the work of Bednorz and Mueller, were introduced into the United States in September, 1986 and established conception in the United States. The work of Greene and Tsuei, on behalf of and under the guidance and cooperation of Bednorz and Mueller, establishes reductions to practice in the United States of a superconductor having a transition temperature greater than $23^{\circ} \mathrm{K}$. This work was witnessed and corroborated by the other people whose declarations are included.

A declaration by Dr. Bradford Orr had not been executed and returned in time to include it with the other declarations. It will be forwarded as soon as it is received (estimated delay - less than one week). The same is true for the declarations of the inventors Bednorz and Mueller. Their declaration, although having been executed by one of them (Bednorz) had not been executed by the other in time to include herewith. It will be forwarded to the Patent and Trademark Office as soon as it is received (which should be in about one week). The declaration of Praveen Chaudhari will be executed April 1, 1988 and then forwarded to the Patent and Trademark Office.

The declarations, generally describe three types of measurements performed prior to about December 8, 986, on samples provided by Bednorz and Mueller, which are the following:
(1) Resistivity versus temperature (Chang C. Tsuei)
(2) Resisitivity versus temperature in a magnetic field (Richard L. Greene)
(3) Specific Heat (Richard L. Greene)

Measurement 1

Resistivity versus temperature was done by Chang C. Tsuei. This confirmed the data presented by Bednorz and Mueller in their Z. Phys. B. article. Witnesses corroborating Tsuei's measurements include Sung Il

Park, Albert M. Torressen, Paul M. Horn, Bradford G. Orr, Praveen Chaudhari, A.P. Malozemoff.

Measurement 2
Resistivity versus temperature in a magnetic field was done by Richard L. Greene. This further confirmed the data of Bednorz and Mueller and clearly established the superconducting nature of the samples provided by Bednorz and Mueller. Witnesses to this work include Albert M. Torressen and Thomas Penny.

Measurement 3

Specific heat measurements were done by Richard L. Greene and Albert M. Torressen and supplemented Greene's resistivity versus temperature measurements. Witnesses include Albert M. Torressen, Chang C. Tsuei, S. Von Molnar, M. W. Shafer, Sung Il Park, Thomas Penny and Arthur R. Williams.

Relevant Law

35 U.S.C. 104
Acts of Conception: Mortsell v. Laurila, 301 F.2d 947, 133 USPQ 380 (1962)

In re Tansel 253 F.2d 241, 117 USPQ 188 (1958) Clevenger v. Kooi, 190 USPQ 188 (1974)

Acts of Reduction to Practice: DeKando v. Armstrong 37 App. D.C. 314

Claims

All of the claims in this application are directed to the broad concepts first discovered and announced by Bednorz and Mueller. This discovery is attributed to these inventors by the rest of the world-wide

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: J.G. BEDNORZ ET AL. : Date: March 29, 1988
Filed: 05/22/87 : Serial No.: 06/053,307
Group Art Unit: 115 : Examiner: Dennis Albrecht
FOR: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, AND METHODS FOR THEIR USE AND PREPARATION

DECTARATION OF RICHARD L. GREENE
WITH RESPECT TO HIGH TC SUPERCONDUCTIVITY

Commissioner of Patents and Trademarks Washington, D.C. 20231

Sir:
I, Richard L. Greene, hereby declare and say that:

1. I received a Ph.D in physics from Stanford University in 1967, and joined the San Jose, California laboratory of the Research Division of International Business Machines Corp. in 1970. I was the Manager of a group conducting research on organic superconductors and have worked in the field of superconductivity for 20 years. I transferred to IBM Corp. research laboratory in Yorktown, New York, in July 1986, and continued thereafter to conduct research on superconductive materials. From about October 1986 to the present I have worked on high T_{c} superconducting oxides.
2. At approximately the end of September - first week of October, 1986, my manager, Chang C. Tsuei, showed me a copy of an activity report from the Zurich Research Laboroatory of IBM Corporation. This activity report described the work of J.G. Bednorz and K.A. Mueller and their discovery of new superconducting compositions. These materials were mixed copper oxide ceramics that exhibited an onset of superconductivity at a temperature significantly higher than the transition temperatures reported for previously known superconductors. Materials of this general class are now known in the art as high T_{c}
superconductors. A true copy of this activity report is attached hereto and labeled Exhibit A.
3. Soon after reading this activity report and discussing it with Chang C. Tsuei, I called K.A. Mueller in Zurich and requested samples from him so that I could make measurements on these samples in the United States. This telephone call occurred approximately October 1 - October 6, 1986. My intent was to begin a research project on these materials, as I was very interested in them based on my previous work in superconductivity. My plan at that time was to do experiments which would be complementary to those being conducted by Bednorz and Mueller in Zurich, so that a maximm amount of information could be obtained about these new superconducting materials. Based on the data in this activity report and on the results of susceptibility measurements described to me by Alex Mueller in the aforementioned telephone call, I believed that a new class of superconducting materials with T_{c} greater than 30 K had been discovered.
4. In approximately mid-October, 1986, Praveen Chaudhari, Vice-President, Science, at IBM's Watson Research Laboratory visited the Zurich IRM Lab. Based on my request for samples of the new superconducting material, Chaudhari told me that he had obtained them from Bednorz and Mueller and brought them back to the United States with him. These were about six samples in the Ba-La-Cu-O system. Chaudhari returned to the United States on or about October 20, 1986 and delivered these samples to me. Of these approximately six samples, they varied in the different amounts of La and Ba that were present. Only two of the samples were reported as being single phase materials.
5. Immediately upon receiving these samples, I was in contact with Bednorz and Mueller, via telephone and computer system links, in order to discuss with Bednorz and Mueller the experiments that I would conduct and also to obtain information from Bednorz and Mueller relative to the characteristics of the samples. I had planned to do specific heat measurements of the samples and also resisitivity versus temperature measurements in the presence of a magnetic field. Because of the importance that I attributed to this work, I worked substantially full time on these superconductor materials in order to further characterize them. My first specific heat measurements occurred approximately October 29 and 30 , 1986, while I measured resistivity versus temperature in the
presence of a magnetic field in late November, 1986. Continuously throughout the period, October 20, 1986 - February, 1987, I worked on a daily basis to further characterize these materials. At all times, I was in contact with Bednorz and Mueller, exchanged data with them, and worked in close cooperation with them. They provided information to me about the characteristics of the material, as well as providing me up-to-date information concerning the data they had obtained about these materials. A true copy of ny computer \log from October, 1986 - January 12, 1987 is attached hereto and labeled Exhibit B. Excerpts which do not relate to superconductivity have been deleted. In this exhibit, the identifier for K.A. Mueller is "KAM", while the identifier for J. G. Bednorz is "BED". Bednorz and Mueller are located in Zurich, Switzerland and the computer node for them is ZURLMM1. My identifier is "RGREENE". This computer log details my ongoing computer dialogue with Bednorz and Mueller relative to theirs and my activities on the high T_{c} superconductor materials. In addition to this computer correspondence, I also talked with Bednorz and Mueller via telephone.
6. During my specific heat measurements of these materials, as well as the measurements of resisitivity versus temperature in the presence of a magnetic field, I was assisted by Albert M. Torressen, who was a laboratory specialist. I also discussed my laboratory experiments with Chang C. Tsuei, S. von Molnar, Merril W. Shafer, Sung Il Park, Thomas Penney, and Arthur R. Williams.
7. The specific details of the apparatus and the data obtained in the specific heat measurements will be described in a separate statement by Albert M. Torressen, the laboratory specialist who worked with me to provide these measurements. Essentially, the specific heat of the apparatus was calculated to provide calibration and background specific heat, after which the sample was introduced into the apparatus and the total specific heat again measured. By subtracting the background specific heat, the specific heat of the superconducting sample is determined. This was done over a temperature range of approximately 2-50K.
8. The specific heat measurements of these superconducting samples were begun approximately October 21, 1986, and were conducted on a daily basis by me and Al Torressen through November and December, 1986.

These specific heat measurements and the curves which were plotted are representative of these superconducting materials, and are also representative of the specific heat versus temperature plots obtained on present samples of superconducting high T_{C} oxides.
9. In addition to the specific heat measurements described hereinabove and in the accompanying statement of Albert M. Torressen, I also performed measurements of resistivity versus temperature in the presence of a magnetic field, for the samples of Ba-La-Cu-O obtained from Bednorz and Mueller. The specific heat measurements were performed first on these samples, after which I measured resistivity versus temperature in an applied magentic field, in order to further characterize these samples. These resistivity measurements were done at the end of November, 1986, and the beginning of December, 1986. Exhibit C is a true copy of nine pages of my data notebook, together with a copy of the cover of this notebook entitled "Zurich oxide BLCO DATA (T,H)." The date " $11 / 15 / 86$ " is also on the cover. Exhibit D is comprised of several pages of plots of resistivity versus temperature for these superconductor samples, as well as resistivity as a function of magnetic field at particular temperatures. In some instances, the RuO_{2} sample holder is taken into account into the plots. Generally, these plots represent the graphical expressions of the data contained in Exhibit C. Exhibit E is a composite plot incorporating the different plots found in Exhibit C, and shows resistivity versus temperature for different values of applied magnetic field. I used this composite plot at a seminar that I gave to other researchers at the Yorktown lab on December 12, 1986.
10. In order to obtain the data listed in Exhibit C, I used a laboratory belonging to Stephan von Molnar. Albert M. Torressen, who reported to von Molnar, showed me the necessary equipment to make these measurements, and I preceded to make them on my own. However, many people were aware of these resistivity measurements and viewed the data, including both Thomas Penney and Albert Torressen. In addition, Thomas Penney observed me making these measurements and understood the procedure and nature of my laboratory work.
11. I have numbered the data pages of Exhibit C in red in the upper right hand comer. Page 1 describes the sample set-up that I used for these measurements and the background data in order to ready the
apparatus for the resistivity versus temperature measurements. This sample was the BLCO -21 II, standing for Ba-La-Cu-Oxide material. Page 2 shows two views of the experimental apparatus and the calibration measurements made between particular terminals. The wires A, B, C and F are those which are also shown on page 1.
12. On pages 3,4 , and 5 I had listed the data that applied to the RuO_{2} sample holder and the four point probe. The sample was contacted with indium contacts and copper wires were attached to the indium contacts for the measurements. Both DC and AC measurements were made. The resistance of the sample is $R_{F C}$ which was measured at various temperatures with the applied magnetic field H equal to zero (page 4). Pages 5-9 show further measurements that were made at different temperature settings and applied magnetic fields. All of the data on these pages were taken by me and entered by me in this notebook.
13. The plot of resistance versus temperature in exhibit D is a plot for the data which was obtained December 3 - December 5, 1986. Referring to Exhibit D, this plot shows the superconducting transition that begins to occur about 35 K , where the transition shifts to the left in the presence of a magnetic field. This is an indication of a superconductor.
14. All acts performed by me as described hereinabove occurred in the United States.
15. I further declare that all statements made hereinabove are of my own knowledge and are true and that all statements made on information and belief are believed by me to be true. Further, I declare that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of a Patent Application or any patent issuing thereon.

DATE: 30 March 1988 RICHARD L. GREENE

Y0987-074

RECD. SEP 031985

MATERIAL SCIENCE

T. Schneider, Mgr.

SURFACE \& MATERIAL SCIENCES E. Courtens, Mgr., Project 4181

Novel Research

Possible Iligh-T. Superconductivity in the Ba-La-Cu-O System
J.G. Bednorz and K.A. Müller (Project 4196)

We observed a steep decrease of resistivity in sintered Ba-La-Cu-oxide samples, with the highest temperature of the onset in the 35 K range (Fig. 1).

The Ba-La-Cu-O system exhibits a number of oxygen deficient phases with perovskite-like layer-type structures. These are characterized by mixed-valent copper ions (Cu^{2+} and Cu^{3+}) and itinerant electronic states. In addition one expects polaron formation induced by the strong Jahn-Teller effect of Cu^{2+} in an octahedral oxygen environment. Thus our $\mathrm{Ba}-\mathrm{La}-\mathrm{Cu}-\mathrm{O}$ system was anticipated to have considerable electron-phonon coupling and metallic conductivity.

Compounds with the composition $\mathrm{Ba}(x) \mathrm{La}(5-x) \mathrm{Cu}(5) \mathrm{O}(5[3-y])$ have been prepared in polycrystalline form. Samples with $x<0.2$ and $y>0$, annealed below $900^{\circ} \mathrm{C}$ under reducing conditions, consist of three phases, one of them a perovskite-like mixed-valent copper compound with $\mathrm{K}_{2} \mathrm{NiF}_{4}$ type structure. Upon cooling. the samples show a linear decrease in resistivity, then an approximately logarithmic increase, interpreted as a beginning of localization. Finally a steep decrease by up to three orders of magnitude occurs, reminiscent of the onset of percolative superconductivity. The highest onset temperature is observed in the 35 K range. It is markedly reduced by high current densities (Fig. 1). The slow sensitivity decay towards low temperatures might possibly result from 2D superconducting fluctuations of perovskite layers of one of the phases present.

ACTIVITY REPORT

PIIYSICS

Date: 6 October 1986, 15:37:18 EDT From: RGREENE at YKTVMZ To: KAM at ZURLVM1

Alex;

Have you made any decision on my proposed specific heat experiment? I am anxious to try it. I think I can do it rather quickly after getting some samples. It may be difficult to see the transition near 30 K because of a large phonon background but at the very least we could get a good estimate of the electron density of states and the Debye phonon contribution. Once I have a good specific heat between 2 K and 40 K I can make a better effort to resolve the electronic effect at Tc if it is small....I think I can see a 1% effect if the transition is not too smeared in temperature. Perhaps you would like to come to Yorktown and work with me on this experiment? Let me know. Best regards.

Rick

P.S. This is a good time for me to do some experiments on your exciting new compound since I am not heavily involved in other projects yet. I could get access to tunneling and neutron scattering equipment which would be very useful for seeing which phonons (if any) are involved in causing such a high Tc. Date: 14 October 1986, 10:42:19 EDT From: RGREENE at YKTVMZ To: KAM at ZURLVM1

Hi Alex:

This note is to give you my user id and node on the VM system. You can see them above. When you send the samples for the specific heat experiment let me know via VM. My office at Yorktowm is 02-026. I will make the specific heat my highest priority and should be able to start the experiment as soon as the samples arrive. I will keep you informed on the progress of the experiment.....it will probably take a few weeks to get reliable data assuming there are no unexpected problems.

As I said on the telephone you can ignore the sample dimensions sent to you by my manager C. Tsuei. He did not talk to me before sending you his VM note and he did not understand the requirements of the specific heat apparatus. What I need are samples to cover an area of $2 \mathrm{~mm} x 2 \mathrm{~mm}$ on the bolometer. Some extra samples will also be necessary in case we break or lose the primary samples. It would be best to not compress the samples or bind them together with any foreign materials which could alter the specific heat.

> Best Regards, Rick

Date: 15 October 1986, 15:02:34 EDT From: RGREENE at YKTVMZ To: SANDRO
Sandro; I have a court at 5 pm . Do you want to play?
Rick
Date: 16 October 1986, 09:06:42 EDT From: RGREENE at YKTVMZ To: GGRIN

I'm thinking about taking my son to Mohansic tomorrow afternoon around $1: 30$. If you want to join us let me know.

> Rick

Date: 16 October 1986 , 13:27:32 EDT From: RGREENE at YKTVMZ To: JBMART
The reference is PRL 57, 1177(1986). I think a pressure experiment might be interesting. Let me call Chaikin and Brian first then I'll get back to you.

Rick
Date: 20 October 1986, $08: 51: 36$ EDT From: RGREENE at YKTVMZ To:
LOUGHRAN at ALMVMC
Hi Diane;
Starting to get cold around here but at least the sun is shining.
It's been published and I have the reprints. Thanks for forwarding any
remaining mail that comes to Almaden.... it takes a long time for scien-
tific types to know when one has moved. I'll be seeing you in Jan.
Regards,

Date: 20 October 1986, 15:18:13 EDT From: RGREENE at YKTVMZ To: KAM at ZURLVM1

Alex;

The samples have arrived. They are bigger than I expected and all appear to be compressed pellets. Before I start on the specific heat I need to know a few things.
1.What is the difference between the samples marked I(red) and II(black)?
2. Have the samples been compressed with any foreign material, such as a binder?
3. Can the samples be cut without falling apart? If so do you recommend using a string saw or a razor blade or something else? Will water damage them?
4. Has the magnetic susceptibility been measured on any of these samples or on other samples from the same batch? I may want to measure the resistivity or susceptibility on these particular samples to make sure they exhibit the behavior you found before spending a big effort on the specific heat.

We are measuring the background specific heat of our apparatus up to 40 K tomorrow...hopefully by the end of the week we will begin your samples so please call or send me via VM the answers to the above questions as soon as possible.

Best regards,
Rick

Rick

Date: 23 October, 1986, 13:43:17 EDT From: RGREENE at YKTVMZ To: BED at ZURLVM1 cc: KAM at ZURLVM1

Hi George , Alex;
.... Just a note to keep you informed of our progress. We are almost finished with the background specific heat. Tomorrow we will mount a 25 mg (slice of your sample BLCO2....it should take about a week to get the data in the earth's magnetic field. It probably will be necessary to also measure the specific heat in a magnetic field to accurately determine the superconducting contribution. Do you have any data on the critical field for this sample...if not we can measure it ourselves. Also I need to know if the samples you sent me are each a single phase.....from your x-ray studies. I haven't received your preprint yet....perhaps some of my questions are answered there.

I will be away from the lab tomorrow and look forward to your response on Monday. Best regards.

Rick
Date: 23 October 1986, 14:00:11 EDT From: RGREENE at YKTVMZ To: MALOZEM

Alex;
Sorry I haven't gotten back to you but I have been very busy with two exciting experiments.....the specific heat of the new Zurich high
temperature superconductor and the 2 D melting X-ray experiment with Paul which finally looks like it will work. I'm not really sure if there are any easily defined X-ray experiments that can be done to prove or disprove the nice model you presented this morning but I will think more about this. However given my present experimental committments it will be a few months before I could realistically do anything.Keep me informed. Thanks.

Rick
Date: 23 October 1986, 14:27:22 EDT From: RGREENE at YKTVMZ To: BED at ZURLVM1

George; Thanks for the Susceptibility info. I'm glad that I chose BLCO2 I for the first experiment. How wide in temperature is the para-diamagnetic transition in this sample? Regards.

> Rick

| | | | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Date: | 23 | October | |
| BED | at ZURLVM1 To: | | |

Hi Rick

Here are the results of our susceptibility measurements, done on the samples You got from me. I'11 give You the temperatures where the para- to diamagnetic transition occurs.

| BLCO2 I | 32 K | BLCO2 II | $26-27 \mathrm{~K}$ |
| :--- | :--- | :--- | :--- | :--- |
| BLCO8 I | $13-14 \mathrm{~K}$ | BLCO8 II | $25-26 \mathrm{~K}$ |
| BLC021I | 25 K | BLCO21II | $27-28 \mathrm{~K}$ |

So You don't need to involve somebody else with these measurements, which I prefere doing myself here. While typing this, I got the message that You send a note.

Salu
George.

Date: 23 October 1986, 16:00:52 EDT From: RGREENE at YKTVMZ To: TFHEINZ

Tony;

I can't serve on the colloquim committee this year. I'll try to think of possible speakers however. Sorry and thanks for thinking of me.

Rick
Date: 23 October 1986, 17:32:09 EDT From: RGREENE at YKTVMZ To: GRANT at ALMVMC

Hi Grant;
Where have you been hiding? I need to talk to you since you didn't answer my last note. I'll be here on Monday..try me then.
at Yorktown. Thanks and regarus.
Rick
Date: 27 October 1986, 08:32:34 EST From: RGREENE at YKTVMZ To: GGRIN
Got your note too late.....sorry I missed the big game. Let's try the

Date: 28 October 1986, 17:30:52 EST From: RGREENE at YKTVMZ To: BED at ZURLVM1, KAM at ZURLVM1

Hi George, Alex:
Did you get the last two notes that I sent you? I'm measuring BLCO2 this week...nothing definitive yet. I'11 keep you informed. What is the critical field of this sample? Is BLCO2-I all the same phase? I haven't received your preprint yet...have you sent it? Best regards.

Rick
Date: 29 October 1986 , 17:20:53 EST From: RGREENE at YKTVMZ To: GGRIN
Hey Rod;

Date: 30 October 1986, 09:20:04 EST From: RGREENE at YKTVMZ To: GRant at ALMVMC

Hi Grantie;

I'm here ..where are you? Don't even have a phone answer any more. How come you didn't answer the questions in my last note.

As for the 3 M meeting I am supossed to share a room with Torrance starting Sunday nite. I'm not sure if he's still coming or how long he's staying. Check with him and you can share the room with us or replace him. Let me know.

Greene
Date: 30 October 1986, 09:31:20 EST From: RGREENE at YKTVMZ To: BED at ZURLVM1, KAM at ZURLVM1

Hi Alex and George:
I just tried to reach you by telephone without success so here is a note. We have measured the specific heat (C) of BLCO2-I from $2-40 \mathrm{~K} .$. .the anslysis is not yet complete but the prliminary data does not show any bump in C near or below 32 K . However at this stage we could only see a bump or jump if it was greater than 10% of C so more accurate ex-
periments will be required. Since $B L C O 2-I$ is a 3 phase sample it was not a good choice for the measurement since I will not be able to analyze the data for density of states and Debye Temp. Do you know how much of each phase is present in this sample? Also is the cubic perovskite a metal or insulator?

It would be better if you had some single phase single crystals of the tetragonal phase. Is this possible? We could measure samples as small as a few milligrams.

Without crystals I am planning to measure BLCO8-II next since this is a single phase. Once you send me the info on the chemical composition and structure of this phase I can analyze the data and hopefully get results that we can publish. The measurements will take another week if all goes well. If we have to put on a magnetic field this will take several more weeks... specific heat data is tedious to obtain and analyze even with a computer.

Please answer the above questions as soon as possible. I am still waiting for your preprint...the first one must have gotten lost. Did you send it by external mail? Best regards.

Rick

Date:	30	October	1986,	18:30:43	SET	From:	j.g.bednorz
BED	at	URLVM1 To:	RGRE	at YKTVMZ			

Hi Rick,
BLCO21II or BLCO8II would be good to try.
BLCO21II shows a more pronounced resistivity drop, as compared to the
sample I. BLCO8II I could not check till now.
The composition is Ba0.15 La1.85CuO4-x and Ba0.10La1.90CuO4-x respec-
tively. The structure of La 2 CuO 4 is a layered perovskite of K 2 NiF 4 type.

The pure material is orthorhombically distorted. Exchanging La by Ba
is leading, as we belief, to the formation of a tetragonal unit cell.

Our powder diffraction pattern can be indexed with a bodycentered lattice and $a=3.79 \mathrm{~A}$ and $\mathrm{c}=13.21 \mathrm{~A}$ for xBa around 0.1 . For crystals with $\mathrm{xBa}=0.02 \mathrm{I}$ also checked the lattice parameters by single crystal
precession experiments. But here we aready have the problem. These crystals have been obtained from powders with $x B a=0.1$, so we have to expect seggregation and it will take a while, to get the crystals with a composition where the resistivity drop is observed in the powders.

To your question about the cubic perovskite,it shows metallic conduc-
tivity as well.
I really hope, that you get the preprint very soon.

Best regards George.

Date: 30 October 1986, 15:06:11 EST From: RGREENE at YKTVMZ To: BED at ZURLVM1

George; Thanks for your quick answer to my questions. I forgot to ask you if you know the relative weight io of the 3 phases in sample BLCO2-I. If so I may still be able to get some useful information from the data we have taken so far.

I also just realized that you could send me the preprint via VM assuming it was typed on line. Please see if your secretary can do this. Thanks and regards.

Rick
Date: 3 November 1986, 16:58:28 EST From: RGREENE at YKTVMZ To: JERRYT at ALMVMC

Hi Jerry;
All is set for our room at the Hyatt starting Sunday nite the 16th. I'm not sure when I'1l arrive but they have your name attached to the room also and it's guaranteed for late arrival. See you there. I saw some article recently about an organic ferromagnet....I think in JETP letters. Do you know about that work?

Rick
Date: 4 November 1986, 17:00:53 EST From: RGREENE at YKTVMZ To: SANDRO
I cannot play tomorrow...sorry.Next week. If I can change my schedule tomorrow I will call you in the morning.

Rick

Date: 11 November 1986, 10:04:02 EST From: RGREENE at YKTVMZ To: BED at ZURLVM1

Hi George;
No I have not given up...in fact I just tried to reach you by phone.My terminal is not working since I just changed my office so It may take me a little longer to respond to messages.

At any rate I have finished the specific heat measurement from 4-35K in zero magnetic field. It will take a few days to finish the data analysis but there is no obvious bump in the specific heat indicating superconductivity. This is not really too surprising given the very broad transition you have found in resistivity and susceptibility.

I expect to get some useful information from the data anyway but for this I need the exact composition of BLCO21-II.Is it Ba.15Lal.85CuO(4-.15)? Please send this as soon as possible by VNET....I will get back to you and ALex later with more info. Regards.

Date: 12 November 1986, 09:19:56 EST From: RGREENE at YKTVMZ To: GRANT at ALMVMC

Greene
Date: 13 November 1986, 13:54:49 EST From: RGREENE at YKTVMZ To: MALOZEM

Alex;
I'll be happy to talk about the prospects of using magnetic X-ray scattering for thin films and interfaces. It will only be a summary of what has been done and my thoughts on what else could be done. The rest of your proposed program looks great. It's a good idea to have such an internal meeting.

Rick
Date: 14 November 1986, 10:17:09 EST From: RGREENE at YKTVMZ To: BED at ZURLVM1, KAM at ZURLVM1

Hi Alex and George;
I will be away from the lab until 24 Nov . so I thought I would let you know the present status of the specific heat (SH) experiment and my future plans.

So far we have measured BLCO21 from 3-35K.There is no evidence for a bump in SH anywhere....to a 5% accuracy. I have analyzed in detail the data between $3-10 \mathrm{~K}$. Here the SH is linear on a C / T vs T 2 plot. The intercept gives a value for gamma of $5.9 \mathrm{mj} / \mathrm{mole}-\mathrm{K} 2$. This is a rather large value compared to other metals and suggests that most of the BLCO21 sample is in the normal state. However to be sure of this we must measure the sample in magnetic field large enough to suppress the superconductivity. This we will start while I am away. Also we must run a test sample such as copper or silicon to know the accuracy of our gamma determination. All this will take 2-3 more weeks. As you see it takes considerable effort to do a reliable specific heat measurement which makes it very important that we have well characterized, single phase samples. As we discussed yesterday George it may be better to do the SH experiment on a bunch of single crystals if you can prepare them.Five mg of material should be enough to get reliable data.

We will also measure the critical field up to 9 T via resistivity. I want to do this first so I have some idea of the field necessary to get the normal state at $3 \mathrm{~K} .$. . . our SH apparatus has a field of 5 T maximum.

I'11 talk with you when I return. I am still quite excited about these new materials and hope that we can continue to collaborate on various experiments even if the specific heat does not give evidence for bulk superconductivity. I should remind you that it took many years of work before the BaPbBi Oxides were shown to be bulk Superconductors.

```
Best regards,
```

Rick

Date: 25 November 1986, 09:43:48 EST From: RGREENE at YKTVMZ To: PARKIN at ALMVMC

Hi Stuart;

Thanks for your note. I haven't heard from Helmut but he is probably very busy starting his new job. Haven't heard about the Japan proceedings either.....are you still interested in organic metals? What is happening with your work on thin films? I expect to be out to San Jose sometime in January and you can bring me up to date:

Until then I am very busy with X-ray scattering and some other experiments on new inorganic materials. Have a good holiday season.

Best regards
Rick
Date: 25 November 1986, 10:35:50 EST From: RGREENE at YKTVMZ To: BED at ZURLVMI, KAM at ZURLVMI

Hi Alex and George;

I have returned from my trip and will once again start work on your new superconductor. This week is the Thanksgiving holiday so not much will happen until next week. The specific heat apparatus is now modified to make measurements in a magnetic field....however we must first calibrate and check that it works with some known material.

Please tell me what is happening with your studies of time dependent effects. Is the sample BLCO21 still good.....we have not yet measured the resistivity in a field as a function of T but we plan to along with the specifi c heat experiment.Perhaps you should send me some new single crystals for the next experiment.....I don't want to waste time on a bad sample.

I would like to send an abstract to the March APS meeting on the specific heat results. Is this agreeable with you? The abstracts are due the end of next week (Dec.5) so let me know soon. At this stage there is not much definitive to say but I can still write a general abstract about specific heat and $I^{\prime} m$ sure I will have definitive results by the time of the meeting.

Date: 26 November 1986, 09:56:43 EST From: RGREENE at YKTVMZ To: KAM at ZURLVM1

Hi Alex;
Are you sending your susceptibility preprint to people outside of IBM? If so Ted Geballe at Stanford would like a copy...he saw your paper in Z. Physic and called me to see if I knew about your work.

I can send him a copy if you are agreeable. Please let me know about this and more importantly the answer to my note of yesterday.

Best regards,

Date: 1 December 1986, 17:31:01 EST From: RGREENE at YKTVMZ To: KAM at ZURLVM1, BED at ZURLVM1

Hi Alex and George:
Here is a draft of the abstract that I would propose submitting to the APS March meeting. Please make any changes or comments and let me know today. I look at this as a way to publisize your work in the USA and to present whatever specific heat results are obtained by March.

POSSIBLE HIGH Tc SUPERCONDUCTIVITY IN THE Ba-La-Cu-0 SYSTEM

We report measurements on new oxide superconductors of the composition $\mathrm{La}(2-\mathrm{x}) \mathrm{Ba}(\mathrm{x}) \mathrm{CuO}(4-\mathrm{y})$ with $\mathrm{x} \ll 1$ and $\mathrm{y}>0$. Polycrystalline samples with $x=.15$ show a resistivity drop of three orders of magnitude and a transition from Pauli paramagnetism to diamagnetism with an onset temperature between $30-35 \mathrm{~K}$. (ref 1 and $2 \ldots$ your two papers). The transition is complete by 10 K and magnetic field studies suggest superconductivity of a percolative or granular nature. Our specific heat experiments indicate a large electron density of states but no evidence of a sharp jump near Tc---consistent with the small Meissner signal observed (2\% of complete flux expulsion) and the broad transition width. These measurements, along with X-ray and critical field results, will be analyzed for the possibility of high Tc superconductivity in these new oxide materials.

The authors would be the three of us and Steve VonMolnar (whose apparatus I am using)....possibly I would add Al Torresen (Steve's assistant) without whom the specific heat experiments could not have been done.

The abstract could perhaps be a bit longer but there may not be much space after the authors and references are included.

Regards,
Rick
Date: 2 December 1986, 09:17:12 EST From: RGREENE at YKTVMZ To: KAM at ZURLVM1

Alex;
I scheduled your seminar for 8 Jan at $3: 30 \mathrm{pm} . .$. this was the only time I could get a room. Please send me a title and short abstract so I can get it on the lab calender as soon as possible. Do you need a hotel reservation? Regards.
Rick
P.S. Plan on saving some time on 9 Jan. to discuss our specific heat data.If you would like to go out together for dinner on the 8 th let me know.

Date: 4 December 1986, 10:48:02 EST From: RGREENE at YKTVMZ To: BED at ZURLVM1

Hi George;

I just tried to telephone you. I am measuring the resistance and critical field of sample BLCO-21. So far it reproduces the data in your Z. Physik paper...I don't see a bump except perhaps near 25 K (but I need to take more points). The surprising thing is that a small field (1000 0e) increases the Resistance to the value at 25 K but at higher fields (up to 7Tesla) there is almost no more change in R. Tell you more when I have more data.....so far it suggests that doing the specific heat in low field will be useful.

Would you please send me whatever info you have on the structure of the superconducting phase i.e. a picture and a powder X-ray that gives the Bragg peak positions.

What have you learned about the time changes in these samples? I would like some fresh single phase samples for our next specific heat experiment...to begin at the end of next week. If you have single crystals that would even be better. but I realize this is a difficult nrahlem.

Date: 5 December 1986, 10:56:34 EST From: RGREENE at YKTVMZ To: ORR OK. What are you up to? Dropin and see me sometime in vonMolnars lab.

Date: 5 December 1986, 11:10:42 EST From: RGREENE at YKTVMZ To: KAM at ZURLVM1, BED at ZURLVM1

Hi Alex and George:
I'm getting some good critical field results now although I still don't totally trust my contacts. The resistance vs. temp. follows your data but there seems to be two superconducting regions (perhaps 2 phases).. one below 22 K and the other below 33 K . The critical fields are very different in these two temperature ranges. The good news is that I am getting a critical field vs temp curve between $20-30 \mathrm{~K}$ and this will alllow me to estimate gamma to compare with the specific heat gamma. Incidently the critical field at 4 K is greater than 7Tesla (as expected for a high Tc material) so we may eventually want to go to the MIT magnet lab to measure it better.

The specific heat exp. is progressing nicely and we will be finished with all our calibrations next week. What sample do you recommend that I use based on your recent work?

As soon as I have collected and plotted all the critical field data I will send you a figure along with the abstract to the March meeting.

Best regards,
Rick
P.S. Please send me whatever info you have on the structure of the SC phases.

I am giving an internal journal club seminar on your resistivity and
susceptibility papers.
Date: 8 December 1986, 09:26:48 EST From: RGREENE at YKTVMZ To:
LOUGHRAN at ALMVMC

Rick

Date: 3 December 1986, 16:39:02 SET From: KAM at ZURLVM1 To: RGREENE at YKTVMZ

Rick,here is the title and abstract for my seminar :
'Superconducting and Structural Properties of the BaLaCuO System'
Resistivity and susceptibility measurements as well as x-ray powder analysis carried out at the Rueschlikon laboratory will be described.The electric and magnetic data indicate the existence of a percolative superconductor with onset above 30 K . The newest magnetisation measurements as a function of temperature and field proove the presence of a superconductive glass.The highest $T c$ sampels correlate with an orthorhombic-tetragonal structural phase transition.
please check for the english, thanks
Alex

Date: 9 December 1986, 10:29:48 EST From: RGREENE at YKTVMZ To: GGRIN Let's stick to our Weds tennis.....4;30 right?

Rick
Date: 9 December 1986, 10:31:06 EST From: RGREENE at YKTVMZ To: POMERAN

Mel;
I can't take the court on Thurs. so why don't we just put off our game until next week.

Date: 9 December 1986, 10:37:27 EST From: RGREENE at YKTVMZ To: BED at ZURLVM1, KAM at ZURLVM1

Hi George , Alex;
Thanks for your note George. I will send you the Critical field data today. It seems to reproduce your low field results and has the data up to 7 Tesla....I could go to 9 T but will do that later. I assume from your note that you think that BLCO21 is still a single phase...is that correct? I will use this sample for the specific heat in a magnetic field.

I am a little puzzled by the critical field data...it suggests that your susceptibility data was measuring the superconductivity that occurs below 20 K and the superconductivity above 20 K may not be a bulk effect. It's also a litte disturbing that I measured such a large linear term in the specific heat in earth field.....the measurements at 5 T should clarify this however.

Can you tell me the density of the SC phase? I need this to estimate gamma from the critical field slope. Also what is your estimate of the value of the resistivity just above Tc? I assume a single crystal would be at least 10 times lower. Also I would like to know your estimate of the Pauli susceptibility above Tc from your data....this will give another estimate of gamma.

Thanks for sending me your info and figures of the structure..I hope it arrives before next Tuesday.

Best regards,
vate: y December 1986, 11:32:57 EST From: RGREENE at YKTVMZ To: MALOZEM
I don't know Creuzet that well but he seems to have done some good work and seems to know what he's talking about. I'm not sure how independent, creative or hardworking he is. What would he be doing here? How closely working with an RSM? Who with?

Date: 9 December 1986, 14:34:51 EST From: RGREENE at YKTVMZ To: POMERAN
Mel;
OK for Monday. SEe you there unless you hear otherwise.

Rick

Date:	8	December	1986,	18:56:40	SET	From:	j.g.bednorz
BED	at	URLVM1 To:	RGRE	at YKTVMZ			

Hi Rick Sorry that you had to wait for the answer since Thursday. I've been in Germany since Friday. In November I told you on the phone, that something happened to that sample BLCO21II which I measured again one month after the first resistivity run. The resistivity curve showed a peak at 34 K and a shoulder occurring around 25 K after a 60 percent drop. At that time I was also surprised about the magnetic field dependence in the low temperature part. The resistance was increased by fields between 0-0.4 Tesla but seemed to saturate at values above, whereas the field dependence of the peak at 34 K was smaller. It would be good to compare our results, especially as you have the possibility to go to higher fields than 0.7 Tesla, which is the limit for our resistivi- ty system. Unfortunately I do not see the occurrence of a new phase related to the appearence of that shoulder in the resistivity.

Concerning your internal seminar, I will send you an X-ray powder spectrum and the structure of La2Cu04, which I've drawn already, using the information given in a German article. You can even have the viewgraphs. We should discuss questins about the structure at the phone.

> Best regards
> George.

Date:	9	December	1986,	18:47:08	SET	From:	j.g.bednorz
BED		ZURLVM1 To:	RGRE	at YKTVMZ			

Hi Rick,
Thank you for your quick answer. I just discussed with our Japanese guest Masaaki Takashige, who is involved in the susceptibility measurements. First of all you should not be worried about about the susceptibility data shown in the preprint, because the samples shown there are not single phases. You will see from the X-ray pattern that the amount of the foreign phase can be very large, greater than in BLCO21 I. Single phase means, that in the X-ray diagrams we only can detect the La2Cu04:Ba. The small suscepti- bility could indicate that only parts of that phase is superconducting, for instance an intragranular network. That is the reason, why we think the density of La2Cu04 (from the X-ray data $=7 \mathrm{~g} / \mathrm{ccm}$) would not lead to a correct estimation in your case. The Pauli susceptibility
of sample BLCO21II, this sample is not shown in the paper, shows a field dependence close to Tc , this dependence is getting weaker with increasing temperature, and we expect it to vanish 10 or 20 de-grees higher, but in case of this sample it has not been confirmed. I'll give you values at 32-33K for the mass susceptibility:

0.3	Kgauss	$1.28 \mathrm{E}-7 \mathrm{ccm} / \mathrm{g}$
5.0	$" 1$	$1.35 \mathrm{E}-6 \mathrm{ccm} / \mathrm{g}$
10.0	$"$	$1.61 \mathrm{E}-6 \mathrm{ccm} / \mathrm{g}$ Especially for the low field value

For the resistivity value: My measurement (second one, where I realized the magnetic field dependence) showed a peak value of $7.36 \mathrm{E}-3 \mathrm{Ohm} \mathrm{cm}$.

Concerning the results of the Japanese group: Do you know more about it? How did they measure the 40% Meissner effect, did they measure ac or dc? Is something known about the magnetic field they applied? I think they believe the metallic perovkite phase is responsible for the superconductivity, whereas we found that the single phase samples con-
 susceptibilitian, You wili get the aepies of tharesultis an moon as they are plotted.

Best regards

George. can be very large, larger than
in BLCO21.Talking about single phase samples
les,

Date: 10 December 1986, 10:48:47 EST From: RGREENE at YKTVMZ To: GRANT at ALMVMC

I haven't forgotten you....just busy as hell with this 30 K superconductor and can't think about anything else. Happy Holidays Turkey.

Looks like I won't have time to ski... too much physics to do.

Resistivity, of BLCO-21 II in Steve's Ht^{3} Rig
Check Ut PAR first - usual diff ingot wry $R_{\text {Lond }}=200 \mathrm{~K}$
Using loon R gus $V=1 \mathrm{mv} \quad \Rightarrow I=\frac{10^{-3}}{100.2}=10^{-5}$ Amps $=10 \mathrm{ma}$.

$$
\frac{x_{2}}{x_{2}}=3
$$

SAmple Setup

sample has wang undorm thickness In contrite- $\mid m, 1 \quad C \mu$ wines
$A+n_{\text {no we }} T$
$D C$ probe
$A B=100 \Omega$
$A F=88 \Omega$
$A C=88 \Omega$
$B F=72 \Omega$
$B C=73 \Omega$
$F C=62 \Omega$
Do AC 4 probe $(22 \mathrm{~Hz})$
$I=10$ un thru $A B$

$$
\text { get } \begin{aligned}
& 12 \mu \mathrm{~V} \quad 90^{\circ} \text { out of } R_{\text {phase }} \\
& \Rightarrow 1.2 \Omega
\end{aligned}
$$

I the $F C$ get $12 \mu V$ on $A B \cdots 0^{\circ}$ and of ploce
I thar $F B$ get ir an on $A C$ " ""
I than FA get $12 \times i$ on $B C$ in phase
go to blatz and get in phase signal
with $\sim 80 \mathrm{~m} \Omega$ rasustena
Desalt level govi but let's tag it amp way and use LR-Yio bindle

DON:T, THROW ALSAY
\qquad

now.

$$
\begin{aligned}
& E y=2 J \\
& S L=29 \\
& c L= \pm 9
\end{aligned}
$$

$$
\begin{aligned}
& A+R_{o c i}-4 \text { probe } \\
& R_{F C}=75.6 \mathrm{~m} \Omega \\
& R_{A B}=44.4 \mathrm{~m} \Omega
\end{aligned}
$$

Cool down sample Anyway using. LR-400 A to menture $1 R_{F C} \quad(v=16 \mathrm{~Hz})$

Bent Sample egypt with $H=0$

May have too mach gas en He^{3} chamela - bowen Sorb T

Rue as $f(H) H_{n}+4.2 \mathrm{H}$

$$
\left.Q_{\text {mus }}\right|_{\tan }\{\quad .0695 \mathrm{~T} / \mathrm{mV}
$$

Let's Rin As $f(T)$ Agriw with $H=0$ - not quete zew because -wmanent fial after H sueap cemains

Kus sure imse i's ALI His

$12 / 5 / 86$
Some More - Sorb at 12.61 T $\left(\begin{array}{l}I=300 \mathrm{cha} \text { onLR-400 } \\ .00 \text { Exita }\end{array}\right.$ TReg. settugn $50,20,30 \mathrm{~K}$

Try incrensios corcout at vaniose T's
'ut mut worvy
avint hicion

a	T	$R(m, 2)$	$I(\operatorname{tinm} L R-400)$
5.26	10 K	1.65	300 ma
	11	1.6	30 ma
	$"$	1.9	$100 \mathrm{\mu a}$
	11	2.7	3 ma
	60	10 ma	T

All this livh, like incueving saupls T wia heating ot intert,

Do this wher we hare betli, contat,

Estimate of Cunnewt Pzurity
ians sectow $\chi^{2} 2^{5} m^{2}$

$$
I=300 \mathrm{ma}
$$

$$
J=\frac{300 \times 0^{-6}}{.08} \approx \frac{1}{2} \times 10^{2} \mathrm{~A} / \mathrm{cm}^{2}
$$

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

FOR: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, AND MEIHODS FOR THEIR USE AND PREPARATION

DECLARATION OF ALBERT M. TORRESSEN WITH RESPECT TO HIGH TC SUPERCONDUCTIVITY

Commissioner of Patents and Trademarks Washington, D.C. 20231

Sir:
I, Albert M. Torressen, hereby declare and say that:

1. I joined the International Business Machines Corporation (IBM Corp.) on June 12, 1978, and began my employment as a laboratory technician at the Thomas J. Watson Research Center, Yorktown, New York.

In 1986, I was a senior lab specialist at the Watson Research center, and reported to Dr. Stephan von Molnar. My specialty has been measurement of thermal and transport properties of a material including, for example, measurements of heat capacity, resisitivity, and Hall coefficients. Generally, these are dynamic measurements which serve to charactize a material.
2. On approxmately October 22, 1986, Richard L.' Greene approached Stephan von Molnar to enlist his assistance in obtaining specific heat measurements of samples which he said were new superconducting materials that had been recieved from Georg Bednorz and Alex Mueller of IBM's Zurich research laboratory. These were ceramic oxide materials comprised of Ba-La-Cu-O. In turn, von Molnar asked me to assist Greene in making these measurements, since I had expertise in the use of the apparatus and had done similar measurements for many years. I began to calibrate the apparatus and to prepare for specific heat
measurements at that time, and worked continuously on a daily basis, from about October 22, 1986 through the remainder of 1986 and into 1987 on these measurements. Richard L. Greene was in the laboratory during these measurements and supervised the experimentation, relying on my expertise with respect to the apparatus. Later, we analyzed the data together.
3. Richard Greene wanted to do specific heat measurements of these superconducting samples. Such measurements are used to dertermine if a material is a superconductor and also to tell how much of the material is superconducting. In general, the specific heat of the apparatus is first carefully measured using a bolometer in order to provide background specific heat and to calibrate the apparatus. After this, the actual sample to be measured is attached to the bolometer and the specific heat of the entire apparatus, including the sample, is again measured. When the background specific heat (due to the bolometer) is subtracted, the specific heat of the sample can be determined. This is done over a temperature range, in our measurements $2-50 \mathrm{~K}$, in order to obtain a plot of specific heat versus temperature for the sample being measured. This is a dynamic measurement in which we look at how the heat in the sample decays as a function of time through a known heat leak and from that extrapolate via a computer program specific heat versus temperature. This is a known procedure that is done in many laboratories.
4. The commercial bolometer that Greene and I used to measure the specific heat of these superconducting Zurich samples was comprised of an insulating aluminum oxide on which strips of RuO_{2} were evaporated. Electrical contacts were made to the RuO_{2} strips, each strip having two AuCu wires attached thereto which were in turn connected to an ambient temperature control (about 2 K). A heat pulse was then applied to the bolometer and its temperature decay versus time was measured. This was done over the aforementioned temperature range in order to get background specific heat and to calibrate the apparatus. Generally, it takes us about two days to measure the background specific heat in order to prepare for the actual specific heat measurements of the sample. Measurement of each sample also takes about two days, so approximately four days represents the total time required for each measurement. This is based on full time activity.
5. Prior to making the specific heat measurements, the samples are prepared. The superconducting oxide samples received from Bednorz and Mueller were pellet samples which were then cut into slices by a diamond wheel. I believe that this was done by Richard Greene. To make the specific heat measurements, a sample having a mass of about 20 mg is required, it being desirable to have a flat surface sufficient to provide good thermal contact. In the calculation of specific heat, the weight (mass) of the sample is factored into the equation. Also, I made specific checks of the measuring apparatus throughout this time period (October 22, 1986 - February, 1987) and I made continual checks on the measuring apparatus in order to ensure its calibration. All of the data collected during the measurements was also provided to a personal computer that was interfaced to the apparatus. In this manner, a computer printout of all of the measurements was available.
6. Exhibit A attached hereto is comprised of copies of eight pages of my laboratory notebook and a copy of the notebook cover entitled "Specific heat - Zurich oxide - 10/21/86". All of the writing of these pages was entered by me on the dates indicated on the pages. These pages are true copies of the corresponding pages of my laboratory notebook that I have numbered in red in the upper right hand corner to enable discussion of the data on each page. As I mentioned previously, background specific heat and calibration of the instrumentation was done prior to mounting the sample and measuring the specific heat of the sample. For example, the data on the top two-thirds of page one shows the measured data for the calibration and background measurements. The bottom of this page indicates the specific heat data that was obtained October 27, 1986 when the sample was mounted on the RuO_{2} bolometer. The weight of the sample is also mentioned, the sample being designated "BLCO 2 - I". This stands for Ba-La-Cu-O ceramic superconductor. I noted that it was a "multi-phase sample" which is not a particular good choice for a specific heat measurement. Generally, the data is more clean and easy to interpret if the sample contains only a single phase. Measurements on the apparatus and with this particular sample continued on October 28 and 29, 1986, the data that Greene and I obtained being listed on page 2 on Exhibit A.
7. On November 3, 1986 we used a new sample, in this case the sample designated "BLCO 21 -II". We used a new calibration of the bolameter and then mounted the sample on the bolometer to take the data, which was obtained on November 4, 5, 6, 1986. The data for this sample measurement is contained on pages 4 and 5 of Exhibit A, where it is noted that this is a single phase sample. Additional data is also contained on page 6 of Exhibit A.
8. Richard Greene and I analyzed this data between about November 10 and November 19, 1986. At that time, the samples showed only a very small (1-2 percent) anomaly at the transition temperature, which was sufficiently small that no obvious bump occurred in this specific heat data. Because these materials had a very broad transition in resistivity versus temperature, such a very small effect was expected.
9. On or about November 19, 1986, the apparatus was changed slightly by installing a capacitor and mounting a magnet on the specific heat cryostat. The instrument was then recalibrated and measured, the data of this being shown on page 7 of Exhibit A. A capacitance bridge was used to control temperature as noted on page 8 of Exhibit A which showed further data taken on the instrumentation. After this time, we continued to take specific heat measurements of additional samples of the Ba-La-Cu-O oxide superconductors obtained from Bednorz and Mueller.
10. Exhibit B is a true copy of pages of a printout from the personal computer that was interfaced with the apparatus used to make the aforementioned specific heat measurements. These pages illustrate the background measurements and calibration of the instrumentation, as well as the data that were obtained when the sample was mounted on the bolometer. Additionally, many plots are included in this Exhibit which are plots of the data that were measured. Specific heat measurements of the samples are plotted where the samples are designated either "Zurich oxide" or "ZO". Sometimes the sample is also designated "Zurich oxide BLCO, etc." In December, 1986, additional samples were obtained from Bednorz and Mueller, these new samples containing Sr instead of Ba. They are designated "SLCO", which represents Sr-La-Cu-Oxide. The heat capacity of these samples was also measured, as represented by the plot dated January 9, 1987. Measurements were made in the absence of and in the presence of an applied magnetic field h. Sometimes the plots show
the sample plus the designation "BG". This indicates that background was also present in the measurement.
11. The data that we obtained during our specific heat measurements are representative of the type of data which we now obtain on refined samples of these superconducting copper oxide materials. At the time we made our initial measurements in 1986, we were somewhat puzzled by the small vertical offset that occurred for temperatures extrapolated from 2-0K. However, such offsets have been found to be a characteristic of the superconducting copper oxides of the type first discovered by Bednorz and Mueller.
12. In addition to his specific heat measurements, Richard Greene also measured resistivity versus temperature in the presence of a magnetic field, for these Ba-La-Cu-O samples. This was done in my lab, and I explained my experimental instruments and set-up to Greene. I observed Richard Greene making these measurements and saw the shift in resisitivity versus temperature curve with an applied magnetic field. This shift clearly indicated the superconducting nature of these samples at temperatures in excess of $30^{\circ} \mathrm{K}$. The measurements described in this paragraph occurred in the last week of November, 1986 and in the first week of December, 1986. These measurements and our specific heat measurements were part of our continuous daily effort, from about October 22, 1986 to establish the superconductive properties of these samples above $30^{\circ} \mathrm{K}$. I recall these measurements clearly and remember Richard Greene asking me how to better stabilize the sample temperature while the applied magnetic field was changed in amplitude.
13. In addition to the acts described hereinabove relating to work done by Richard Greene and by me, I was aware of the work being done by Chang C. Tsuei to measure resistivity versus temperature for these Ba-La-Cu-O superconducting samples. I was present in the laboratory with Chang C. Tsuei and and Sung Il Park during their measurement of at least one of these samples, and saw the hardcopy of a resistivity versus temperature plot developed by the xy recorder connected to their measurement apparatus. This plot showed the onset of superconductivity at approximately 35 K followed by a broad transition to zero resistivity. I knew the nature of their experimentation and understood the data. This
measurement and my observation occurred approximately the first week of November, 1986.
14. My recollection of the events described hereinabove is vivid, as there was great excitement about the importance of the discovery of new superconducting materials by Bednorz and Mueller. Because of this, activity continued on a daily basis, both morning and evening, to characterize these materials in coordination with Bednorz and Mueller.
15. All acts referred to hereinabove performed by myself, Richard L. Greene, Chang C. Tsuei, and Sung I1 Park occurred in the United States.
16. I further declare that all statements made hereinabove are of my own knowledge and are true and that all statements made on information and belief are believed by me to be true. Further, I declare that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of a Patent Application or any patent issuing thereon.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: J.G. BEDNORZ ET AL. : Date: March 29, 1988
Filed: 05/22/87 : Serial No.: 06/053,307
Group Art Unit: 115 : Examiner: Dennis Albrecht
FOR: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, AND MEIHODS FOR THEIR USE AND PREPARATION

DECLAARATION OF CHANG C. TSUEI
WIIH RESPECT TO HIGH TC SUPERCONDUCTIVITY

Commissioner of Patents and Trademarks Washington, D.C. 20231

Sir:
I, Chang C. Tsuei, hereby declare and say that:

1. I have a PhD in Material Science from California Institute of Technology, and worked approximately eleven years as a student and faculty member at Cal. Tech. During this time, my research was primarily on amorphous materials and superconducting materials. I joined the Thomas J. Watson Research Center of IBM Corporation in Yorktown, N.Y. in 1973 and continued my work on amorphous materials. For several years, I have been the Manager of a group in the Physical Sciences Department studying amorphous superconductivity and superconductivity of new High T_{c} superconducting ceramic materials.
2. On approximately September 13, 1986, I returned from a sabbatical at the K . Onnes Laboratory in Holland. Upon my return, I saw a copy of an IBM activity report for May - June, 1986, in which the "novel research" of J.G. Bednorz and K.A. Mueller was described. These individuals were working in the Zurich, Switzerland research laboratory of IBM Corporation, and had observed a steep decrease of resistivity in sintered samples of Ba-La-cu-oxides. A true copy of this activity report is attached hereto and labeled Exhibit A. On pasge 2 of the activity report the resistivity versus temperature plot is shown in Figure 1
wherein the onset temperature for superconductivity is in the 35 K range. The data and measurements discussed in the activity report were later published by Bednorz and Mueller in Z. Phys. B-Condensed Matter, 64, pp. 189-193 (1986), a true copy of which is attached and labeled Exhibit B. Based on my previous experience in superconductivity, I was very interested in the work of Bednorz and Mueller and discussed this work with my colleague, Richard Greene (who reported to me). I told Greene to review this activity report and to start a project on high T_{c} superconductors of the type described by Bednorz and Mueller. This project was started by Richard Greene and others in the group that reported to me, almost immediately.
3. I called Alex Mueller in Switzerland via telephone to request samples of his superconducting material, as well as to discuss the technical area with him. I also sent computer messages to Mueller, but could not contact him. After this, early in October, 1986, I obtained a copy of the aforementioned z. Phys. B article by Bednorz and Mueller.
4. I knew that on approximately October 17, 1986, Praveen Chaudhari was in Zurich, Switzerland. I was told that he was given samples of the Bednorz and Mueller superconducting copper oxides to bring to the U.S. for collaborative work in the United States. I was also told that these superconducting samples were delivered to Richard Greene on or about October 22, 1986. Shortly after these superconducting samples were received, I began work to confirm the existence of high temperature superconductivity in these materials and instructed Sung Il Park to assist me. To do so, small pieces of these samples were cut by Park and Greene and were prepared with indium contact dots to which copper wires were attached. These copper wires were attached to a source of electrical current and to voltage-measuring equipment to determine the existence of the superconducting state. As the temperature of the sample was lowered, resistivity versus temperature plots were then made using standard laboratory techniques. The preparation of these samples for measurement was done by Sung Il Park, who reported to me and who was directed by me to do so.
5. A true copy of the cover sheet and a page of my laboratory notebook is attached hereto and labeled Exhibit C. On the second page of
this exhibit, two diagrams illustrate the samples and show the location of the indium contact dots on the superconducting samples and the numbering given to the copper wires attached to these dots. This numbering enabled us to properly connect these wires to a current source and to voltage-measuring equipment. All entries on this notebook page were made by me. The samples are generally designated by their composition, the term "BLCO" standing for Ba-La-Cu-Oxide materials. The designation "BLCO 21 -- II," etc. in the box in the right hand corner of this page and the designation "BLCO 2 I " in the circle in the middle of the page were the designations on the sample boxes in which the samples were located. I copied these designations directly into my notebook. On the bottom right hand corner of this exhibit, the words "dewar pumped 3×10^{-5} Torr 11/9/86" is indicated. I made this notation on November 9, 1986 indicating that the dewar was being pumped down in order to enable the resistivity versus temperature measurements to be made. Because this dewar leaked, the actual measurements had to be made within several hours of the pump-down.
6. The individual superconducting samples were attached to a long probe and slowly lowered into the liquid helium dewar while a current was passed through the sample and the voltage across two of the terminals measured. Sung Il Park assisted me. These measurements were recorded directly on an xy recorder which plotted resistivity versus temperature for these superconducting samples. These plots indicated an onset of superconductivity at about approximately 35 K , and confirmed the results of Bednorz and Mueller in Switzerland. As an example, referring to the sample BLCO 2 having connecting wires $20,21,22$ and 8 , electrical current was applied between wires 20 and 8 , while voltage measurements were made across the sample using contact terminals 21 and 22. Since the voltage is a function of the resistance of the material, by making the voltage measurements at constant currents, resistivity versus temperature plots can be developed. These resistivity versus temperature plots appear to be missing at this time. I believe that they may have been inadvertently thrown away when the laboratory was subsequently extensively cleaned.
7. During my measurement of the superconducting samples
described hereinabove, Bradford G. Orr, who was a Post-doctoral employee
at the Research Center, came into my lab and observed these measurements, as did Albert M. Torressen. These measurements confirmed the high temperature superconductivity of these materials and I was enthusiastic about the results. I expressed my enthusiasm to Richard Greene, who was anxious to do specific heat measurements on these samples. Subsequent to my confirmation of their resistivity versus temperature measurements, I contacted Mueller in Zurich to inform him of my successful resistivity versus temperature measurements. In addition, I told several people about my laboratory measurements, including Arthur Williams, Alex Malozemoff, Paul Horn, and Craven Chaudhari, all of whom work in the Thomas J. Watson Research Center.
8. From the time we received the superconducting samples in October, 1986 to the present, I, Richard Greene and Sung Il Park have worked on a daily basis to further explore and develop this technology. In particular, I observed Greene working on a daily basis to conduct specific heat measurements during November and December, 1986.
9. All acts described hereinabove relating to sample preparation, measurement and discussions of these measurements occurred in the United States.
10. I further declare that all statements made hereinabove are of my own knowledge and are true and that all statements made on information and belief are believed by me to be true. Further, I declare that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of a Patent Application or any patent issuing thereon.

DATE: $3 / 30 / 88$

Surface \& material sciences E. Courtens, Mgr., Project 4181

Novel Research

Possible Iligh-T, Superconductivity in the Ba-Ia-Cu-O System
J.G. Bednorz and K.A. Müller (Project 4196)

We observed a steep decrease of resistivity in sintered Ba -La-Cu-oxide samples. with the highest temperature of the onset in the 35 K range (Fig. 1).

The Ba-La-Cu-O system exhibits a number of oxygen deficient phases with perovskite-like layer-type structures. These are characterized by mixed-valent copper ions (Cu^{2+} and Cu^{3+}) and itinerant electronic states. In addition one expects polaron formation induced by the strong Jahn-Teller effect of Cu^{2+} in an octahedral oxygen environment. Thus our Ba-La-Cu-O system was anlicipated to have considerable electron-phonon coupling and melallic conductivity.

Compounds with the composition $\mathrm{Ba}(\mathrm{x}) \mathrm{La}(5-x) \mathrm{Cu}(5) \mathrm{O}(5[3-y])$ have been prepared in polycrystalline form. Samples with $x<0.2$ and $y>0$, annealed below $900^{\circ} \mathrm{C}$ under reducing conditions, consist of three phases, one of them a perovskite-like mixed-valent copper compound with $\mathrm{K}_{2} \mathrm{NiF}_{4}$ type structure. Upon cooling, the samples show a linear decrease in resistivity, then an approximately logarithmic increase, interpreted as a beginning of localization. Finally a steep decrease by up to three orders of magnitude occurs, reminiscent of the onset of percolative superconductivity. The highest onset temperature is observed in the 35 K range. It is markedly reduced by high current densities (Fig. 1). The slow sensitlvity decay towards low temperatures might possibly result from 2D superconducting fluctuations of perovskite layers of one of the phases present.

IBM CONFIDENTIAI

Possible High T_{c} Superconductivity in the $\mathrm{Ba}-\mathrm{La}-\mathrm{Cu}-\mathrm{O}$ System

J.G. Bednorz and K.A. Müller
IBM Zürich Research Laboratory, Rüsi

CCT

ExhB

Received April 17, 1986

Metallic, oxygen-deficient compounds i

system, with the composition $\mathrm{Ba}_{x} \mathrm{La}_{5-1} \mathrm{Cu}_{5} \mathrm{O}_{5(3-y)}$ have been avary line form. Samples with $x=1$ and $0.75, y>0$, annealed below $900^{\circ} \mathrm{C}$ under reducing conditions, consist of three phases, one of them a perovskite-like mixed-valent copper compound. Upon cooling, the samples show a linear decrease in resistivity, then an approximately logarithmic increase, interpreted as a beginning of localization. Finally an abrupt decrease by up to three orders of magnitude occurs, reminiscent of the onset of percolative superconductivity. The highest onset temperature is observed in the 30 K range. It is markedly reduced by high current densities. Thus, it results partially from the percolative nature, bute possibly also from $2 D$ superconducting fluctuations of double perovskite layers of one of the phases present.

I. Introduction

"At the extreme forefront of research in superconductivity is the empirical search for new materials" [1]. Transition-metal alloy compounds of $A 15$ $\left(\mathrm{Nb}_{3} \mathrm{Sn}\right)$ and $B 1 \cdot(\mathrm{NbN})$ structure have so far shown the highest superconducting transition temperatures. Among many $A 15$ compounds, careful optimization of $\mathrm{Nb}-\mathrm{Ge}$ thin films near the stoichiometric composition of $\mathrm{Nb}_{3} \mathrm{Ge}$ by Gavalev et al. and Testardi et al. a decade ago allowed them to reach the highest $T_{c}=$ 23.3 K reported until now [2, 3]. The heavy Fermion systems with low Fermi energy, newly discovered, are not expected to reach very high T_{c} 's $\{4]$.

Only a small number of oxides is known to exhibit superconductivity. High-temperature superconductivity in the $\mathrm{Li}-\mathrm{Ti}-\mathrm{O}$ system with onsets as high as 13.7 K was reported by Johnston et al. [5]. Their x-ray analysis revealed the presence of three different crystallographic phases, one of them, with a spinel structure, showing the high T_{c} [5]. Other oxides like perovskites exhibit superconductivity despite their small carrier concentrations. n. In Nb -doped SrTiO_{3}, with $n=2 \times 10^{20} \mathrm{~cm}^{-3}$, the plasma edge is below the highest optical phonon. which is therefore unshielded
[6]. This large electron-phonon coupling allows a T_{c} of 0.7 K [7] with Cooper pairing. The occurrence of high electron-phonon coupling in another metallic oxide, also a perovskite, became evident with the discovery of superconductivity in the mixed-valent compound $\mathrm{BaPb}_{1-{ }_{x}} \mathrm{Bi}_{x} \mathrm{O}_{3}$ by Sleight et al., also a decade ago [8]. The highest T_{c} in homogeneous oxygen-deficient mixed crystals is 13 K with a comparatively low concentration of carries $n=2-4 \times 10^{21} \mathrm{~cm}^{-3}$ [9]. Flat electronic bands and a strong breathing mode with a phonon feature near $100 \mathrm{~cm}^{-1}$, whose intensity is proportional to T_{c}, exist [10]. This last example indicates that within the BCS mechanism, one may find still higher T_{c} 's in perovskite-type or related metallic oxides, if the electron-phonon interactions and the carrier densities at the Fermi level can be enhanced further.

Strong electron-phonon interactions in oxides can occur owing to polaron formation as well as in mixed-valent systems. A superconductivity (metallic) to bipolaronic (insulator) transition phase diagram was proposed theoretically by Chakraverty [11]. A mechanism for polaron formation is the Jahn-Teller effect, as studied by Höck et al. [12]. Isolated Fe^{++}, Ni^{3+} and Cu^{2+} in octahedral oxygen environment

Fig. 1. Temperature dependence of resistivity in $\mathrm{Ba}_{x} \mathrm{La}_{3-x} \mathrm{Cu}_{5} \mathrm{O}_{5(3-y)}$ for samples with $x(\mathrm{Ba})=1$ (upper curves, left scale) and $x(\mathrm{Ba})=$ 0.75 (lower curve, right scale). The first two cases also show the influence of current density

3. Conductivity Measurements

The de conductivity was measured by the four-point method. Rectangular-shaped samples, cut from the sintered pellets, were provided with gold electrodes and contacted by In wires. Our measurements between 300 and 4.2 K were performed in a continuousflow cryostat (Leybold-Hereaus) incorporated in a computer-controlled (IBM-PC) fully-automatic system for temperature variation, data acquisition and processing.

For samples with $x(\mathrm{Ba}) \leq 1.0$, the conductivity measurements, involving typical current densities of $0.5 \mathrm{~A} / \mathrm{cm}^{2}$, generally exhibit a high-temperature metallic behaviour with an increase in resistivity at low temperatures (Fig.1). At still lower temperatures, a sharp drop in resistivity ($>90 \%$) occurs, which for higher currents becomes partially suppressed (Fig. 1: upper curves, left scale). This characteristic drop has been studied as a function of annealing conditions, i.e., temperature and O_{2} partial pressure (Fig . 2). For samples anncaled in air, the transition from itinerant to localized behaviour, as indicated by the minimum in resistivity in the 80 K range, is not very pronounced. Anneating in a slightly reducing atmosphere, however. leads to an increase in resistivity and a more pronounced localization effect. At the same time, the onset of the resistivity drop is shifted

Fig. 2. Low-temperature resistivity of samples with $x(\mathrm{Ba})=1.0$, annealed at O_{2} partial pressure of 0.2 bar (curve (D) and 0.2×10^{-4} bar (curves (2) to (7))
towards the 30 K region. Curves (4) and (5), recorded for samples treated at $900^{\circ} \mathrm{C}$, show the occurrence of a shoulder at still lower temperature, more pronounced in curve (6). At annealing temperatures of $1,040^{\circ} \mathrm{C}$, the highly conducting phase has almost vanished. As mentioned in the Introduction, the mixed-valent state of copper is of importance for elec-tron-phonon coupling. Therefore, the concentration of electrons was varied by the $\mathrm{Ba} / \mathrm{La}$ ratio. A typical curve for a sample with a lower Ba concentration of 0.75 is shown in Fig. 1 (right scale). Its resistivity decreases by at least three orders of magnitude, giving evidence for the bulk being superconducting below 13 K with an onset around 35 K , as shown in Fig. 3, on an expanded temperature scale. The latter figure also shows the influence of the current density, typical for granular compounds.

III. Discussion

The resistivity behaviour of our samples. Fig. 1, is qualitatively very similar to the one reported in the $\mathrm{Li}-\mathrm{Ti}-\mathrm{O}$ system. and in superconducting

Fig. 3. Low-temperature resistivity of a sample with $x(\mathrm{Ba})=0.75$. recorded for different current densities
$\mathrm{BaPb}_{1-x} \mathrm{Bi}_{x} \mathrm{O}_{3}$ polycrystalline thin films $[5,18]$. Upon cooling from room temperature, the latter exhibit a nearly linear metallic decrease of $\rho(T)$, then a logarithmic type of increase, before undergoing the transition to superconductivity. One could, of course, speculate that in our samples a metal-to-metal structural phase transition occurs in one of the phases. The shift in the drop in $\rho(T)$ with increasing current density (Fig. 3), however, would be hard to explain with such an assumption, while it supports our interpretation that we observe the onset of superconductivity of percolative nature, as discussed below. In $\mathrm{BaPb}_{1-x} \mathrm{Bi}_{x} \mathrm{O}_{3}$, the onset of superconductivity has been taken at the resistivity peak [18]. This assumption appears to be valid in percolative systems, i.e., in the thin films [18] consisting of polycrystals with grain boundaries, or when different crystalline phases with interpenetrating grains are present, as found in the $\mathrm{Li}-\mathrm{Ti}-\mathrm{O}[5]$ or in our $\mathrm{Ba}-\mathrm{La}-\mathrm{Cu}-\mathrm{O}$ system. The onset can also be due to fluctuations in the superconducting wave functions. We assume one of the $\mathrm{Ba}-\mathrm{La}-\mathrm{Cu}-\mathrm{O}$ phases exhibits this behaviour. Therefore, under the above premises. the peak in $\rho(T)$ at 35 K . observed for an $x(\mathrm{Ba})=0.75$ (Fig. 1), has
to be identified as the start to superconductive cooperative phenomena in the isolated grains. It should be noted that in granular Al , Cooper pairs in coupled grains have been shown to exist already at a point where $\rho(T)$ upon cooling has decreased by only 20% of its highest value. This has been proven qualitatively [19] and more recently also quantitatively [20] by the negative frequency shift occurring in a microwave cavity. In $100 \AA$ films, a shoulder in the frequency shift owing to $2 D$ fluctuations was observed above the T_{c} of the grains. In our $\mathrm{Ba}-\mathrm{La}-\mathrm{Cu}-\mathrm{O}$ system, a series of layer-like phases with considerable variety in compositions are known to exist [16, 21], and therefore $2 D$ correlations can be present.

The granularity of our system can be justified from the structural information, and more quantitatively from the normal conductivity behaviour. From the former, we know that more than one phase is present and the question arises how large are the grains. This can be inferred from the logarithmic fingerprint in resistivity. Such logarithmic increases are usually associated with beginning of localization. A most recent example is the Anderson transition in granular Sn films [22]. Common for the granular Sn and our samples is also the resistivity at 300 K , lying in the range of 0.06 to $0.02 \Omega \mathrm{~cm}$, which is near the microscopic critical resistivity of $p_{c}=10 L_{0} \hbar / e^{2}$ for localization. From the latter formula, an interatomic distance L_{0} in the range of $100 \AA$ is computed, thus a size of superconducting grains of this order of magnitude must be present. Upon cooling below T_{c}, Josephson junctions between the grains phaselock progressively [23] and the bulk resistivity gradually drops to zero by three orders of magnitude, for sample 2 (Fig. 1). At larger current densities, the weaker Josephson junctions switch to normal resistivity, resulting in a temperature shift of the drop, as shown in Fig. 3. The plateau in resistivity occurring below the 80% drop (Fig. 1) for the higher current density of $0.5 \mathrm{~A} / \mathrm{cm}^{2}$, and Fig. 2 curve (6) may be ascribed to switching of junctions to the normal state.

The way the samples have been prepared seems to be of crucial importance: Michel et al. [21] obtained a single-phase perovskite by mixing the oxides of La and Cu and BaCO_{3} in an appropriate ratio and subsequent annealing at $1,000^{\circ} \mathrm{C}$ in air. We also applied this annealing condition to one of our samples, obtained by the decomposition of the corresponding oxalates, and found no superconductivity. Thus, the preparation from the oxalates and annealing below $950^{\circ} \mathrm{C}$ are necessary to obtain a non-per-ovskite-type phase with a limited temperature range of stability exhibiting this new behaviour. The formation of this phase at comparatively low temperatures is favoured by the intimate mixture of the compo-
nents and the high reactivity of the oxalates owing to the evolution of large amounts of $\mathrm{H}_{2} \mathrm{O}$ and CO_{2} during decomposition.

IV. Conclusion

In the concentration range investigated, compounds of the $\mathrm{Ba}-\mathrm{La}-\mathrm{Cu}-\mathrm{O}$ system are metallic at high temperatures, and exhibit a tendency towards localization upon cooling. Samples annealed near $900^{\circ} \mathrm{C}$ under reducing conditions show features associated with an onset of granular superconductivity near 30 K . The system consists of three phases, one of them having a metallic perovskite-type layer-like structure. The characterization of the new, apparently superconducting, phase is in progress. An identification of that phase may allow growing of single crystals for studying the Meissner effect, and collecting specific-heat data to prove the presence of high T_{c} bulk superconductivity.

The authors would like to thank H.E. Weibel for his help in getting familiar with the conductivity measurement system, E. Courtens and H . Thomas for discussions and a critical reading of the manuscript.

References

1. Tinkham, M., Beasley, M.R., Larbalestier, D.C., Clark, A.F., Finnemore, D.K.: Workshop on Problems in Superconductivity, Copper Mountain. Colorado, August 1983, p. 12 2. Beasley, M.R., Geballe, T.H.: Phys. Today ${ }^{\prime} 6(10), 60$ (1984) 3. Müller, J.: Rep. Prog. Phys. 43, 663 (1980)
2. Ott, H.R.: Unconventional Superconductivity. Zürich Phys. Soc. Seminar, Zūrich, February 13, 1986
3. Johnston, D.C., Yrakash. H., Zachariasen, W.H., Viswanathan, R.: Mat. Res. Bull. 8, 777 (1973)

6, Baratoff, A., Binnig, G.: Physics 108 B, 1335 (1981)
Baratoff, A., Binnig, G., Bednorz. J.G., Gervais, F., Servoin, J.L.: In: Superconductivity in d - and f-Band Metals, Proceedings IV Conference in 'Superconductivity in d - and f-Band Metals'. Buckel, W. and Weber, W. (eds). p. 419, Kernforschungszentrum Karlsruhe 1982
7. Binnig, G., Baratoff A., Hönig, H.E., Bednorz, J.G. Phys. Rev. Lett. 45, 1352 (1980)
8. Sleight, A.W., Giltson. J.L., Bierstedt, F.E.: Solid State Commun. 17, 27 (1975)
Batogg, B.: Physica 126 B. 275 (1984)
9. Thanh. T.D., Koma, A.. Tanaka. S.: Appl. Phys. 22, 205 (1980)
10. Matheis, F.. Hamann. D.R.: Phys. Rev. B 26, 2682 (1982): ibid. 28, 4227 (1983)
11. Chakraverty, B.K.: J. Phys. Lett. 40. L99 (1979); J. Phys. 42. 1351 (1981)
12. Hock, K.-H., Nickisch. H.. Thomas, H.: Ilelv. Phys. Actia 56, 237 (1983)
13. Englmann, R.: In: The Jahn-Teller Etleer in Molecules and Crystals. London. New York: Wiley Interscience 1972
14. Goodenough. J.B.. Longo. M.: Magnetic and other properifes of oxide and retated compounds. In: Landolt-Boernsken New

Series. Vol III/4a: Crystal and solid state physics. Hellwege. K.H., Hellwege, A.M. (eds.). p. 262, Fig. 73. Berlin, Heideberg, New York: Springer-Verlag 1970
15. Bednorz, J.G., Müller, K.A.: (in preparation)
16. Michel. C., Raveau, B.: Chim. Min. 21, 407 (1984)
17. Bednorz, J.G., Müller, K.A., Arend, H., Gränicher, H.: Mat Res. Bull. 18 (2). 181 (1983)
18. Suzuki, M., Murakami, T., Inamura, T.: Shinku 24, 67 (1981) (in Japanese)
Enomoto, Y., Suzuki, M., Murakami, T., Inukai, T., Inamura, T.: Jpn. J. Appl. Phys. 20, L661 (1981)
19. Müller, K. A., Pomerantz, M., Knoedler, C.M., Abraham, D. Phys. Rev. Lett. 45, 832 (1980)
20. Stocker, E., Buttat, J.: Solid State Commun 53, 915 (1985)
21. Michel, C., Er-Rakho, L., Raveau, B.: Mat. Res. Bull. 20, 667 (1985)
22. Van Haesendonck, C., Bruynseraede, Y.: Phys. Rev. B 33, 1684 (1986)
23. Deutscher, G., Entin-Wohlman, O., Fishman, S., Shapira, Y.: Phys. Rev. B 2t, 5041 (1980)

J.G. Bednorz

K.A. Müther

IBM Zürich Research Laboratory
Sãumerstrasse 4
CH-8803 Rüschlikon
Switzerland

Note Added in Proof

Chemical analysis of the bulk composition of our samples revealed a deviation from the ideal La:Ba ratios of 4 and 5.66 . The actual ratios are 16 and 18 . respectively. This is in agreement with an identification of the third phase as CuO .

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: J.G. BEDNORZ ET AL. : Date: March 29, 1988
Filed: 05/22/87 : Serial No.: 06/053,307
Group Art Unit: 115 : Examiner: Dennis Albrecht
FOR: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITIION TEMPERATURE, AND METHODS FOR THEIR USE AND PREPARATION

DECLARATION OF SUNG IL PARK
WITH RESPECT TO HIGH TC SUPERCONDUCTIVITY

Commissioner of Patents and Trademarks
Washington, D.C. 20231
Sir:

I, Sung Il Park, hereby declare and say that:

1. I received a PhD in Applied Physics from Stanford University in October, 1986. I joined the Thomas J. Watson Research Center of IBM Corporation in Yorktown, N.Y. on approximately October 20, 1986, and began work as a Post-doctoral employee. My initial assignment was in the areas of Thin Film Interfaces and high T_{C} superconductivity. Almost from the beginning of my employment by IBM Corporation I worked exclusively on high T_{c} superconductivity and reported to Chang C. Tsuei. I am presently working in the same capacity for Chang C. Tsuei, one hundred percent of my time being spent on high T_{c} superconductivity.
2. I was told by Chang C. Tsuei that superconducting samples had been received by Richard Greene, the samples having been brought from IBM Corporation's Research Lab in Zurich, Switzerland. These were said to be Ba-La-Cu-oxides that had been fabricated by Georg Bednorz and Alex Mueller in Zurich, Switzerland and transported to the U.S. by Praveen Chaudhari. Soon after I began working for Chang C. Tsuei, he asked me to prepare two of these samples for measurements of resistivity versus temperature. To do so, I and Greene cut pieces from these samples to be used for the measurements. I then pressed indium dots into these cut samples to provide electrical contacts. I attached copper wires
YO987-074
to the indium dots in order to allow connections to a current source and to voltage-measuring equipment. The individual copper wires were given number designations to allow them to be properly attached to the equipment used for the current and voltage measurements. This numbering system is represented by the two figures appearing in Chang C. Tsuei's laboratory notebook, a true copy of two pages of which are attached hereto and labeled Exhibit A.
3. In order to determine resistivity versus temperature, measurements were made of the current flowing through the Ba-La-Cu-Oxide sample while the voltage across two of the copper leads was measured. Both positive and negative polarity currents were used in order to avoid thermal effects that sometimes occur when making $D C$ measurements. The superconducting sample was located on the end of a long probe and placed in a dewar containing liquid helium. The temperature was varied by using a heater placed near the sample. Data of current and voltage were taken from 4.2 K to 50 K . A germanium thermometer near the sample was used to measure the sample temperature. Since resistance is proportional to voltage, the voltage and current measurements allowed the resistance (and therefore the resistivity for a sample of known dimensions) to be measured as a function of temperature. I worked with Chang C. Tsuei to take these measurements and used a xy recorder to provide graphical plots of resistivity versus temperature for the temperature range $50 \mathrm{~K}-4.2 \mathrm{~K}$ for at least two of these Ba-La-Cu-Oxide samples.
4. The preparation and measurement of the aforementioned superconducting samples occurred at a date prior to November 15, 1986, and to the best of my recollection occurred on or about November 9, 1986, the date when a helium dewar was pumped down preparatory to taking the actual measurements. I believe that while I was assisting Chang C. Tsuei and working under his direction, Bradford Orr observed our data and graphical plots, and we told him the nature of the superconducting samples and the types of measurements that we were making.
5. My recollection of the dates when the preparation and measurement of these samples occurred is vivid to me. My first week of employment under Chang C. Tsuei was spent looking for an apartment and, upon beginning laboratory work the following week (about October 28, 1986), I was instructed by Chang C. Tsuei to inmediately measure the
aforementioned samples. I cut pieces from these samples using a fine wire cutter following the direction of Richard Greene. This was done on or about October 28, 1986. After this I contacted the samples with indium as described above. This technique was very familiar to me as I had used indium contacts many times at Stanford University.
6. Both Chang C. Tsuei and I were enthused about our measurement results, as the data showed a superconducting onset temperature of about 35 K followed by a drop to zero DC resistivity. We noted that the transition to zero resistivity was fairly wide, which we expected to be the case for samples that may have been unperfected and not of a single phase. In fact, the question of whether multiple phases were present in the material was something that was noted by Tsuei in the aforementioned laboratory notebook, identified as Exhibit A, attached hereto.
7. At this time, I have been unable to locate the actual data and graphical plots of resistivity versus temperature described hereinabove. I believe that this data may have been misplaced or inadvertently throw out during an extensive cleaning of the laboratory. However, my memory of the events preparing the samples for measurements, performing the measurements and recording the data, and the results indicated by that data, are very clear in my mind.
8. All of the acts described in paragraphs $1-7$ above occurred in the United States.
9. I further declare that all statements made hereinabove are of my own knowledge and are true and that all statements made on information and belief are believed by me to be true. Further, I declare that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of a Patent Application or any patent issuing thereon.

DATE: $\quad 3 / 30 / 88$

A 2
$\times 4$
 (Single plase?)

C

IN THE UNITED STITES PATENT AND TRADEMARK OFFICE
Applicants: J.G. BEDNORZ ET AL.
Filed: $05 / 22 / 87$
Group Art Unit: 115
FOR: NEW SUPERCONDUCTIVE COMPOUNDS MAVING HIGH TRANSITION TEMPERATURE, 1988
AND METHODS FOR THEIR USE AND PREPARATION

DECIAARATION OF ATEXIS P. MALOZEMOFF
WITH RESPECT TO HIGH TC SUPERCONDUCTIVITY

Commissioner of Patents and Trademarks
Washington, D.C. 20231
Sir:
I, Alexis P. Malozemoff, hereby declare and say that:

1. I have a PhD from Stanford University and was a Senior Manager in the Physical Sciences Department at the Thomas J. Watson Research Center of IBM Corporation at Yorktown, N.Y. in the fall of 1986. At that time, Chang C. Tsuei reported to me while Richard Greene and Sung Il Park reported to Chang Tsuei. I had general responsibility for a research program in superconductivity and amorphous materials.
2. In approximately September - October 1986, I was made aware of the pioneering work in superconductivity done by Bednorz and Mueller in zurich. I had seen an activity report prepared by the Zurich Research lab of IBM Corporation, which detailed that work and the measurements that Bednorz and Mueller had made on Ba-La-Cu-O ceramic superconductors. In response, I discussed specific heat measurements that could be made on these superconducting materials to complement the work being done at Zurich by Bednorz and Mueller. My discussion was with Richard Greene wham I encouraged to be involved in this technical activity.
3. On or about November 15, 1986, Richard Greene and I traveled to Baltimore for a Magnetism conference. During our travel to Baltimore, we discussed Greene's ongoing experiments on high T_{c} superconducting samples yo987-074
which he said had been received from Bednorz and Mueller. Specifically, we discussed Greene's preliminary data on specific heat measurements. Richard Greene reported to me that the diamagnetic signal was present but very small. I encouraged him to continue with his measurements with the anticipation that he might be able to present a paper at the Materials Research Society meeting that was scheduled for December, 1986.
4. I recall Chang Tsuei telling me his measurements of resistivity versus temperature on the superconducting samples of $\mathrm{Ba}-\mathrm{La}-\mathrm{Cu}$-Oxides which had been obtained fram Zurich. These measurements were done at the aforementioned Research Center and Tsuei reported that his measurements confirmed earlier measurements of Bednorz and Mueller and were consistent with the results published by Bednorz and Mueller in Z. Phys. B-Condensed Matter 64, pp. 189-193 (1986). My recollection of the exact date Chang Tsuei told me of his resistivity versus temperature measurements is not clear. However, I do know that he told me in either November or December of 1986. To the best of my recollection, Tsuei's discussion with me was shortly after the Materials Research Society meeting in Boston the first week of December, 1986.
5. I do have a strong recollection of the work of Richard Greene on the specific heat measurements of these samples and of his measurements of resistivity versus temperature in the presence of a magnetic field. Greene's work at the Research Center started soon after he received the superconducting samples in October, 1986 and continued on a daily basis throughout the remainder of 1986 and into 1987. He discussed with me and showed me data concerning these measurements, which indicated to me that a portion of the samples was superconducting. During this time he told me that he also communicated regularly with Bednorz and Mueller in Zurich to inform them of his work and to coordinate his efforts with those of Bednorz and Mueller. He said that he received technical guidance and support from Bednorz and Mueller and worked in complete collaboration with these individuals.
6. I further declare that all statements made hereinabove are of my own knowledge and are true and that all statements made on information and belief are believed by me to be true. Further, I declare that these statements were made in the knowledge that willful false statements and the like so made are punishable by fine or imprisomment, or both, under

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: J.G. BEDNORZ ET AL.	: Date: March , 1988
Filed: $05 / 22 / 87$	$:$ Serial No. : $06 / 053,307$
Group Art Unit: 115	Examiner: Dennis Albrecht
FOR: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE,	
AND MEIHODS FOR THEIR USE AND PREPARATION	
WITH RESPECT TO HIGH TC SUPERCONDUCTIVITY	

Commissioner of Patents and Trademarks Washington, D. C. 20231

Sir:

I, Paul M. Horn, hereby declare and say that:

1. I am employed in the Thomas J. Watson Research Center of IBM Corporation at Yorktown, N.Y., where I am acting Director of the Physical Sciences Department. I received a PhD in Physics in 1973 from the University of Rochester.
2. In approximately November, 1986, I recall a conversation in which Chang C. Tsuei told me of measurements that he had recently done on samples of high T_{c} superconducting materials which he said were received from J.G. Bednorz and K.A. Mueller, of Zurich, Switzerland. These were described as samples of the type described by Bednorz and Mueller in Z. Phys. B-Condensed Matter 64, pp. 189-193 (1986), i.e., superconducting copper oxide materials in the system $\mathrm{La}-\mathrm{Ba}-\mathrm{Cu}-\mathrm{O}$.
3. I recall my discussion with Chang C. Tsuei because he was quite excited about his measurements and explained to me that they were "very recent measurements" of resistivity versus terperature that he had made on these samples. I recall that Tsuei told me that the onset temperature for superconductivity was in the mid-thirty K range. Tsuei told me that the samples superconducting and that his results looked like the results published by Bednorz and Mueller in the 2. Phys. B.

YO987-074
article mentioned hereinabove.
4. I do not recall seeing Chang Tsuei's actual data measurements, but was independently aware that the superconducting samples that he used were obtained from Bednorz and Mueller and I was familiar with the general composition of these superconducting samples.
5. All acts described hereinabove occurred in the United States, with the exception of the laboratory work of Bednorz and Mueller, which was performed in Zurich, Switzerland.
6. I further declare that all statements made hereinabove are of my own knowledge and are true and that all statements made on information and belief are believed by me to be true. Further, I declare that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of a Patent Application or any patent issuing thereon.

DATE:
$3 / 30 / 88$
PAUL M. HORN

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: J.G. BEDNORZ ET AL. : Date: March 29, 1988
Filed: 05/22/87 : Serial No.: 06/053,307
Group Art Unit: 115 : Examiner: Dennis Albrecht
FOR: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, AND METHODS FOR THEIR USE AND PREPARATION

DECLARATION OF CHENG-CHUNG JOHN CHI
WITH RESPECT TO HIGH TC SUPERCONDUCTIVITY

Commissioner of Patents and Trademarks
Washington, D. C. 20231
Sir:
I, Cheng-Chung John Chi, hereby declare and say the following:

1. I have a PhD in Physics which I received from the University of Pennsylvania in 1976. After graduation, I did Post-doctoral work at the University of Califormia, Berkeley and then joined the Research Division of IBM Corporation in 1979. I am presently a research staff member on the technical staff of the Director of Research at the Thomas J. Watson Research Center of IBM Corporation located at Yorktown, New York.
2. At a time prior to approximately the middle of November, 1986, Chang C. Tsuei told me of measurements he made on samples of high T_{c} superconducting material which he said were received from Georg Bednorz and K. A. Mueller, two physicists working for IBM Corporation in Zurich, Switzerland. These samples of superconducting material were La-Ba-Cu-O crystalline materials of the type described by Bednorz and Mueller in Z. Phys. B-Condensed Matter 64, pp. 189-193 (1986). Chang Tsuei said that he had measured resistivity versus temperature of these samples.
3. In the time frame mentioned hereinabove, Chang Tsuei showed me plots of resistivity versus temperature for the measurements he had made on these superconducting samples. I recall him telling me that the superconducting transition was "not really sharp", which is to
be expected for samples prepared during the infancy of a technology development. I recognized that these plots were evidence of superconductivity with high $T_{c^{\prime}}$ even if the transition were not very sharp at that time. Based on Tsuei's statements to me, I believe that these resistivity versus temperature plots were shown to me within a day or two of the time Tsuei made these measurements in his laboratory.
4. All acts described by me in this declaration occurred in the United States.
5. I further declare that all statements made hereinabove are of my own knowledge and are true and that all statements made on information and belief are believed by me to be true. Further, I declare that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of a Patent Application or any patent issuing thereon.

DATE:
$3 / 30 / 88^{2}$
CHENG-CHUNG JOHN CHI

IN THE U.S. PATENT AND TRADEMARK OFFICE
APPLICANT: J. G. BEDNORZ ET AL
SERIAL NO.: 06/053,307
FILING DATE: 05/22/87
DATE: DECEMBER 29, 1987

FOR: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, AND METHODS FOR THEIR USE AND PREPARATION

TO: The Commissioner of Patents and Trademarks Washington, D. C. 20231

PETITION FOR SUSPENSION OF ACTION UNDER 37 CFR 1.103

Applicants respectfully request the Commissioner of Patents and Trademarks' to "suspend action by the Patent Office on the subject applicatica until March 7, 1988. The fee (\$72.00) for this petition may be charged to Deposit Account No. 09-0468.

In summary, the reason for this request is that the undersigned requires this period of time in order to provide information previously requested by the Examiner as a result of his preliminary review of this application. The information to be provided relates to acts of invention in the United States, where the conception and reduction of practice are based on an idea First conceived and reduced to practice in Switzerland. Evidence of conception and reduction to practice in the United States involves detailed interviews with
at least 12-15 individuals, many of whom are unavailable. In particular, the inventors are the 1987 Nobel Prize winners in Physics, whose residences are in Europe and whose schedules render their availability extremely limited. This information will be provided to the Patent and Trademark Office in order to overcome potential 35 USC $102(a)$ references, the provision of which will eliminate considerable unnecessary effort on the part of the examiner and which will expedite prosecution. A more detailed basis for the foregoing petition will now be provided.

BACKGROUND

1. The invention concerns the breakthrough discovery of K.A. Mueller and J.G. Bednorz relating to high temperature superconductivity. The inventors received the 1987 Nobel Prize in Physics for this accomplishment, which was followed by worldwide acclaim and efforts to further their concept in superconductor technology.
2. Inventors Bednorz and Mueller first published their initial discovery of superconductivity at high temperatures in September, 1986 in Z. Phys. B, 64, page 189. Subsequent to that first publication, the inventors have au-
thored additional publications, as have many researchers in this field.
3. Because a patent application based on the discoveries described in the aforementioned Z. Phys. B reference was not filed prior to that publication, the subject patent application was filed in the United States based on the allowed one year grace period from the date of publication (Sept. 1986) of this first article. Because there have been intervening publications of others subsequent to the initial publication by the inventors but prior to the date of filing of the "subject patent application, an office action based on 35 USC 102 can be prepared by the examiner. However, applicants can and will establish completion of their invention in the United States prior to the date of any of these intervening publications, all of which acknowledge the discovery by the present inventors. In order to eliminate undue effort and expenditure of funds, the subject petition is being filed.
4. Applicants can and will show acts attributable to them, consistent with the discovery described in the aforementioned publicution in Z.. Phys. B., were made in this country prior to any publication by others who began working in high T_{c} superconductivity after the Sept. 1986
publication of the present inventors. This evidence will include introduction into the United States of samples of superconducting material prepared by the inventors and tested in a manner consistent with the acts first described in the Z. Phys. B. article. This work first occurred in the United States at the Yorktown Heights, N. Y. research laboratory of the present assignee, where work continued on a daily basis to reproduce the acts originally accomplished by the inventors in Switzerland, as well as additional acts evidencing superconductivity in these samples.

4
5. In order to establish completion of the invention in the United States, it is necessary to interview 12-15 individuals, and to locate large volumes of data contained in various notebooks and laboratory progress logs. Many of the people sought to be interviewed have been unavailable and remain unavailable at this time. In particular, the inventors have a schedule which takes them around the world for speaking engagements and other activities based on their celebrity status. I have been informed that they will not be available for further discussions with me until approximately the first week in February, which makes it difficult to quickly com-
plete, review and have executed the papers necessary to establish the required acts in the United States.
6. Because the prosecution of this application will require the provision of this information and further because this is the basic patent application in this technology, it is believed that suspension of any office action to allow the filing of these papers is in the best interest of the patent office, the public, and the inventors. Every effort is being made to expedite and organize the material which will be presented so as to make it as clear and self-explanatory as possible. It is further believed that prosecution of all other applications in the field of high temperature superconductivity will depend to some degree on the prosecution of the subject application, thereby providing another reason to suspend prosecution until the aforementioned information is filed in the patent office.

The undersigned has conducted preliminary interviews with approximately 8 of the individuals required to be interviewed in order to provide the necessary information, and is diligently attempting to provide interview schedules with the other individuals. The data and the various activities described by each will have to be coordinated together with the
laboratory data, charts, plots, etc. evidencing the large amount of activity that was undertaken in 1986 in the United States by others together with and on behalf of the inventors. For this reason, the present request is made.

Respectfully submitted,
J.G. BEDNORZ ET AL

Jackson E. Stanland, Reg. No. 24,444 (914) 241-4059

IBM Intellectual Property Law Department P. O. Box 218

Yorktown Heights, N. Y. 10598

[^0]: [*27] 27. A ceramic capacitor according to claim 23, wherein said first capacitor electrode formed on said first principal face of said ceramic

[^1]: a first expected start code selector coupled to receive the last layer type and generating a first expected start code selector output identifying a set of expected start codes based on the last layer type received, wherein start codes of data blocks in the high-order layers are identified as expected start codes before start codes of data blocks in the lower-order layers;

[^2]: L 50 LヨヨHS פNIM甘yO 7SI 1 Э9＜Z＝＞
 Sep．16， 1997

[^3]: ## $<=2>$ GET 1st DRAWING SHEET OF 3
 Protective circuit for semiconductor power device
 INYENTOR: Palara, Sergio, Catania, Italy Sueri, Stefano, Catania, Italy
 located in an epitaxial region contained within an insulation well of the type in turn contained in an epitaxial layer of the type N-grown on a substrate of the type $N+$, and an NPN transistor having as the collector an enriched region of the type $n+$ of said epitaxial region, as the base said insulation well of
 LEVEL 1-15 0F 225 PATENTS

[^4]: 5,570,084
 <=2> GET 1st DRAWING SHEET OF 7

[^5]: $$
 5,489,372
 $$

 Process for producing light absorption layer of solar cell
 INVENTOR：Hirano，Tomio，Susono，Japan

[^6]:

 INVENTOR: Kasukawa, Akihiko, Tokyo, Japan
 Kikuta, Toshio, Tokyo, Japan

[^7]: 5,275,714
 <=2> GET 1st DRAWING SHEET OF 1
 Method of producing an absorber layer for solar cells with
 INVENTOR: Bonnet, Dieter, Friedrichsdorf, Federal Republic of Germany Ehrhardt, Josef, Hochheim/Main, Federal Republic of Germany

[^8]: compounds, and pyrrolopyrrole compounds.
 [*5] 5. The photosensitive material according to claim 4, wherein the electric charge generating material is an azo compound.
 [*6] 6. The photosensitive material according to claim 1 , wherein the
 photosensitive layer is a single-layer type photosensitive layer comprised of an electric charge transferring material, an electric charge generating material and a binding resin.

[^9]: <=2> GET 1st DRAWING SHEET OF 1

 $$
 \text { Aug. 31, } 1993
 $$

 Process for producing urethane foam with high density skin
 INVENTOR: Ohmura, Hirokazu, Niiza, Japan
 Yoshimura, Kimio, Urawa, Japan
 Narumi, Satoshi, Tochigi, Japan
 What is claimed is:

[^10]: 5，187，680
 st f0 1ヨᄏHS 9NIM४yo 7SI 1ヨコ＜Z＝＞
 Feb．16， 1993

[^11]: [*10] 10. An electronic device including a substantially intrinsic

[^12]: INVENTOR: Tate, Takuo, Hachiouji, Japan
 Watanabe, Taketoshi, Inagi, Japan
 Nagura, Hiroyuki, Inagi, Japan
 What is claimed is:

[^13]: wherein the number of said lower surface polyamide wefts and that of said lower

[^14]: ... [*11] time of said process for metallizing said through-hole surfaces. circuit board of the double-sided or multi-layer type, comprising the steps of
 (a) providing a printed circuit substrate material comprised of a member selected from the group consisting of (1) a planar non-conductive material
 ... [*12] metal depositing solution to deposit metal fully and adherently and essentially void-free onto said catalyzed through-hole surfaces.
 [*13] 13. The process according to claim 12 wherein said printed circuit board is of the multi-layer type and wherein said through-hole surfaces are desmeared between steps (b) and (c). [*14] 14. A process for providing a full-coverage, essentially void-free,
 adherent metai layer on the surface of a \quad LEVEL $1-910$ - 225 PATENTS

 LEVEL 1

[^15]: $$
 \begin{gathered}
 4,723,601 \\
 \text { Feb. 9, } 1988 \\
 \text { Multi-layer type heat exchanger }
 \end{gathered}
 $$

 INVENTOR: Ohara, Toshio, Kariya, Japan Tsuchiya, Kiyomitsu, Okazaki, Japan

 Kittaka, Kiyoshi, Aichi, Japan
 Sudo, Yasuhiro, Okazaki, Japan Kittaka, Kiyoshi, Aichi, Japan

[^16]: $$
 \begin{gathered}
 4,617,423 \\
 <=2>\text { GET 1st DRAWING SHEET OF } 6 \\
 \text { 0ct. 14, } 1986 \\
 \text { Data communication system }
 \end{gathered}
 $$

 $$
 \begin{aligned}
 & \text { INVENTOR: Dickerson, James W., Plano, Texas } \\
 & \text { Smith, III, William N., Carrollton, Texas }
 \end{aligned}
 $$

 [*1] 1. A network multiple physical layer interface connected to a laymuncations network each layer type including a send channel and a receive channel, said interface comprising:

[^17]: [*16] 16. A method for preparing a finished cake of a layer type having
 after baking a discontinuous pudding phase, in the finished baked cake
 consisting essentially of the steps of:
 $[* 16]$ 16. A method for preparing a finished cake of a layer type having
 after baking a discontinuous pudding phase, in the finished baked cake
 consisting essentially of the steps of: consisting essentially of the steps of:
 A. providing a dry mix for cakes, said dry mix comprising

 $$
 \begin{aligned}
 & \text { A. providing a dry mix for cakes, said dry mix comprising } \\
 & \text { I. from ... } \\
 & \text { LEVEL } 1-134 \text { OF } 225 \text { PATENTS }
 \end{aligned}
 $$

[^18]: plate according to claim l, wherein the polyamide resin of the binder for the charge carrier generating layer is copolymer nylon.

[^19]: [*17] 17. The apparatus of claim 15, in which said upper front wall portion
 LEVEL 1 - 160 OF 225 PATENTS

[^20]: $$
 \begin{gathered}
 <=2>\text { GET 1st DRAWING SHEET OF } 2 \\
 \text { Apr. } 17,1979
 \end{gathered}
 $$

 Composite board structure and a method of and an apparatus
 for producing the board structure
 [*8] 8. A composite board structure as set forth in claim 1 , in which the

 ## INVENTOR: Kazama, Norio, Yokohama, Japan

 [*9] 9. A composite board structure as set forth in claim 1, having a

 $$
 171 \text { OF } 225 \text { PATENTS }
 $$

[^21]: [*5] 5. A single phase electrical power transformer as defined in claim 2
 wherein said high voltage windings are of the disc type, the low voltage winding
 between high voltage windings of the helical type and the remaining low voltage
 winding is of the layer type.
 [*6] 6. A single phase electrical power transformer as defined in claim 2
 wherein said high voltage windings are of the disc type, the low voltage winding
 between the high voltage windings is of the ...
 LEVEL. -196 OF 225 PATENTS
 $[* 4] \quad$ 4. A single phase electrical power transformer as defined in claim 2
 wherein said high voltage windings are of the layer type, the low voltage
 windings between high voltage windings is of the helical type and the remaining
 low voltage winding is of the disc type.
 $[* 4] \quad$ 4. A single phase electrical power transformer as defined in claim 2
 wherein said high voltage windings are of the layer type, the low voltage
 windings between high voltage windings is of the helical type and the remaining
 low voltage winding is of the disc type.
 $[* 4] \quad$ 4. A single phase electrical power transformer as defined in claim 2
 wherein said high voltage windings are of the layer type, the low voltage
 windings between high voltage windings is of the helical type and the remaining
 low voltage winding is of the disc type.
 INVENTOR: Manimalethu, Abraham I., Peru, Massachusetts

 Ju1. 15, 1975
 Jul. 15, 1975
 Series/parallel connected single phase power transformer
 INVENTOR: Manimalethu, Abraham I., Peru, Massachusetts
 windings. $[\star 2]$ consists of two high voltage windings and two low voltage
 $[\star 3] \quad$ 3. A single phase electrical power transformer as defined in claim 2
 wherein said high voltage windings are of the layer type, the low voltage
 windings between high voltage windings is of the helical type and the remaining
 low voltage winding is of the layer type.
 $[\star 5] \quad$ 5. A single phase electrical power transformer as defined in claim 2
 wherein said high voltage windings are of the disc type, the low voltage winding
 between high voltage windings of the helical type and the remaining low voltage
 winding is of the layer type.

[^22]: I 10 Lヨ习HS 9NIM甘yO 75I 1 I9＜Z＝＞

[^23]: means for applying a first potential between said electrodes during formation
 of a temporary image in said
 LEVEL $1-211$ OF 225 PATENTS
 a second transparent electrode;

[^24]: MI metals and compounds of Group VIII metals. [*8] 8. A hydrocarbon conversion catalyst cracking component material
 obtained by the dehydration of a synthetic layer-type, crystalline, clay-like
 mineral having the empirical formula:
 nSiO2 : Al203 : mAB : xH2O

 n is from 0.4 to 15.0
 m is from 0.2 to 0.6
 ...

[^25]: said other major face, one of said second plurality of resistive elements being electrically connected between one of said second plurality of switch pads and LEVEL 1 - 221 OF 225 PATENTS

[^26]: INVENTOR: Ash, Kenneth C., Corvallis, Oregon
 Crocker, William A., Salem, Oregon
 Haygarth, John C., Corvallis, Oregon
 Lee, David R., Lebanon, Oregon Morris, Donald, Corvallis, Oregon Peterson, John R., Salem, Oregon Risen, Jon A., Albany, Oregon Yih, Robert S., Salem, Oregon

[^27]: ${ }^{1}$ See MPEP 2001.06(b).
 ${ }^{2}$ See MPEP 901.03.

[^28]: ${ }^{3}$ See In re Fisher, $166 \mathrm{USPQ} 18,24$; and In re Angstadt and Griffen, 190 USPQ 214, 218. See also, In re Colianni, 195 USPQ 150, 153, 154 (CCPA 1977) (J. Rich).
 ${ }^{4}$ See In re Cook, 169 USPQ 298, 302; and cosden Oid. V. American Hoechst, 214 USPQ 244, 262.
 ${ }^{5}$ See In re Corkill, 226 USPQ 105, 1009.
 ${ }^{6}$ See Brennex v. Manson, 383 US 519, 148 USPQ 689.

[^29]: ${ }^{7}$ See In re Lindner, 173 USPQ 356, 358 (CCPA 1972).

[^30]: ${ }^{8}$ See footnotes 1-4 in the April 15, 1996 Office Action, paper no. 54. See also, the corresponding sections of this Office Action.
 ${ }^{9}$ See pp. 12-25 of the September 29, 1995 Amendment, paper no. 50.

[^31]: ${ }^{10}$ See In re Mayhew, 527 F.2d 1229, 188 USPQ 356 (CCPA 1976).

[^32]: ${ }^{11}$ See Ex parte Remark, 15 USPQ 2d 1498, 1500 (BPAI 1990); Ex parte Kristensen, 10 USPQ 2d 1701, 1703 (BPAI 1989); Ex parte Attig, 7 USPQ 2d 1092, 1093 (BPAI 1988); and Ex parte Copenhaver, 109 USPQ 118 (POBA 1955).

[^33]: ${ }^{12}$ See In re Brown, 173 USPQ 685, 688; In re Best, 195 USPQ 430; and In re Marosi, 218 USPQ 289, 293.

[^34]: ${ }^{13}$ One decision is cited in the January 4, 1996 Supplementary Response, paper no. 51: In re Katz, 215 USPQ 14 (CCPA 1982). Three decisions are cited in the April 11, 1996 Supplementary Response, paper no. 53: Andrews v. Hovey, 123 US 267 (1887); Ex parte Lemieux, 115 USPQ 148 (POBA 1957); and Ex parte Powell and Davies, 37 USPQ 285 (POBA 1938).

[^35]: ${ }^{14}$ see In re Katz, supra, 215 USPQ at 17,18 . See also, MPEP 716.10 .
 ${ }^{15}$ See Andrews v. Hovey, supra.
 ${ }^{16}$ See Ex parte Powell and Davies, supra, 37 USPQ at 285, 286.
 ${ }^{17}$ See Ex parte Lemieux, supra, 115 USPQ at 149. See also, MPEP 715.01(c).
 ${ }^{18}$ The applicants did not cite In re Mathews, 161 USPQ 276, 277-279 (CCPA 1969), which held that an applicant may overcome a patent as prior art under 35 USC 102 (e) with evidence that the applicant provided the knowledge for the disclosure in that patent. By contrast, the present facts involve prior art under 35 USC 102 (a) with a publication date before the invention was in this country.

[^36]: ${ }^{19}$ The applicants' proposed priority date for the EPO application is January 23, 1987, which is after the December 1986 dates show by the Richard L. Greene Affidavit.

[^37]: Notary Public

[^38]: (3) The superconductive compounds aro oxides of the general lormula $R E_{2 . . n} A E_{n} T M . O_{4-y}$, wheroin $R E$ is a rare earth. AE is a momber of the group of alkaline earths or a combination of at least two member of that group. and TM is a transition metal. and wherein $x<0.3$ and $0.1 \leq y$ s0.5. The method for making these compounds involves the steps of coprecipitating aqueous solutions of the respective nitrates of the constituents and adding the coprecipitate to oxalic acid. decomposing the precipitate and causing a F solid-state reaction at a temperature between 500 and $1200^{\circ} \mathrm{C}$ for between one and eight hours. forMming pellets of the powdered product at high pres$F_{\text {ure }}$ sintering the pellets at a temperature between m_{500} and $1000^{\circ} \mathrm{C}$ for between one half and three Ohours. and subjecting the pellets to an additional $\underset{\sim}{N}$ annealing treatment at a temperature between 500 and $1200^{\circ} \mathrm{C}$ for between one halt and five hours in a Oprotected atmosphere permitting the adjustment of a. the oxygen content of the final product.

 山

[^39]: ${ }^{1}$ See MPEP 2001.06(b).
 ${ }^{2}$ See MPEP 901.03.

[^40]: ${ }^{3}$ See In re Fisher, 166 USPQ 18, 24; and In re Angstadt and Griffen, 190 USPQ 214, 218. See also, In re Colianni, 195 USPQ 150, 153, 154 (CCPA 1977) (J. Rich).
 ${ }^{4}$ See In re Cook, 169 USPQ 298, 302; and Cosden Oil v. American Hoechst, 214 USPQ 244, 262.
 ${ }^{5}$ See In re Corkill, 226 USPQ 105, 1009.
 ${ }^{6}$ See Brenner v. Manson, 383 US 519, 148 USPQ 689.

[^41]: ${ }^{7}$ See In re Lindnex, 173 USPQ 356, 358 (CCPA 1972).

[^42]: ${ }^{8}$ See footnotes 1-4 in the April 15, 1996 Office Action, paper no. 54. See also, the corresponding sections of this Office Action.
 ${ }^{9}$ See pp. 12-25 of the September 29, 1995 Amendment, paper no. 50.

[^43]: ${ }^{10}$ See Ex parte Remark, 15 USPQ 2d 1498, 1500 (BPAI 1990); Ex parte Kristensen, 10 USPQ 2d 1701, 1703 (BPAI 1989); Ex parte Attig, 7 USPQ 2d 1092, 1093 (BPAI 1988) ; and Ex parte Copenhaver, 109 USPQ 118 (POBA 1955).

[^44]: ${ }^{11}$ See In re Brown, 173 USPQ 685, 688; In re Best, 195 USPQ 430; and In re Marosi, 218 USPQ 289, 293.

[^45]: ${ }^{12}$ One decision is cited in the January 4, 1996 Supplementary Response, paper no. 51: In re Katz, 215 USPQ 14 (CCPA 1982). Three decisions are cited in the April 11, 1996 Supplementary Response, paper no. 53: Andrews v. Hovey, 123 US 267 (1887); Ex parte Lemieux, 115 USPQ 148 (POBA 1957); and Ex parte Powell and Davies, 37 USPQ 285 (POBA 1938).

[^46]: ${ }^{13}$ See In re Katz, supra, 215 USPQ at 17, 18. See also, MPEP 716.10.
 ${ }^{14}$ See Andrews v. Hovey, supra.
 ${ }^{15}$ See Ex parte Powell and Davies, supra, 37 USPQ at 285, 286.
 ${ }^{16}$ See Ex parte Lemieux, supra, 115 USPQ at 149. See also, MPEP 715.01(c).
 ${ }^{17}$ The applicants did not cite In re Mathews, 161 USPQ 276, 277-279 (CCPA 1969), which held that an applicant may overcome a patent as prior art under 35 USC $102(e)$ with evidence that the applicant provided the knowledge for the disclosure in that patent. By contrast, the present facts involve prior art under 35 USC $102(a)$ with a publication date before the invention was in this country.

[^47]: ${ }^{18}$ The applicants' proposed priority date for the EPO application is January 23, 1987, which is after the December 1986 dates show by the Richard L. Greene Affidavit.

[^48]: ${ }^{19}$ See MPEP 706.07(a).

[^49]: 'See MPEP 714.02-714.04.

[^50]: ${ }^{1}$ See In re Fisher, 166 USPQ 18, 24 ; and In re Angstadt and Griffen, 190 USPQ 214, 218. See also, In re Colianni, 195 USPQ 150, 153, 154 (CCPA 1977) (J. Rich).
 ${ }^{2}$ See In re Cook, 169 USPQ 298, 302; and Cosden Oil v. American Hoechst, 214 USPQ 244, 262.

[^51]: ${ }^{3}$ See In re Corkill, 226 USPQ 105, 1009.
 ${ }^{4}$ See Brenner v. Manson, 383 US 519, 148 USPQ 689.

[^52]: ${ }^{5}$ See In re Lindner, 173 USPQ 356, 358 (CCPA 1972).

[^53]: ${ }^{6}$ See Ex parte Remark, 15 USPQ 2d 1498, 1500 (BPAI 1990); Ex parte Kristensen, 10 USPQ 2d 1701, 1703 (BPAI 1989); Ex parte Attig, 7 USPQ 2d 1092, 1093 (BPAI 1988); and Ex parte Copenhaver, 109 USPQ 118 (POBA 1955).

[^54]: ${ }^{7}$ See In re Brown, 173 USPQ 685, 688; In re Best, 195 USPQ 430; and In re Marosi, 218 USPQ 289, 293.

[^55]: ${ }^{13}$ The applicants did not cite In re Mathews, 161 USPQ 276, 277-279 (CCPA 1969), which held that an applicant may overcome a patent as prior art under 35 USC 102 (e) with evidence that the applicant provided the knowledge for the disclosure in that patent. By contrast, the present facts involve prior art under 35 USC 102 (a) with a publication date before the invention was in this country.
 ${ }^{14}$ The applicants' proposed priority date for the EPO application is January 23, 1987, which is after the December 1986 dates show by the Richard L. Greene Affidavit.

[^56]: 'As noted in Tore v. Winchell, supra at 61, 209 U.SPQ at 382 n . 10, only abandonment, suppres sion or concealment of the invention are grounds under $\$ 102(\mathrm{~g})$ for awarding priority de jure to the party who is not the first inventor de facto. Thus, I disapprove of the view expressed by the board in Magdo v. Peltzer, 212 USPQ 838, 845 (BOP1 1981) (on Petition for Rehearing)
 a party to an interference who has not complied with the "best mode" requirement of the statute has "no right to make" his claims corresponding to the counts and, therefore, is not entitled to an award of priority, irrespective of testimony as to
 inventive acts *
 See also n.3, supra.

[^57]: ${ }^{3}$ Such showing can be made under Rule 132, 37 CFR 1.132, which provides:

 When any daim of an application is rejected on reference to at * * * prinied publication * ** allidavits or declarations traversing the referencel * * * may be received.

 - The solicitorer notes that in the application, there is an inconsistency in that the subject application and its parent by a sole inventor refer to previous work done by "one of the inventers." While adding to the ambiguity, this statement, which appellant's atorney represents was his error in drafismanship, does not control over appellant's subsequent proofs.

[^58]: ' As argued by the Soliciur. this primed puldicition is also evidence that "the invention was known or used by ohers in this country * * or descrited in a primted publication in this ** * country, before the invention thereof by applicam" under 35 LISC: $102(i)$ and, as held by the examiner, is cvidence that "before the applicant's invention thereof the invention was made in this country by another" under 35 USC 102(g). The "owhers" in $102(\mathrm{a})$, "not himself" in 102(f), and "another" in 102(g) are terms that serve to distinguish between dilferent inventive entilies. Contrary to the majority opinion's view of section $102(\mathrm{~g})$, the Katz et al. article indicates that the invention was actually reduced to practice; appellant did not contest the examiner's rejection on this basis. In this case, Katz, the applicant, is one inventive entity and his effective date of invention, as the record now stands, is his application filing date. Collectively, Katz, Chiorazzi, and Eshhar comprise a second inventive entity. See CHISUM ON PATENTS $8 \mathbf{3} .08(2)(\mathrm{a})$.

[^59]: ${ }^{2}$ See nose 1, supra.
 ' If Chiorazzi and Eshhar were merely involved in assembling data, conducting experiments, essing the invention, or reporting the inventor's activities, it is not unreasonable to require that this limited role be allirmed by them or Katz. Nfier all, the resources of the PTO are limited and such information is readily available to appellant.

[^60]: ${ }^{4}$ See U.S. Patent \& Trademark Otlice, Manual of Patent Examining Procedure $\$ 715.01$ (c) (4ih Ed. Rev. 1980).

[^61]: IBM Corporation
 Intellectual Property Law Dept.
 P. O. Box 218

 Yorktown Heights, New York 10598
 /ma

[^62]: in coniormence ond nol consideced. Includa copy ol this lorm with noxt communicotion io upplicanl.

[^63]: IBM Corporation
 Intellectual Property Law Dept.
 P.O. Box 218

 Yorktown Heights, N.Y. 10598
 1

